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Abstract: We propose a method for online sensor fault detection that is based on the 

evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to 

improve the accuracy of making estimates in a nonlinear case. A residual is the difference in 
value between an estimated value and the true value. A residual will be regarded as a signal 

that includes fault information. The threshold is set at a reasonable level, and will be 

compared with residuals to determine whether or not the sensor is faulty. The proposed 

method requires only a nominal plant model and uses STCKF to estimate the original state 

vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. 

Keywords: cubature Kalman filter; fault detection; strong tracking; sensor 

 

1. Introduction 

With the wide application of sensors in production processes, sensors are used as the main devices of 

control systems to access information. Sensors are used in some systems to ensure the security, accuracy, 
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and reliability of the system. Once these sensors are out of operation, they will affect the normal 

operation of the whole system, which may lead to serious consequences or disaster. Therefore, the 

detection of sensor faults is necessary. 

Currently, most methods for detecting sensor faults are based on data-driven and model-based 

approaches. The advantage of the data-driven approach is that an accurate model is not needed, and the 

approach has strong adaptability. For example, expert systems and statistical analyses based on  

data-driven methods have been applied in fault detection with good results [1]. A method based on data 

fusion techniques using vectorized auto-regressive moving average models and multivariate orthogonal 

space transformations is proposed in this paper. Incremental neural networks and evolving fuzzy systems 

also have the ability to update sample-wise their parameters [2]. Although this method diagnoses faults 

only based on online recorded data streams, it requires a large database for operations that takes a long 

time and is computationally complex. In contrast, model-based methods have good real-time 

performance and do not require too much data [3]. A model-based approach is more powerful and shows 

a better performance when the process is well modeled. Model-based approaches detect faults by 

comparing the threshold with the residual generated by the true value and the estimated value. 

Currently, Particle Filter (PF) [4] and Kalman Filter (KF) are the main model-based approaches for 

detecting faults. In order to ensure the accuracy of PF algorithm estimates, there must be a sufficient 

number of particles. A large number of samplings and resamplings are needed, and the calculations 

increase drastically with the growth of the space dimension. Because of the amount of computing time 

required, this method is not good at online fault diagnosis compared with KF. KF is a classic  

model-based method that has been widely used in fault detection and other fields [5]. The traditional KF 

algorithm predicts the next state for linear systems. Due to the KF method cannot be applied to 

increasingly complex systems, the Extended Kalman Filter (EKF) linearizes nonlinear systems by a  

first-order Taylor series expansion [6]. Moreover, the uncertainties of the model may lead to bias in the 

estimation process. Therefore, a fading factor is introduced in the Extended Kalman Filter to improve 

the accuracy of estimations when the model is not accurate, and this algorithm is called the Strong 

Tracking Filter (STF) [7]. To overcome the issue of EKF linearization errors a method called the 

Unscented Kalman Filter (UKF) is presented in [8]. A high-dimensional system, the sampling point of 

the UKF center right is negative, which leads to a non-positive definite covariance in the filtering 

process. This will affect the performance of the filter. However, when the system is a high-dimensional 

one, it is difficult for the UKF to achieve the desired effect. To improve the accuracy of estimates in 

high-dimensional systems, Arasaratnam [9] proposed a Kalman filter based on the cubature rule (CKF). 

Compared between the EKF and UKF, CKF has better nonlinear approximation performance, numerical 

accuracy, and stability, and is relatively simple to achieve. However, when there are many differences 

between the model parameters and process parameters, the precision of the estimations of all of the 

Kalman filters will greatly decrease, and even diverge. 

Prediction accuracy will directly affect the quality of the residuals and the accuracy of fault detection. 

In view of this, we propose a new method that uses cubature rules instead of the Jacobian matrix in a 

Strong Tracking Filter to generate steady residuals in fault-free cases. The proposed method combines 

the advantages of CKF and STF to produce more accurate estimated values and more stable residuals in 

fault-free cases. Setting up a suitable threshold to compare with the residual, a sensor fault is considered 

to have occurred when the residual exceeds the threshold. Thus, sensor fault detection is realized. The 
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above approach to detecting sensor faults is based on the assumption that, in the process, the actuator is 

fault free and the system is fault free. 

This paper is organized as follows: in Section 2 a mathematical formulation of the system is described 

and the assumptions and needs of the system are given. In Section 3 an algorithm for fault detection is 

proposed. A simulation on a drum-boiler model is provided to verify the effectiveness of the algorithm. 

The results of simulation are discussed in Section 4. Conclusions are presented in Section 5. 

2. Problem Formulation 

2.1. Nonlinear System Model 

The system model is described using the following state space model: ݔ௞ = ,௞ିଵݔ)݂ (௞ିଵݑ + ௞ݕ௞ିଵ (1)ݓ = ℎ(ݔ௞, (௞ݑ + ௞ (2)ݒ

where ݔ௞ ∈ ℝ௡×ଵ is the state vector, ݕ௞ ∈ ℝ௠×ଵ is the outputs vector, ݑ௞ ∈ ℝ௟×ଵ is the control vector, 

and ݓ௞  and ݒ௞  are noise sequence of the process and measurement, respectively. The mean and 

covariance matrices of ܳ௞	 and 	ܴ௞ , respectively. ݂(∙) and ℎ(∙) are known functions related to the 

system. 

2.2. Residual Generation 

We assume that the state estimated value and the outputs estimated value based on the mathematical 

model of the system are ݔො௞ and ݕො௞, and that ݔො௞ and ݕො௞ can be estimated according to the KF. We 

consider the outputs of system ݕ௞ to be the true value 	ݕො௞. We can define r(∙) as the residual. It is a 

signal symptom to judge whether or not the system is a failure. Its form is described as follows: r(k) = ௞ݕ − ො௞ (3)ݕ

Under fault-free conditions, the residual is close to zero. This signal should deviate from zero and 

exceed a predetermined value when a fault occurs. When a fault occurs, the estimated value ݕො௞ will take 

the place of the failure value to ensure the normal operation of the system. 

2.3. Fault Detection 

We consider a process that is actuator fault free and system fault free. The goal is to detect sensor 

failures. Sensor faults can be summarized as falling under four categories, as illustrated in Figure 1 [10]. 

We consider that only one type of fault at a time occurs on a sensor.  

3. Algorithm for Fault Detection 

In this section a cubature rule is used in the process of estimating the state of a strong STF, and in 

generating the residual to judge whether or not a fault has occurred. If a fault has occurred, an alarm 

signal will be generated. We designed a series of filters to generate residuals for detecting sensor faults. 
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Figure 1. Common sensor fault types: (a) Constant output fault; (b) Drift fault; (c) Sudden 

fault; (d) Regular bias. 

3.1. Filter Design 

A filter is designed to produce a residual value. A steady residual value is more advantageous for 

detecting faults. The proposed approach has simple calculation advantages compared with UKF and 

EKF. CKF avoids the need to solve the Jacobian matrix in EKF. It has fewer sampling points than UKF, 

so CKF has more advantages in a high-dimensional system. In [11] a method involving the introduction 

of a forgetting factor for the smooth treatment of drifts in data streams is adopted, and a good 

performance is achieved. The STF is a classic method often used to estimate the state of the system to 

complete the detection of faults [12]. The fading factor ߣ௞ାଵ is introduced in the time update process to 

obtain an accurate estimated value when the parameters of the model do not match. The fading factor is 

obtained by forcing a residual orthogonal. The proposed method has the advantages of STF and CKF. 

The STF time update and measurement update steps are given as follows: 

Time update: 
The predicted ݔො௞ାଵ|௞ and associated covariance ௞ܲାଵ|௞ are calculated as follows: ݔො௞ାଵ|௞ = ௞ାଵ|௞݌ො௞|௞ (4)ݔ௞ܣ = ௞ାଵߣ ௞ܣ ௞ܲ|௞ܣ௞் + ܳ௞ (5)

where: ܣ௞ = ,௞ݔ)݂߲ ௞ݔ߲(௞ݑ ௞ܥ  = ߲ℎ(ݔ௞, ௞ݔ߲(௞ݑ  

Gain: ܪ௞ାଵ = ௞ܲାଵ|௞ܥ௞ାଵ் ௞ାଵܥ) ௞ܲାଵ|௞ܥ௞ାଵ் + ܴ௞ାଵ)ିଵ (6)

Measurement update: 
The predicted measurement ݔො௞ାଵ|௞ାଵ and associated covariance ௞ܲାଵ|௞ାଵ are calculated as follows: 

0 5 10
0

2

4

6
Constant output(a)

 

 
Ture

Measurement

0 5 10
0

2

4

6
Drift fault(b)

0 5 10
0

2

4

6
Sudden fault(c)

0 5 10
0

2

4

6
Regular bias(d)



Sensors 2015, 15 4582 

 

 

ො௞ାଵ|௞ାଵݔ = ො௞ାଵ|௞ݔ௞ାଵܣ	 + ௞ାଵݕ)௞ାଵܪ − ො௞ାଵ|௞) (7)௞ܲାଵ|௞ାଵݔ௞ାଵܥ = ܫ) − (௞ାଵܥ௞ାଵܪ ௞ܲାଵ|௞ (8)

The fading factor ߣ௞ାଵ can be obtained as follows: ߣ௞ାଵ = ൜ߣ଴ ଴ߣ) ≥ 1)1 ଴ߣ) < 1) ଴ߣ(9)  = ]ݎݐ ௞ܰାଵ]ݎݐ[ܯ௞ାଵ] (10)

௞ܰାଵ = 	 ௞ܸାଵ − ௞ାଵܴߚ − ௞ାଵܳ௞ܥ ௞ାଵ்ܥ ௞ାଵܯ(11)  = ௞ାଵܣ௞ାଵܥ	 ௞ܲାଵ|௞ାଵ ௞ାଵ்ܣ ௞ାଵ்ܥ  (12)

௞ܸାଵ = ቐ ଵ்ݎଵݎ (݇ = ߩ(1 ௞ܸ + ௞்1ݎ௞ݎ + ߩ (݇ > 1) (13)

ߩ ,is the forgetting factor of the residual sequence ߩ ,is the tracing operation (∙)ݎݐ =  is the ߚ ,0.95

weakening factor, generally ߚ > 0, and the value of the ߚ and ߩ are selected based on experience. 

For strong nonlinear systems, the STF often introduces large linear errors. It linearizes nonlinear 

systems by a first-order Taylor series expansion in the process of estimating. We introduced cubature 

rules into the process of STF estimates. Arasaratnam [9] proposed the use of the CKF algorithm 

according the cubature rules selecting the 2n point set (ߦ௜, ߱௜) with the same approximate weight as the 

integral value: 

J(݂) =෍߱௜ଶ௡
௜ୀଵ (14) (௜ߦ)݂

where ߦ௜ = ඥ݉/2, ߱௜ = 1/݉, n stands for the system state vector dimension; 	݉ = 2݊. 

Initialize ݔො଴|଴ = ଴|଴݌ [଴ݔ]ܧ = ଴ݔ)]ܧ − ଴ݔ)(ො଴|଴ݔ −  [்(ො଴|଴ݔ
Time update: 
According to the state model transforming we can obtain cubature points ݔ෤௜,௞ାଵ|௞. Using cubature 

points, we predict the state and the error covariance: ݔ෤௜,௞ାଵ|௞ = ݂൫ݔ௜,௞ାଵ|௞, ௞൯ݑ + ො௞ାଵ|௞ݔ௞ (15)ݓ = 1݉ ෍ݔ෤௜,௞ାଵ|௞௠
௜ୀଵ + ௞ (16)ݓ

௞ାଵ|௞݌ = 	 1݉ ෤௜,௞ାଵ|௞௠ݔ௞ାଵ෍ߣ
௜ୀଵ ෤௜,௞ାଵ|௞்ݔ − ො௞ାଵ|௞்ݔො௞ାଵ|௞ݔ + ܳ௞ (17)

Measurement update: 
According to the state model transforming we can obtain cubature points ݕ෤௜,௞ାଵ|௞. Using cubature 

points we obtain prediction outputs and the prediction covariance: ݕ෤௜,௞ାଵ|௞ = ℎ൫ݔ௜,௞ାଵ|௞൯ + ௞ (18)ݒ
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ො௜,௞ାଵ|௞ݕ = 1݉ ෍ݕ෤௜,௞ାଵ|௞௠
௜ୀଵ + ௞ (19)ݒ

௬௬,௞ାଵ|௞݌ = 	 1݉ ෍ݕ෤௜,௞ାଵ|௞௠
௜ୀଵ ෤௜,௞ାଵ|௞்ݕ − ො௞ାଵ|௞்ݕො௞ାଵ|௞ݕ + ܴ௞ (20)

௫௬,௞ାଵ|௞݌ = 	 1݉ ෍ݔ෤௜,௞ାଵ|௞௠
௜ୀଵ ෤௜,௞ାଵ|௞்ݕ − ො௞ାଵ|௞்ݕො௞ାଵ|௞ݔ  (21)

Computational gain: ܪ௞ାଵ = ௫௬,௞ାଵ|௞݌ ௬௬,௞ାଵ|௞ିଵ݌  (22)

Optimal estimate: 

Update the estimation of the state and the associated covariance: ݔො௞ାଵ|௞ାଵ = ො௞ାଵ|௞ݔ + ௞ାଵݕ)௞ାଵܪ − ௞ାଵ|௞ାଵ݌ො௞ାଵ|௞) (23)ݕ = ௞ାଵ|௞݌	 − ௞ାଵ்ܪ௬௬,௞ାଵ|௞݌௞ାଵܪ  (24)

However, according to the literature [13], the fading factor can be obtained in the case of estimations 

using cubature rules. Through the Equations (9)–(13) we obtain the fading factor for STCKF, and ௞ܰାଵ 
and ܯ௞ାଵ will be replaced by the following: 

௞ܰାଵ = 	 ௞ܸାଵ −	ܴ௞ାଵ − ଵܳ௞ି[௞ାଵ|௞݌]்[௫௬,௞ାଵ|௞݌] ௞ାଵܯ௫௬,௞ାଵ|௞ (25)݌்ି[௞ାଵ|௞݌] = ௬௬,௞ାଵ|௞݌ − ௞ܸାଵ + ௞ܰାଵ (26)

3.2. Setting a Threshold 

The residual determines fault status by applying a decision-making function. In [14] the authors set 

up an adaptable threshold that is incrementally/decrementally updated over a sliding window. It reduced 

the false alarm and missed alarm rates. In [15] an adaptable threshold value by using fuzzy logic and the 

weighted average method, which is more effective for graded fault detections, was set up. However, 

because the residual obtained by STCKF is sufficiently stable, we used a simple method of setting 

thresholds that can have a good effect on detecting faults. The residual is the difference between the true 

value and the estimate value. The fault-free residual includes the noise and estimate error. Due to the 

residual includes fault information in fault case, the residual in fault case will beyond the fault-free 

residual. We use the statistical properties of residual in fault-free case. The fixed threshold function can 

be described as follows [16]: ݎ௞௜ = ௞௜ݕ − ො௞௜ݕ  (27)where	ݎ௞௜  represents the residual of the i-th sensor at time k in a fault-free case: ̅ݎ௜ = 1݉ ෍ ௞௜|௠ݎ|
௞ୀଵ  (28)

௜ଶߪ = 1݉ ෍(หݎ௝௜ห − పഥ)ଶ௠ݎ
௝ୀଵ  (29)
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where 	ݎഥ ௜ is the i-th sensor’s mean of the fault-free residual, and ߪ௜ߪ௜ଶ is the i-th sensor’s variance of 

the fault-free residual.  
If หݎ௞௜ห ≤ ௜ݎ̅ + పഥݎ>௞௜หݎ௜หߪ +  ௜ଶ, this proves that this is a fault-free case. At the same time, alarmߪܾ

signal ܨ௞ will be set to 0. If หݎ௞௜ห exceeds the threshold, this proves that this is a case of fault. The alarm 

signal will be set to 1. This method is simple and effective for the fault detection. 

4. Experimental Analysis 

In this section the effectiveness of the proposed algorithm will be validated on a drum-boiler model. 

We will verify the effect of fault detection in three cases of failure, respectively. Finally, the test results 

will be analyzed. 

4.1. Model Description 

A drum-boiler model will be cited to validate that the proposed algorithm is effective. It is a subsystem 

of a thermal power plant unit where the separation of water and steam takes place. More details about 

the construction and operation of a drum-boiler are given in [17]. The nonlinear state-space model used 

in the experiment was taken from [4]. Its parameters were identified at a 160 MW oil-fired Synvendska 

Kraft AB Plant, and the model is expressed as follows: ݔሶଵ = ଵଽ଼ݔଶݑ0.0018− + ଵݑ0.9 − ሶଶݔଷ (30)ݑ0.15 = ଷݑ0.073) − ଵଽ଼ݔ(0.016 − ሶଷݔଶ (31)ݔ0.1 = ଷݑ141) − ଶݑ1.1) − ଵݕଵ)/85 (32)ݔ(0.19 = ଵݔ ଶݕ(33) = ଷݕଶ (34)ݔ = ଷݔ0.13073)0.05 + 100ܽ௖௦ + ௘9ݍ − 67.975) (35)ܽ௖௦ = (1 − ଵݔଷ)(0.8ݔ0.001538 − 25.6)(1.0394 − ଷݔ(ଵݔ0.0012304 ௘ݍ(36)  = ଶݑ0.854) − ଵݔ(0.147 + ଵݑ45.59 − ଷݑ2.514 − 2.096 (37)

where ݔଵ  and ݔଶ  are output variables of the drum pressure (kg/cmଶ ) and electrical output (MW) 

respectively, ݔଷ is the fluid density (kg/mଷ), and ݕଷ is the drum water level (m); and where ݑଵ and ݑଷ 
are the fuel and feedwater flows in T/hr respectively, ݑଶ is the control value position; ܽ௖௦ is the steam 

quality; and ݍ௘ is the evaporation rate. 

The paper [4] used PF to estimate the states of this nonlinear model. Because PF requires a large 

number of samplings and resamplings, the calculation drastically increases with the growth of the space 

dimension. In terms of computing time, this method is not good at diagnosing online fault compared 

with the STCKF. 

For present fault detection, a discrete-time model is obtained from Equations (30)–(32). The sampling 

period is Ts = 5 s. The values obtained from the model are actual output values, and the values obtained 

by the filter are estimated values. 
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4.2. Simulation Results for Faulty Cases 

Under fault-free conditions, the absolute value of three residuals, obtained through the STCKF, UKF, 

and STF, respectively, are compared in Figure 2. Comparing the residuals obtained through the three 

different algorithms, it is evident that STCKF has the highest accuracy. Residuals obtained by STCKF 

under a fault-free condition are very smooth. The STCKF can reduce rates of false alarms and missed 

alarms in the fault detection process. Because the constant output failure is very easy to diagnose, we 

only test the other three types of fault. We verify the effectiveness of the algorithm under three cases of 

fault. The deviation between the actual output values and the predicted values is greater as the fault level 

improves. Therefore, greater residual amplitudes are generated and faults will be detected more easily. 

Our simulation faults deviated 5%, 10%, and 20% from the normal measurements. 

In case (1) a sudden fault occurs in the first sensor at the t = 120 output. The sudden fault deviated 

5%, 10%, and 20% from the normal measurement in the first sensor output, respectively. 

 

Figure 2. The sensor outputs residual in a fault-free case obtained by STCKF, UKF, and STF. 

In case (2) a drift fault in the first sensor deviated 5%, 10%, and 20% from the normal measurement 

at the t ≥ 120 output. In case (3) a regular bias fault occurs in the first sensor, which is 5%, 10%, and 

20% from the normal measurement at the t ≥ 120 output. The same conditions as those in cases (1)–(3) 

are simulated in the second and third sensors. 

As shown in Figures 3–11, the method proposed has good forecasting performance. A smooth residual 

generated by STCKF greatly reduced the false alarm rates and missed alarm rates. STCKF has better 

performance than STF in fault detection. The STF method produces larger errors than the other methods 

in the prediction process for strong nonlinear systems, and this has a negative effect on fault detection. 

In the case of small regular bias faults and drift faults, as shown in the first picture in Figure 10, the STF 

method cannot even produce effective residuals. Because the residual value obtained by STCKF is 

smooth under fault-free conditions and exhibits obvious changes when the sensors come across failure, 

we can use a simple method to set a fixed threshold for fault detection and achieve good implementation. 
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Figure 3. A sudden fault occurs only in the first sensor based, on STCKF, UKF, and STF, at t = 90. 

 

Figure 4. A drift fault occurs only in the first sensor, based on STCKF, UKF, and STF, at t ≥ 120. 

 

Figure 5. A regular bias fault occurs only in the first sensor, based on STCKF, UKF, and STF. 
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Figure 6. A sudden fault occurs only in the second sensor, based on STCKF, UKF, and STF, at t = 90. 

 

Figure 7. A drift fault occurs only in the second sensor, based on STCKF, UKF, and STF, at t ≥ 150. 

 

Figure 8. A regular bias fault occurs only in the second sensor, based on STCKF, UKF, and 

STF, at t ≥ 150. 
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Figure 9. A sudden fault occurs only in the third sensor, based on STCKF, UKF and STF, at t =140. 

 

Figure 10. A drift fault occurs only in the third sensor, based on STCKF, UKF, and STF, at t ≥ 140. 

 

Figure 11. A regular bias fault occurs only in the third sensor, based on STCKF, UKF, and 

STF, at t ≥ 150. 
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To show the performance of the fault detection results between the different methods, we performed 

a statistical analysis. The rates of missed alarms or false alarms in the detection of faults are shown in 

Table 1. The results listed in Table 1 are the statistical results of 200 consecutive occurrences of fault. 

Table 1. Detection rates with different types of fault.  

Faulty Sensor Fault Type 
Missed Alarm (%) False Alarm (%) 

5% 10% 20% 5% 10% 20% 

The first sensor 

Regular Bias - - - - - - 
STCKF 0.20 0 0 1.27 1.31 1.20 

STF 46.7 24.9 3.84 28.8 27.4 22.2 
Drift fault - - - - - - 
STCKF 0  0 0 1.30 1.27 0.33 

STF 14.5 0 0 28.6 27.1 26.1 
Sudden fault - - - - - - 

STCKF 0  0 0 1.27 1.60 1.79 
STF 0  0 0 22.7 22.2 22.8 

The second sensor 

Regular Bias - - - - - - 
STCKF 0 0 0 0.67 0.68 0.67 

STF 0.14 0 0 32.0 30.8 30.1 
Drift fault - - - - - - 
STCKF 0 0 0 0.67 0.67 0 

STF 35.8 10.6 0.50 30.4 30.4 30.2 
Sudden fault - - - - - - 

STCKF 0 0 0 0.39 0.50 0.49 
STF 0 0 0 31.1 31.1 31.1 

The third sensor 

Regular Bias - - - - - - 
STCKF 0 0 0 0.67 0.67 0.67 

STF 28.3 4.60 0.04 25.4 24.9 24.8 
Drift fault - - - - - - 
STCKF 0 0 0 0.72 0.72 0.72 

STF 3.46 1.72 0 25.1 24.6 25.3 
Sudden fault - - - - - - 

STCKF 0 0 0 0.39 0 0 
STF 0 0 0 15.8 15.7 15.5 

From Table 1 we see that the trend is that the rate of false alarms will not increase as the size of the 

fault increases. The proposed method performs better than STF. With the proposed method, when the 

size of the fault is greater than 5% of the output value, the rate of missed alarms is approximately zero. 

5. Conclusions 

In this paper, a new approach to online sensor fault detection was proposed. Moreover, this approach 

offers the advantage of accurate and simple calculations. With the aim of obtaining more accurate 

estimates, which can make the residuals smooth, thereby reducing the rates of missed alarms and false 

alarms, a cubature rule was introduced in the STF. For strong nonlinear systems, the proposed algorithm 

offers a great improvement in accuracy. It generated smooth residuals in fault-free cases, which made 
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the detection of faults accurate. To evaluate the proposed approach, it was applied to a nonlinear model 

of a drum-boiler. The results of the simulation confirmed that this method is more efficient at online 

sensor fault detection. The case of the faults of different, multiple interrelated sensors will be the focus 

of the next stage of research. 
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