
Sensors 2015, 15, 4513-4549; doi:10.3390/s150204513
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Design and Simulation of Material-Integrated Distributed
Sensor Processing with a Code-Based Agent Platform and
Mobile Multi-Agent Systems
Stefan Bosse

University of Bremen, Dept. of Mathematics & Computer Science, Robert Hooke Str. 5,
28359 Bremen, Germany; E-Mail: sbosse@uni-bremen.de; Tel.: +49-421-17845-4103

Academic Editor: Stefano Mariani

Received: 15 October 2014 / Accepted: 9 January 2015 / Published: 16 February 2015

Abstract: Multi-agent systems (MAS) can be used for decentralized and self-organizing
data processing in a distributed system, like a resource-constrained sensor network,
enabling distributed information extraction, for example, based on pattern recognition
and self-organization, by decomposing complex tasks in simpler cooperative agents.
Reliable MAS-based data processing approaches can aid the material-integration of
structural-monitoring applications, with agent processing platforms scaled to the microchip
level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is
implemented with program code storing the control and the data state of an agent, which
is novel. The program code can be modified by the agent itself using code morphing
techniques and is capable of migrating in the network between nodes. The program code is
a self-contained unit (a container) and embeds the agent data, the initialization instructions
and the ATG behavior implementation. The microchip agent processing platform used for
the execution of the agent code is a standalone multi-core stack machine with a zero-operand
instruction format, leading to a small-sized agent program code, low system complexity and
high system performance. The agent processing is token-queue-based, similar to Petri-nets.
The agent platform can be implemented in software, too, offering compatibility at the
operational and code level, supporting agent processing in strong heterogeneous networks.
In this work, the agent platform embedded in a large-scale distributed sensor network is
simulated at the architectural level by using agent-based simulation techniques.

Keywords: sensor networks; multi-agent system; code morphing; stack machines;
distributed computing; agent-based platform and network simulation

Sensors 2015, 15 4514

1. Introduction and State-of-the-Art

Structural monitoring of mechanical structures allows deriving not just loads, but also their effects
on the structure, its safety and its functioning from sensor data. A load monitoring system (LM)
can be considered as a subclass of a structural health monitoring (SHM) system, which provides
spatially-resolved information about loads (forces, moments, etc.) applied to a technical structure.

Multi-agent systems (MAS) can be used for a decentralized and self-organizing approach to data
processing in a distributed system, like a sensor network (discussed in [1]), enabling information
extraction, for example, based on pattern recognition [2], decomposing complex tasks in simpler
cooperative agents. MAS-based data processing approaches can aid the material-integration of structural
health monitoring applications, with agent processing platforms scaled to the microchip level, which
offer material-integrated real-time sensor processing. The agent mobility, capable of crossing different
execution platforms in mesh-like networks and agent interaction by using tuple-space databases and
global signal propagation, aids with solving data distribution and synchronization issues in the design of
distributed sensor networks, as already shown in [3,4].

In [5], the agent-based architecture considers sensors as devices used by an upper layer of controller
agents. Agents are organized according to roles related to the different aspects to integrate, mainly sensor
management, communication and data processing. This organization largely isolates and decouples the
data management from changing networks, while encouraging the reuse of solutions.

Currently, there are only very few works related to low-resource agent processing platforms,
especially related to sensor networks. Examples are presented in [6] and [7], but the proposed platform
architectures do not match the constraints and requirements arising in multi-scale and multi-domain
sensor networks. For example, in [8], a Java virtual machine (VM) approach is used, which is not
scalable entirely to the hardware level and, therefore, limited to software-based designs.

The importance of the deployment of virtual machines in heterogeneous and multi-purpose sensor
networks was already pointed out in [9]. In this work, a new operational paradigm for the programming
and design of sensor network applications was addressed, showing the suitability of database-like
communication approaches, which is proposed in a different way in this work using synchronized
tuple-spaces for MAS. The system architecture also uses a stack-based bytecode interpreter with integer
arithmetic, but supporting low-level instructions only (Java VM subset), though the VM can directly
access sensors and network messages. There is no hardware implementation of the VM, degrading the
performance significantly.

Usually, sensor networks are part of and connected to a larger heterogeneous computational
network [5] and can be part of the emerging field of ambient intelligence, supporting intelligent behavior
and information retrieval combined for ubiquitous computing (see [10] for details). The deployment of
agents can overcome interface barriers arising between platforms differing considerably in computational
and communication capabilities. That is why agent specification models and languages must be
independent of the underlying run-time platform. The adaptive and learning behavior of MAS, central
to the agent model, can aid in overcoming technical unreliability and limitations [11].

The capability of agents to migrate between different processing nodes (sensor node, computer, server,
mobile device) extends the interaction domain and increases the capability to adapt to environmental

Sensors 2015, 15 4515

changes, including the failure of network nodes [10]. Migration is closely related to the agent
behavior, programming and architecture model, which immediately shifts the focus to the agent
processing platform.

This work is based on an earlier data processing architecture described in [12] using virtual stack
machines and mobile program code based on the FORTHinstruction set and which can migrate between
different VMs and nodes of a distributed (sensor) network. A code morphing mechanism was used to
enable self-modification of the program code at run-time. Code morphing is the capability of programs
to modify their own code or the program code of other programs. This early approach matched only
partially the agent model and had limited practically use due to very fine-grained code modification at
the instruction word level. Furthermore, the VM architecture supported only coarse-grained parallelism.
The first considerations to improve the early approach and to match it with a more reasonable agent
model were presented in [13], and this is finally investigated, refined and evaluated in more depth in
this work. The FORTH programming language (PL) combines the advantages of being a low-level
machine and a structured programming language with statements, which can be directly executed by a
VM interpreter [14].

In [15], a register-based virtual machine deployed in wireless sensor networks was proposed, arguing
for the lower code size and higher processing speed of a register machine compared with stack machine
code. However, a stack machine has the advantage of a simpler control and data processing unit
interacting mostly with the top elements of the stacks, speeding up the code processing and simplifying
the hardware design significantly [16]. Hence, processing speed, which means computational latency,
does not only depends on the number of instructions to be processed. Furthermore, there are complex
FORTH control flow instructions, like loops, which compensate for a higher number of instructions
required for data processing. One major advantage of the FORTH instruction set is that most instructions
carry no operand, which eases the code morphing performed by the virtual machine at run-time.

Commonly, programs are closely coupled with the interface of the execution platform (system data
structures and functions). Furthermore, binary programs cannot exchange and share code in a simple
way, and the issues with non-matching dynamic libraries are well known. The FORTH PL avoids this
lack of code exchange and sharing by providing a simple dictionary approach. Programs can store new
function words and retrieve functions by using textual string identifiers, enabling different programs to
exchange and share program code, assuming the functions have no side effects (dependencies). FORTH
programs can directly access the dictionary. This dictionary approach can be used for agents to share
behavioral activities and utility functions. Furthermore, it supports self-organization. An overview of
the FORTH programming language can be found in [17]. FORTH-based stack processors are well suited
for massive parallel and distributed computing systems, referring, e.g., to [18].

The new processing platform architecture is optimized for the agent programming model and
language used in this work. The FORTH programming language was extended with agent-specific
actions (migration, forking, communication), supported entirely at the machine level.

Sections 2 and 3 give an overview of the front-end using the Activity-based and Agent-orientated
Programming Language, AAPL, and the agent behavior model, leading to the Agent Forthand Agent
Machine Language (AFL/AML), which is discussed in detail in Section 5. This section helps to
understand the processing and morphing of agents having their origin in high-level behavior models

Sensors 2015, 15 4516

with a machine, which can fit entirely on 50 mm2 silicon! The pipelined agent virtual machine (PAVM)
processing architecture and its operational semantics is explained in detail in Section 4, followed by
the design flow and transformation rules in Section 6. A simulation environment is introduced in
Section 7, which performs a network and platform simulation using agent-based simulation techniques
at a fine-grained architectural level. The simulation environment can be used to study the deployment
of MAS in complex network environments. Furthermore, it can be connected to a real-world sensor
network, too. Finally, the suitability of the proposed programming and processing model is demonstrated
with an extended case study. Figure 1 summarizes all parts of this work and their relationships.

!"# $%"#

&'()

*'+
!"#" $%&'()*

'',- '.- '*-

,'/*

0%123%1# +4563%1# +789:%674;

Figure 1. Design overview and design flow: from the model, to the programming,
to the machine level, with one unique agent model (DATG, dynamic activity-transition
graph; AAPL, Agent-orientated Programming Language; AFL, Agent ForthProgramming
Language; AML, Agent Forth Machine Language; MAS, multi-agent system; PAVM,
pipelined agent virtual machine).

What is novel with respect to other approaches?

• Large-domain reactivity in heterogeneous networks is provided by mobile state-based agents
capable of reconfiguring the agent behavior (activity-transition graph modification) for each
particular agent at run-time, including the inheritance of (modified) agent behavior, which
increases the reliability and autonomy of multi-agent systems.
• Agent interaction offered by a tuple-space database and global signal propagation aids with solving

data distribution and synchronization issues in distributed systems design (machine-to-machine
communication), whereby tuple spaces represent the knowledge of single and multiple agents.
• The common agent programming language, AAPL, and processing architecture, PAVM, enables

the synthesis of standalone parallel hardware implementations or, alternatively, standalone

Sensors 2015, 15 4517

software implementations and behavioral simulation models, compatible at the operational and
processing level, which enables the design and testing of large-scale heterogeneous systems.
• An agent instantiation is represented by and the behavior is implemented with a unified, very

compact code frame consisting of machine instructions with embedded (private) agent data and all
control units, like relocation lookup tables and the transition network section. The code frame can
migrate between nodes, preserving the control and data state of an agent.
• AAPL provides powerful statements for computation, agent control, agent interaction and mobility

with static and limited resources.
• An intermediate and machine language, AFL/AML, is based on the stack machine FORTH

programming language, matching AAPL well and which offers direct transformation of the AAPL
behavior model and the AAPL statements to the machine VM level.
• A token-based pipelined multi-core stack VM architecture for the agent processing (PAVM), which

is suitable for hardware microchip implementations on register-transfer level and system-on-a-chip
architectures, offers optimized computational resources and exceptional speed, requiring less than
1-M gates. There are alternative efficient software implementations of the VM, fully coded and
operationally compatible.
• The processing platform is a standalone unit, which does not require any operating system

(OS) and boot code for initialization, leading to a low start-up time latency, which is well
suited for self-powered devices. All agent-specific actions, like migration or communication, are
implemented at the VM machine level.
• There is improved scaling in large heterogeneous network applications, due to low host platform

and communication dependencies of the VM and the agent FORTH programming model.

2. Agent Behavior Modeling: The Activity-Based Agent Model and Graphs

The implementation of mobile multi-agent systems for resource-constrained embedded systems with
a particular focus on the microchip level is a complex design challenge. High-level agent programming
and behavior modeling languages can aid with solving this design issue. Activity-based agent models
can aid with carrying out multi-agent systems on hardware platforms.

The behavior of an activity-based agent is characterized by an agent state, which is changed by
activities. Activities perform perception, plan actions and execute actions modifying the control
and data state of the agent. Activities and transitions between activities are represented by an
activity-transition graph (ATG). The Activity-Based and Agent-orientated Programming Language,
AAPL (detailed description in [16]), was designed to offer modeling of the agent behavior at the
programming level, defining activities with procedural statements and transitions between activities with
conditional expressions (predicates). Though the imperative programming model is quite simple and
closer to a traditional PL, it can be used as a common source and intermediate representation for different
agent processing platform implementations (hardware, software, simulation) by using a high-level
synthesis approach.

Sensors 2015, 15 4518

2.1. Agent Classes

The agent behavior, perception, reasoning and the action on the environment are encapsulated in
agent classes, with activities representing the control state of the agent reasoning engine and conditional
transitions connecting and enabling activities. Activities provide a procedural agent processing by a
sequential execution of imperative data processing and control statements. Agents can be instantiated
from a specific class at run-time. A multi-agent system composed of different agent classes enables the
factorization of an overall global task into sub-tasks, with the objective of decomposing the resolution of
a large problem into agents in which they communicate and cooperate with one other.

The activity-graph based agent model is attractive due to the proximity to the finite-state machine
model, which simplifies the hardware implementation.

Figure 2. Agent behavior programming level with activities and transitions (Activity-Based
and Agent-orientated Programming Language (AAPL) (left)); agent class model and
activity-transition graphs (top); agent instantiation, processing and agent interaction on the
network node level (right) [16].

An activity is started by a transition depending on the evaluation of (private) agent data (conditional
transition) related to a part of the agents’ belief in terms of the belief-desire-intention (BDI) architecture
or started by unconditional transitions (providing sequential composition), shown in Figure 2. Each
agent belongs to a specific parameterizable agent class, AC, specifying local agent data (only visible for
the agent itself), types, signals, activities, signal handlers and transitions.

Definition: There is a multi-agent system (MAS) consisting of a set of individual agents {a1,a2,..}.
There is a set of different agent behaviors, called classes, C = {AC1, AC2,..}. An agent belongs to

Sensors 2015, 15 4519

one class. In a specific situation, an agent Agi is bound to and processed on a network node Nm,n,..

(e.g., a microchip, a computer or a virtual simulation node) at a unique spatial location (m,n). There is
a set of different nodes, N = {N1, N2,..}, arranged in a mesh-like network with peer-to-peer neighbor
connectivity (e.g., two-dimensional grid). Each node is capable of processing a number of agents ni(ACi)
belonging to one agent behavior class ACi and supporting at least a subset of C’⊆C. An agent (or at least
its state) can migrate to a neighbor node, where it continues working. Each agent class is specified by the
tuple AC = 〈A,T,F,S,H,V〉. A is the set of activities (graph nodes); T is the set of transitions connecting
activities (relations, graph edges); F is the set of computational functions; S is the set of signals; H is the
set of signal handlers; and V is the set of body variables used by the agent class.

2.2. The Dynamic ATG and Sub-Classing

Usually, agents are used to decompose complex tasks into simpler ones. Agents can change their
behavior based on learning and environmental changes or by executing a particular sub-task with only
a sub-set of the original agent behavior. The case study in Section 8. shows one example of a
self-organizing multi-agent system with different agent behaviors and goals forked from one original
root agent. An ATG describes the complete agent behavior. Any sub-graph and part of the ATG can be
assigned to a subclass behavior of an agent. Therefore, modifying the set of activities Aand transitions T
of the original ATG introduces several sub-behaviors for implementing algorithms to satisfy a diversity
of different goals. The reconfiguration of activities A’ = {A1⊆A,A2⊆A, ..} from the original set A
and the modification or reconfiguration of transitions T’ = {T1,T2 ,..} enable dynamic ATGs and agent
sub-classing at run-time, shown in Figure 3.

Figure 3. Dynamic activity-transition graph (ATG) transformation at run-time by modifying
the set of transitions and activities, creating new agent (sub-)classes from an original
root class.

Sensors 2015, 15 4520

3. Agent Behavior Programming: The High-Level AAPL

The AAPL (details can be found in [3]) offers statements for parameterized agent instantiation, like
the parameterized creation of new agents and the forking of child agents inheriting the control and data
state of the parent agent.

3.1. Agent Interaction and Coordination

Multi-agent and group interaction are offered with synchronized Linda-like tuple database space
access operations and peer-to-peer interaction using signal propagation carrying simple data delivered
to and processed by the signal handlers of agents. The tuple-space model, first introduced by the
coordination language, Linda [19], is basically a shared memory database used for synchronized data
exchange among a collection of individual agents, which was proposed in [20] and [8] as a suitable MAS
interaction and coordination paradigm. Synchronization is offered by matching producer commitments
of tuples and consumer requests for tuples. If a consumer requests a tuple that is not available, it will be
blocked (waiting) until a producer commits a matching tuple, which is explained later.

A tuple database stores a set of n-ary data tuples, tn = (v1,v2,..,vn), an n-dimensional value tuple.
The tuple space is organized and partitioned into sets of n-ary tuple sets ∇ = {TS1,TS2,..,TSn}. A
tuple is identified by its dimension and the data type signature. Commonly, the first data element of
a tuple is treated as a key. Agents can add new tuples (the output operation) and read or remove tuples
(the input operations) based on the tuple pattern and pattern matching, pn = (v1,p2?, ..,vj ,..,pi?,.,vn), a
n-dimensional tuple with actual and formal parameters. Formal parameters are wildcard placeholders,
which are replaced with values from a matching tuple. The input operations can suspend the agent
processing if there is actually no matching tuple available. After a matching tuple is stored, blocked
agents are resumed and can continue processing. The pattern of tuples matches iff the tuples have
the same arity (equal to the number of elements), all actual values match and all formal parameters
can be satisfied (e.g., the data type of actual values and formal parameters must be equal). Therefore,
tuple databases provide inter-agent synchronization, too. This tuple-space approach can be used to build
distributed data structures, and the atomic tuple operations provide data structure locking. The distributed
tuple spaces represent the knowledge of agents and the history. The scope of a tuple-space is limited in
this work to the node domain.

In contrast, signals, which can carry additional scalar data values, can be used for local (in terms of
the node scope) and global (in terms of the network scope) domain agent interaction. In contrast to the
anonymous tuple-space interaction, signals are directly addressed to a specific agent or a group of agents.
The deliveries of signals are not reliable in the case that the agents raising and receiving the signal are
not processed on the same node.

3.2. Agent Mobility

Agent mobility is offered by a simple move operation, which migrates the agent to a node in the
neighborhood, assuming mesh-like networks, not necessarily with a static topology. Communication
links are assumed as unreliable, which can be tested by an agent in advance.

Sensors 2015, 15 4521

3.3. Agent Classes

Agent classes are defined by their parameters, variables, activities and transition definitions, reflecting
the ATG model. Optionally, an agent class can define additional functions for computation and signal
handlers. There are several statements for ATG transformations and composition. Transitions and
activities can be added, removed or changed at run-time.

Appendix A.1 introduces a short notation, which is a one-to-one and isomorphic mapping of the
AAPL. This short notation is used in the following section and is used to describe the agent behavior in
the case-study section.

Figure 4 shows the effects of selected major AAPL statements on the behavior of a mobile multi-agent
system consisting of agents instantiated from different agent behavior classes.

Figure 4. Effects of AAPL statements on the behavior of a multi-agent system.

4. Architecture: Agent Processing Platform

The requirements for the agent processing platform can be summarized as: (1) the suitability
for microchip-level (SoC) implementations; (2) the support of a standalone platform without any
operating system; (3) the efficient parallel processing of a large number of different agents; (4) the
scalability regarding the number of agents processed concurrently; and (5) the capability for the creation,
modification and migration of agents at run-time. The migration of agents requires the transfer of the
data and the control state of the agent between different virtual machines (at different node locations). To
simplify this operation, the agent behavior based on the activity-transition graph model is implemented
with program code, which embeds the (private) agent data, as well as the activities, the transition network
and the current control state. It can be handled as a self-contained execution unit. The execution of
the program by a virtual machine (VM) is handled by a task. The program instruction set consists of

Sensors 2015, 15 4522

zero-operand instructions, mainly operating on the stacks. The VM platform and the machine instruction
set implement traditional operating system services, too, offering a full operational and autonomous
platform, with a hybrid RISC and CISC architecture approach. No boot code is required at start-up
time. The hardware implementation of the platform is capable of operating after a few clock cycles,
which can be vital in autonomous sensor nodes with local energy supply from energy harvesting. An
ASICtechnology platform requires about 500–1000-k gates (16-bit word size), and can be realized with
a single SoC design.

4.1. Platform Architecture

The virtual machine executing tasks is based on a traditional FORTH processor architecture and
an extended zero-operand word instruction set (αFORTH), discussed in Section 5. Most instructions
directly operate on the data stack DS and the control return stack RS. A code segment CS stores
the program code with embedded data, shown in Figure 5. There is no separate data segment.
Temporary data are stored only on the stacks. The program is mainly organized by a composition of
words (functions). A word is executed by transferring the program control to the entry point in the
CS; arguments and computation results are passed only by the stack(s). There are multiple virtual
machines with each attached to (private) stack and code segments. There is one global code segment
CCS storing global available functions and code templates, which can be accessed by all programs.
A dictionary is used to resolve the CCS code addresses of global functions and templates. This
multi-segment architecture ensures high-speed program execution, and the local CS can be implemented
with (asynchronous) dual-port RAM (the other side is accessed by the agent manager, as discussed
below) and the stacks with simple single-port RAM. The global CCS requires a Mutex scheduler to
resolve competition by different VMs.

The register set of each VM consists of: < = {CF, CFS, IP, IR, TP, LP, A, .. , F }. The code
segment is partitioned into physical code frames. The current code frame that is processed is stored
in the code frame pointer register (CF). The instruction pointer (IP) is the offset relative to the start
of the current code frame. The instruction word register (IR) holds the current instruction. The
look-up table pointer register LP stores an absolute code address pointing to the actual relocation
LUT in the code frame, and the transition table pointer register TP stores an absolute address
pointing to the currently used transition table (discussed later). The registers A to F are general
purpose registers.

The program code frame (shown on the right of Figure 5) of an agent consists basically of four
parts: (1) a lookup table and embedded agent body variable definitions; (2) word definitions defining
agent activities, signal handlers (procedures without arguments and return values) and generic functions;
(3) bootstrap instructions, which are responsible for setting up the agent in a new environment (i.e.,
after migration or on the first run); and (4) the transition table calling activity words (defined above)
and branching to succeeding activity transition rows, depending on the evaluation of conditional
computations with private data (variables). The transition table section can be modified by the agent
by using special instructions, explained in Section 5.4. Furthermore, new agents can be created by
composing activities and transition tables from existing agent programs, creating subclasses of agent

Sensors 2015, 15 4523

super classes with a reduced, but optimized, functionality. The program frame (referenced by the
frame pointer CF) is stored in the local code segment of the VM executing the program task (using
the instruction pointer, IP). The code frame loading and modifications of the code are performed by the
virtual machine and the agent task manager only. A migration of the program code between different
VMs requires a copy operation applied to the code frame. Code morphing can be applied to the currently
executed code frame or to any other code frame of the VM, referenced by the shadow code frame
register (CFS).

Figure 5. (Left) The agent processing architecture based on a pipelined stack machine
processor approach. Tasks are execution units of the agent code, which are assigned to a
token passed to the VM by using processing queues. The control state is stored in and
restored from the process table. After execution, the task token is either passed back to the
input processing queue or to another queue of either the agent manager or a different VM;
(Right) The content and format of a code frame.

Each time a program task is executed, the stacks are initially empty. After returning from the current
activity execution, the stacks are left empty, too. This approach enables the sharing of only one data and
return stack by all program tasks executed on the VM to which they are bound! This design significantly
reduces the required hardware resources. In the case of a program task interruption (process blocking)
occurring within an activity word, the stack content is morphed to code instructions, which are stored in
the boot section of the code frame, which is discussed later. After the process resumption, the stacks can
be restored.

Sensors 2015, 15 4524

Each VM processor is connected to the agent process manager (PM). The VM and the agent manager
share the same VM code segment and the process table (PT). The process table contains only basic
information about processes required for the process execution. The column entries of a process table
row are explained in Table 1.

Table 1. Process table (PT) row format and description.

STATE VM# CFROOT CFCUR IP ID PAR AWAIT AWARG POS

Process
state

Virtual
Machine
Number

Root code
frame
number of
the
process

Current
code
frame
number
of the
process

Last/Next
IP offset

Process
identifier
number

ID of the
parent
process

The
reason
for
waiting

Await
argument
(key)

Delta
position
of the
migrated
process

4.2. Token-Based Agent Processing

Commonly, the number of agent tasks NA executed on a node is much larger than the number of
available virtual machines NV . Thus, efficient and well-balanced multi-task scheduling is required to get
the proper response times of individual agents. To provide fine-grained granularity of task scheduling, a
token-based pipelined task processing architecture was chosen. A task of an agent program is assigned to
a token holding the task identifier of the agent program to be executed. The token is stored in a queue and
consumed by the virtual machine from the queue. After a (top-level) word is executed, leaving an empty
data and return stack, the token is either passed back to the processing queue or to another queue (e.g., of
the agent manager). Therefore, the return from an agent activity word execution (leaving empty stacks) is
an appropriate task scheduling point for a different task waiting in the VM processing token queue. This
task scheduling policy allows fair and low-latency multi-agent processing with fine-grained scheduling.

Tokens are colored by extending tokens with a type tag. There are generic processing tokens, signal
processing tokens and data tokens, for example, appearing in compounds with signal processing tokens,
which are discussed later.

Each VM interacts with the process and agent task manager. The process manager passes process
tokens of ready processes to the token queue of the appropriate VM. Processes that are suspended (i.e.,
waiting for an event) are passed back to the process manager by transferring the process token from the
current VM to the manager token queue.

4.3. Instruction Format and Coding

The width of a code word is commonly equal to the data width of the machine. There are four
different instruction code classes: (1) value; (2) short command; (3) long command Class A; and (4) long
command Class B. A value word is coded by setting the most significant bit of the code word (MSB) and
filling the remaining bits (N-1, N machine word size) with the value argument. To enable the full range
of values (full data size N bit), a sign extension word can follow a value word setting the most significant
bit. A short command has a fixed length of eight bits, independent of the machine word and data width.

Sensors 2015, 15 4525

Short commands can be packed in one full-sized word, for example two commands in a 16-bit code word.
This feature increases the code processing speed and decreases the length of a code frame significantly.
The long commands provide N-4 (class A) and N-7 (class B) bits for argument values.

4.4. Process Scheduling and VM Assignment

The token-based approach enables fine-grained auto-scheduling of multiple agent processes already
executed sequentially on one VM with a FIFO scheduling policy. A new process (not forked or created by
a parent) must be assigned to a selected VM for execution. There are different VM selection algorithms
available: round-robin, load-normalized, memory-normalized and random. The VM selection policy has
a large impact on the probability of the failure of a process creation and process forking by a running
process, requiring child agents to be created on the same VM!

5. Agent FORTH: The Intermediate and the Machine Language

The FORTH programming language corresponds to an intermediate programming language level,
with constructs from high-level languages, like loops or branches, and low-level constructs used in
machine languages, like stack manipulation. The αFORTH (AFL) instruction set IAFL consists of
a generic FORTH sub-set IDF with common data processing words (summarized in Appendix A.2)
operating on the data and a return stack used for computation, a control flow instruction set ICF , i.e.,
loops and branches, a special instruction set IAP for agent processing and creation, mobility and agent
behavior modification at run-time based on code morphing and, finally, an agent interaction sub-set IAI

based on the tuple space database access and signals. The AFL language is still a high-level programming
language close to AAPL, which can be used directly to program multi-agent systems. The PAVM agent
processing platform will only support a machine language sub-set (AML) with a small set of special
low-level instructions IAM for process control, so that IAML ⊂ (IAFL ∪ IAM), and with some notational
differences. Several complex and high-level statements of IAFL are implemented with code sequences
of simpler instructions from the IAML set, and some of them are introduced in Section 6.

The (current) AML instruction set consists of 92 instructions, most of them being common FORTH
data processing instructions operating immediately on stack values, and 31 complex special instructions
required for agent processing, communication and migration. The AML instruction set is not fixed and
can be extended, which leads to the increased resource requirement and control complexity of the VM.

5.1. Program Code Frame

An αFORTH code frame (see Figure 6) starts with a fixed sized boot section immediately followed
by a program look-up relocation table (LUT). The instructions in the boot section are used to:

• set up the LUT offset register LP (always the first instruction),
• to enable program parameter loading (passed by the data stack),
• restore stack content after migration or program suspending and
• to branch the program flow to the transition table section.

Sensors 2015, 15 4526

The program counter IP points to the next instruction to be executed. The LUT is a reserved area
in the program frame, which is initially empty, and is used by the VM to relocate the variable, word,
transition table and transition table row references. A LUT row consists of the entries: {Type, Code
Offset, Code Frame, Secondary Offset}. Possible row types are: Type = {FREE, PAR, VAR, ACT, FUN,
FUNG, SIGH(S), TRANS}. The signal handler type SIGH is indeed a negative value, specifying the
signal number S, which is related to the signal handler.

Within the program code, all address references from the frame objects, i.e., variables, user-defined
words and transitions, are relocated by the LUT at run-time. This indirect addressing approach eases the
reconfiguration of the program code at run-time and the code migration significantly. If a program frame
is executed the first time or after a migration, the code frame is executed at the top level, where the LUT
is updated and filled with entries by processing all object definitions of the frame from the beginning
to the end. Code inside user-defined words is bypassed in this initialization phase. Variable, parameter
and word definitions (var V, par P, :W) update at initialization-time entries in the LUT (code offset,
code frame) and transition branches ?A update entries at run-time (the secondary offset specifying the
relative offset of an activity call in the transition table section). At the programming AFL level, generic
function, activity and signal handler word definitions are distinguished by different syntax (:F, :*A,
:$S), whereas not at the machine instruction AML level (DEF).

Figure 6. Logical code frame structure ((left) Agent Forth Language (AFL) source code) and
(optionally split) physical code frame ((middle) Agent Machine Language (AML) machine
code) with mapping to code partitions in the code segment (right).

After the LUT section, parameter and variable object definitions (private agent data) follow, and some
top-level instructions are used to initialize agent parameters with values passed by the data stack.

The main part of the code frame consists of activity, function and signal handler word definitions
(:F..; :*A..; :$S..; with the names F/A/S, respectively).

Sensors 2015, 15 4527

Finally, the transition table section is defined (:%T..;). A transition table consists of transition rows,
which group all transitions outgoing from one specific activity, which is discussed later. Because more
than one transition table can be defined, but only one may be used by a process at one time, a top-level
transition table call is required at the end of the frame. A transition table contains a small boot section
(four words) at the beginning, too. This boot section is used for the control of process resumption after
a suspension, whereas the code frame boot section is used primarily to store data.

Beside pure procedural activity words (without any data passing, leaving the data stack unchanged),
there are functional words passing arguments and results by using the data stack. Words not accessing
private agent data can be exported (::F) to a global dictionary (transferring the code to a CCS frame)
and reused by other agents, which can import these functions (import W) referenced by their name,
which creates a LUT entry pointing to the CCS code frame and offset relative to this frame. Global
functions may not access any private agent data, due to the LUT-based memory relocation.

The code segment of a VM is divided into fixed sized partitions to avoid memory management with
dynamic linked lists for free and used memory regions and memory fragmentation issues. A code frame
always occupies a region of this fixed size code partition, the physical code frame, in the code segment
of the respective virtual machine. Therefore, a single code frame is commonly limited to a minimum of
512 and a maximum of 2048 words of one code partition, depending on the VM implementation and CS
overall size. In the case that an agent program does not fit in one code partition, physical code frames
can be linked, forming one logical code frame, shown on the right side of Figure 6.

A physical code frame is specified by its address offset in the code segment, or by a partition index
number (absolute index), or by a relative physical code frame number, relative to the first root frame
of a process. The root frame always has the relative number one. This relative physical code frame
numbering is required to support code frame migration between different VMs, where absolute code
frame addresses and index numbers change, which is discussed later.

The last two words of the boot section are reserved and are used to control the code frame
initialization and the current transition set table. Initially, they contain the {BRANCH(2),CALL(Ti)}
word sequence. At the end of the code frame, there is a long branch to the last boot section word finally
executing CALL(Ti). If the initialization of the code frame should be omitted, the BRANCH(2) word
is replaced with a NOP operation by using code morphing, discussed in the following sections.

The following subsections introduce the special AFL/AML instruction set required for code
morphing, agent interaction, agent creation and mobility. Most instructions get their arguments from
the stacks and return results to the stacks. To illustrate the modification of stacks by instructions, a
common stack notation is used: (a1a2a3 -- r1r2r3), showing the relevant top content of the stack
before (left part) and after the instruction execution (right part), delimited by --. The top element of the
stack is the right element (a3/r3 in this example). The return stack is prefixed with a R character.

5.2. Agent Processing

Agent processing involves the execution of activities and the computation and processing of
transitions between activities based on private agent data (body variables). The transition computation
is stored in the transition table words (:%TRANS..;). A transition table consists of transition rows,

Sensors 2015, 15 4528

grouping all (conditional and unconditional) transitions for one outgoing activity. Each row starts with
a activity word call |Ai, summarized in Table 2. After the return from the activity and a process
schedule occur, a new activity transition is computed by evaluating Boolean expressions. The result
of the computation is processed by a transition branch operation ?Aj, which branches to a different
transition row (starting with |Aj) if the condition is true; otherwise, the next transition is evaluated. If
currently no condition is satisfied and the end of a transition row is reached, the process is suspended, and
the process token is passed back to the process manager. In this case, the process will be only resumed by
the process manager if a signal was delivered to and processed by the process (e.g., an event occurred).

Table 2. AFL/AML agent processing control instructions.

AFL AML Stack Description

|Ai TCALL(#) (--)

R(-- ip cf#)

Call next activity word Ai. The word address offset and
the code frame are taken from the LUT. The current code
location (a call frame) is stored on the return stack. Only
relative frame numbers may be used in call frames to
enable process migration.

?Ai TBRANCH(#) (flag --) Branch to the next transition row for start activity Ai if
the flag is true. The relative branch displacement for the
appropriate TCALL(#) target is first searched by using
the LUT entry for the respective activity (Sec. off. col.).
If this fails, the entire transition section is searched (and
the result is cached in the LUT).

{*n.. }

{n.. }

BBRANCH(∆) (--) Dynamic block environment: a conditional branch that
can be enabled (∆ > 0, block disabled) or disabled (∆
< 0, block enabled) using the BLMOD operation. If the
branch is enabled, the block spawned by ∆ is skipped.

. END (--) End marker, which marks the end of a transition table
row. The process is suspended if reached in the transition
section.

?block QBLOCK (flag --) Suspend code processing and save the stacks if the flag
is not zero. If a schedule occurs, the current data and
return stack content must be transferred and morphed to
the boot code section with a branch to the current IP−1,
repeating the previous code word execution after process
resumption.

suspend SUSPEND (.. flag --)

R(.. --)

Suspend the execution. The current CF and IP + 1 are
saved in the current transition table boot section with a
long branch. If flag = 1, then the code frame is fully
re-initialized after resumption, and the stacks must be
already dumped into the boot section. If flag = −1, then
the boot section is initialized, and the stacks are dumped;
after resumption, the next instruction is directly executed
without the full code frame setup by jumping directly to
the transition table boot section.

Sensors 2015, 15 4529

More than one transition table can exist and can be selected by using the !t statement. The
reconfiguration of the transition table using the t+, t- and t* statements (add, delete, replace)
requires code morphing capabilities, different from those instructions introduced in Section 5.4. The
reconfiguration of the transition table, basically reduced to enabling and disabling of transitions at the
machine level, is based on dynamic code blocks {n.. }, which can be enabled or disabled using the
blmod (BLMOD) instruction, explained in Table 4. The {*n.. } block is enabled by default.

The generic program flow can be controlled using AFL and common FORTH branch and loop
statements. At the machine level (AML), there are only three branch operations: (1) a conditional relative
branch BRANCHZ(∆IP), which redirects the program flow if the top of the data stack is zero; (2) an
unconditional relative branch BRANCH(∆IP); and (3) a long inter-frame branch BRANCHL(CF,IP).

5.3. Agent Creation and Destruction

New agents are created (or forked) by using a composition of the NEW, LOAD and RUN operations,
discussed in Section 6. The suspend (SUSP) operation is usually inferred by the compiler in
conjunction with other blocking instructions. An agent can be destroyed by using the kill operation.
Table 3 summarizes these operations.

Table 3. AFL/AML agent creation and destruction instructions.

AFL AML Stack Description

fork - (arg1.. argn

#args -- pid)

Fork a child process. The child process leaves the current
activity word immediately after forking, and the parent
process continues after the fork operation.

create - (arg1 .. argn

#args #ac --

pid)

Create a new agent process loaded from the agent class
code template #ac.

- RUN (arg1 .. #args

cf# flag--

id)

Start a new process with code frame (from this VM);
returns the identifier of the newly-created process. The
arguments for the new process are stored in the boot
section in the code frame of the new process.
If flag = 1, then a forked process is started. The boot
section of the new code frame and the boot section of the
transition table will be modified.

kill pid =

self:

CLEAR EXIT

(pid --) Terminate and destroy an agent. For self-destruction, the
aid must be equal to −1. Executing an exit operation
with an empty stack (clear) terminates an agent.

5.4. Agent Modification and Code Morphing

Code morphing is the capability of a program to modify its own code or the code of another program.
Code morphing is used:

• to modify the boot section of a code frame and the boot section of a transition table,
• during process forking, migration and suspending to dump stack data into the boot section,

Sensors 2015, 15 4530

• to copy the variable, word and transition tables to a new code frame and
• to modify dynamic blocks, mainly used in the transition table, which enables or disables specific

transitions.

Since data are embedded in the code frame of a process, code morphing is used here to modify data,
too. Only twelve instructions supporting code morphing are required and are summarized in Table 4.
There are explicit code morphing operations that can be used on the programming level, and there are
implicit code morphing operations embedded in other control instructions, for example the QBLOCK and
SUSP operations (see Table 2) used for modifying the code frame and transition table boot sections.

Table 4. AFL/AML code morphing words (off, code offset relative to the code segment start;
cf#, code frame number; ref#, LUT object reference number).

AFL AML Stack Description

new NEWCF (init --

offinit=1cf#)

Allocates a new code frame (from this VM) and returns
the code frame number. If init = 1, then a default boot and
LUT section is generated, and the code offset is returned
additionally.

load LOAD (cf# ac# --) Load the code template of agent class acin the specified
code frame number or make a copy of the current code
frame (ac = −1).

c> FROMC (n -- c) Push the nfollowing code words on the data stack.
v>c VTOC (v n off -- off’) Convert n values from the data stack in a literal code word

and extension if required. The new code offset after the
last inserted word is returned.

>c TOC (c1 c2.. n off --

)

Pop n code words from the data stack, and store them in
the morphing code frame starting at offset off.

s>c STOC (.. off -- off’)

R(.. --)

Convert all data, return stack values to code values and
store them in the morphing code frame starting at offset
off. Return the new offset after the code sequence.

r>c RTOC (off ref# -- off’) Transfer the referenced object (word, transition, variable)
from the current process to the morphing code frame
starting at offset off. Returns the new offset after the code
sequence.

!cf SETCF (cf# --) Switch the code morphing engine to the new code frame
(number). The root frame of the current process can be
selected with #cf = −1.

@cf GETCF (-- cf#) Get the current code frame number (in CSfrom this VM).
t+(Ai,b#)

t-(Ai,b#)

t*(Ai,b#)

!t(Ti)

BLMOD

TRSET

(ref# b# v sel --

)

(ref# --)

Modify the transition table, which can be selected by
the !t statement. Each transition bound to an outgoing
activity is grouped in a dynamic block environment. The
transition modifiers reference the block number in the
respective transition row. The t-operations are reduced
to the AML operation BLMOD (modify a dynamic block).
BLMOD can be used for global dynamic blocks, too (sel =
1: transition; sel = 0: activity; sel = −1: top-level).

Sensors 2015, 15 4531

New code frames can be allocated using the new (NEW) instruction. The code frame can be allocated
only from the VM of the current process. If the init argument is equal to one, then a default (empty) boot
and LUT section is created, with sizes based on the current process. The code frame number cf# and the
offset value off pointing to the next free code address in the morphing code frame is returned.

The load (LOAD) instruction has two purposes. Firstly, it can be used to load a code template from
the global code segment CCS, which is resolved by the agent class number using the global dictionary.
Secondly, it can be used to copy the current process code to the new code frame, which was already
allocated by using the new command. If the template or the current process code spawns more than one
frame, additional frames are allocated and linked.

New agents are created (or forked) by using a composition of the NEW, LOAD and RUN operations,
discussed in Section 6.

Code can be modified by using the c> (TOC), v>c (VTOC), s>c (STOC) and r>c (RTOC)
instructions. All of these operations are complex instructions with high operational power supported
directly by the VM. Commonly, the code morphing instructions are used by the compiler for agent
creation, forking and migration. Some process control instructions, like QBLOCK or SUSPEND, use
code morphing implicitly to save the data and control state of the process in the boot sections.

All code morphing operations are applied to the code frame, which is referenced with the current
CFS register, which can point to the current process frame or to any other code frame (limited to the
code segment of the current process). The code morphing frame can be loaded by using the !cf

(SETCF) operation. Basically, code morphing takes place by transferring code words from the data
stack to a specified code offset position in the morphing frame by using the >c (TOC) operation. Code
words (code snippets) can be pushed by using the c> (FROMC) operation, which copies code words
following this word from the current process frame to the data stack. Value literal words can be created
and transferred to the morphing frame with values stored on the data stack by using the v>c (VTOC)
operation. The current entire stack contents can be dumped into the morphing frame by using the s>c
(STOC) operation, excluding the arguments of this operation. Entire words from the current process can
be copied to the morphing frame by using the r>c (RTOC) operation.

The transition table can be modified by using dynamic blocks and configurable block branches
(BBRANCH), which can be enabled or disabled by using the BLMOD operation, inferred by high-level
transition configuration functions t+, t- and t*, enabling and disabling transitions.

5.5. Tuple Database Space

The access of the database tuple space transfers n-ary data tuples to and reads or removes n-ary tuples
from the database, based on pattern matching, which is part of the agent processing platform and directly
supported at the machine level! Reading and removing of tuples is based on search pattern matching,
consisting of actual parameter values and formal parameters replaced with values from matching tuples.
The implementation of generic tuple space access, vital to the agent interaction model and heavily used,
at the machine level is a challenge. Table 5 summarizes the AFL programming interface and AML
subset, which reuses some instructions for efficiency. Tuple space operations (in and rd) can suspend
the agent processing until a matching tuple is stored by another agent. This requires a special operational

Sensors 2015, 15 4532

behavior of the machine instructions for further process management, which must save the control and
data state (stack content) of this process in the frame and transition table boot sections.

The implementation complexity of the tuple space together with the code morphing operations is
very high. Therefore, the high-level AFL input operations (in, tryin, rd, tryrd, ?exist, rm)
are mapped on a reduced set of machine instructions {IN,RD} offering an enhanced platform resource
sharing, selected by the t-parameter, explained in Table 5. The processing of the IN and RD operations
by the platform VM profits from additional resource sharing in the VM.

Table 5. AFL/AML tuple data space access operations.

AFL AML Stack Description

out 0 OUT (a1 a2 .. d --) Store a d-ary tuple (a1,a2,..) in the database.
mark OUT (a1 a2 .. d t --) Store a d-ary temporary marking tuple in the database (after

time-out t, the tuple is deleted automatically).
in

rd

0 IN

0 RD

QBLOCK

(a1 a3 .. p d --

pi.. p2)

Read and remove or read only a tuple from the database. Only
parameters are returned.
To distinguish actual and formal parameters, a pattern mask p
is used (n-th bit = 1: the n-th tuple element is a value; n-th bit
= 0: it is a parameter and not pushed on the stack).

tryin

tryrd

IN

RD

(a1 a3 .. p d t

--

pi.. p2 0)

(a1 a3 .. p d t

--

a1 a3 .. p d t 1)

Try to read and remove or read only a tuple. The parameter
t specifies a time-out. If t = −1, then the operation is
non-blocking. If t = 0, then the behavior is equal to the rd
operation. If there is no matching tuple, the original pattern is
returned with a status of one on the top of the data stack, which
can be used by a following ?block statement. Otherwise
a status of zero is returned and the consumed tuple. Only
parameters are returned.

rm -2 IN (a1 a2 .. p d -) Remove tuples matching the pattern. This is processed with a
IN operation and t = −2.

?exist -2 RD (a1 a3 .. p d -

0|1)

Check for the availability of a tuple. This returns one if the
tuple does exist, otherwise zero. It is processed with a RD

operation and t = −2.

5.6. Signal Processing

Signals ζ:S(A) carry simple information A, which is the (optional) argument of a signal. Signals are
delivered to an appropriate signal handler of a specific agent, offering peer-to-peer agent communication.
Signals are managed by the node signal manager. A signal S is delivered to an agent signal handler $S by
inserting a signal processing token in the processing queue of the VM responsible for the parent process,
followed by a signal and argument data token consumed by the VM immediately if the signal process is
executed. The signal argument is pushed onto the data stack, and the signal handler word is called. After
the return from the signal handler word, the signal processing token is converted into a wake-up event
token and passed to the agent manager, which resumes the process in the case that the process waits
for a signal event. On the one hand, using signal processing tokens and queues ensures that the parent
agent process will not be preempted if executed with pending signals. On the other hand, signals can be

Sensors 2015, 15 4533

process delayed, which is normally not critically, since the signal handler should modify only agent data
used primarily for the transition decision process.

The raising of a signal from a source process passes an extended signal token to the signal manager,
which either generates the above described signal processing token sequence, which is passed to the
VM processing queue, or encapsulates the signal in a message, which is sent to a neighbor node by the
network manager (sketched in Figure 5). A process migrating to a neighbor node leaves an entry in a
process cache table, providing routing path information for message delivery to the migrated process.

The available AFL/AML instructions are summarized in Table 6.

Table 6. AFL/AML signal processing instructions.

AFL AML Stack Description

signal S - (--) Definition of a signal S.
:$S .. ; DEF (arg --) Definition of a handler for signal S. The signal

argument is pushed on the top of the data stack.
raise RAISE (arg sig# pid --) Send a signal S with an argument to the process

pid.
timer TIMER (sig# tmo --) Install a timer (tmo > 0) raising signal sig if the

time-out has passed. If tmo = 0, then the timer is
removed.

5.7. Agent Mobility

An agent program can migrate to a different VM on a neighbor node by executing the move operation
specifying the relative displacement to the current network node, shown in Table 7. A code migration
is a complex instruction, which requires the dumping of the control and data state in the boot section
of the code frame. The connection status for the link in a specified direction can be tested with the
?link operation. The migration is handled by the agent process and network managers and requires
the encapsulation of the code frame(s) in a message container. The header of the container contains some
persistent information about a process, like the process identifier number, the parent process identifier
(if any) and the delta position vector. All remaining information is contained in the program code and is
initialized by restarting the program on the new node and VM.

The effects of various important machine instructions are summarized and illustrated in Figure 7.

Table 7. AFL/AML agent mobility instructions.

AFL AML Stack Description

move MOVE (dx dy --) Migrate the agent code to the neighbor node in the given
direction. The current data and return stack content are
transferred and morphed into the boot code section. The transition
boot section is loaded with a branch to the current IP + 1.

?link LINK (dx dy -- flag) Check the link connection status for the given direction. If
flag = 0, then there is no connection; if flag = 1, then the
connection is alive.

Sensors 2015, 15 4534

Figure 7. Effects of AML operations on code and stack memory, process management and
token flow, shown partially for agents processed on two different connected platform nodes
(Node 1, Node 2).

5.8. Examples

Take a look at the following very simple αFORTH code Example 1 implementing an agent performing
a mean value computation of sensor values exceeding a threshold (agent parameter thr) with two body
variables x and m, one agent class parameter thr, three activities {A1, A2, A3} and a transition network
with some conditional transitions. The AAPL behavior model is shown on the right side. The sensor
value will be read from the tuple space by using the ∇−/ in instruction in activity A1(tuple key ADC).
The mean value is computed and stored in the database in activity A2. It is finally passed to the tuple
database in activity A3 by using the∇+/out instruction if the mean value exceeds a threshold. The agent
is terminated after this action.

This code example requires 74 operational AML code words, and the total size of the code frame,
including the boot section and the LUT created by the AFC compiler, is only 137 words. The AFL
parameter definition appearing in Line 2 is treated like a variable definition, but with an additional
parameter initialization added by the compiler following this definition immediately. After an agent
process is instantiated from this program code, the entire program is executed at the top level and,
therefore, initializing the parameter with values pushed to the data stack in the boot section, also added
by the compiler. The last statement in the AFL program executes the transition network, starting the
execution of the program (in this case, calling activity A1).

Sensors 2015, 15 4535

Example 1 (Left) The code shows an α FORTH program derived from an AAPL-based agent behavior
specification (Right) (in short notation).

The reconfiguration of the ATG modifying the agent behavior using code morphing (see Example 2)
enables agent sub-classing at run-time. This situation occurs in the employment of parent-child systems
creating child agents getting an operationally-reduced subset from the parent agent. This approach has
the advantage of high efficiency and performance due to the reduced code size. New agents can be
created by simply forking an existing agent (fork), which creates a copy of the parent agent, including
the data space. New agent programs (with different behavior) can be created by composing existing
activities and by adding different transition tables. The capability to change an existing agent is limited
to the modification of the transitions (enabling and disabling of dynamic blocks inside transition rows)
and by removing activities. The transition table modification (and activity deletion) is the main tool for
run-time adaptation of agents based on learning. The modified agent behavior can be inherited by forked
child agents. In AFL/AML, customized agents can be assigned only a complete transition table that is
already part of the current agent program.

Example 2 Code morphing and agent creation related to the agent behavior modification.

αFORTH (AFL) ⇐ AAPL

1 t*(A1,2) π*(A1 → A2 | x < y) -- replace all transitions A1->A2
2 t*(A1,2) π+(A1 → A2 | x = 0) -- add transition A1->A2
3 100 1 fork a ! a ← Θ

→(100); -- fork child agent
4 100 1 mean_filter create a ! a ← Θ

+ mean_filer(100); -- create new agent from class
5 1 new !cf ref(A1) r>c .. a ← Θ

+ (); -- create new customized agent
ref(T1) r>c .. α+ a(A1,A2,..) π+a(A1 → A2 | x < y) ..
100 1 run ⊕a(100)

6. Synthesis and Transformation Rules

This section explains the mapping of the fundamental concepts of the ATG agent behavior and AAPL
programming model and the transformation of the AFL program to AML machine code, primarily
performed by the AFC compiler. The composition with only a small set of special AFL/AVMinstructions
is capable of providing agent creation, forking, migration and modification by using code morphing,
directly supported by the VM.

Sensors 2015, 15 4536

6.1. Agent Creation Using Code Morphing

New agent processes can be created by using code templates and the create statement, by forking
the code and the state of a currently running process using the fork statement or by composing a new
agent class from the current process.

Creating new and forking child processes is implemented with the previously introduced NEW, LOAD
and RUN machine instruction sequences, defined in Equations (1) and (2), respectively.

a1 a2 .. an nargs ac create

VAL(0noinit) NEW DUP TOR SWAP LOAD FROMR VAL(0new) RUN
(1)

a1 a2 .. an nargs fork

VAL(0noinit) NEW DUP TOR VAL(−1fork) LOAD FROMR VAL(1fork) RUN
(2)

6.2. Agent Migration Using Code Morphing

Process migration requires the saving of the data and control state of the process in the frame and
transition table boot sections. After migration, the code frame is fully reinitialized, including the loading
of the process parameters. This requires the storage of the process parameter values on the data stack.

The migration is a two-stage process: the first stage is executed by the MOVE operation and the second
by the SUSPEND operation, shown in Equation (3).

dx dy move

MOVE VAL(−1root) SETCF VAL(1codeoff) STOC TOR

REF(p1) FETCH .. REF(pn) FETCH

VAL(n) FROMR VTOC VAL(1fullinit) SUSPEND

(3)

Example 3 (Left) The code shows an αFORTH program derived from an AAPL-based agent behavior
specification (Right) (in short notation), posing the migration of agents.

αFORTH (AFL) ⇐ AAPL

1 enum TSKEY ADC SENSOR ; κ: {ADC, SENSOR}
2 par dn integer ψ mean_filter: dn → {

3 var x integer var dx integer var m integer Σ: {x,dx,m}
4 :A0 0 m ! 0 dx ! 0 dx ! ; α A0 : { m←0; dx←0; }
5 :A1 ADC 0b10 2 rd x ! ; α A1 : { ∇%(ADC,x?) }
6 :A2 m @ x @ + 2 / m ! dx @ 1 + dx ! 1 0 move; α A2 : { m←(m + x)/2; dx←dx+1; ⇔(EAST) }
7 :A3 SENSOR m @ 2 out self kill ; α A3 : { ∇+(SENSOR,m); ⊗($self) }
8 :%trans Π : {
9 |A0 1 ?A1 . A0→ A1
10 |A1 dx @ dn @ < ?A2 dx @ dn @ = ?A3 . A1→ A2 | dx<dn
11 |A2 1 ?A3 . A1→ A3 | dx=dn
12 |A3 . ; A2→ A3 }
13 trans }

In Example 3, a short AAPL program and the transformed corresponding AFL program is shown.
The AAPL program implements a mobile agent traveling along the x-axis in the east direction in a
mesh-like network using the⇔/ move instruction (activity A2), sampling sensor values using the∇%/ rd

Sensors 2015, 15 4537

instruction reading the sensor value from the current node tuple space (activity A1) and computing the
mean value of the sensor values. The agent class parameter dn determines the extension of the path in
node hopping units. If the last node is reached, the computed mean value is stored in the local tuple
database using the∇+/ out instruction for further processing by other agents, performed in activity A3 ,
which is started if the hop-counter dx is equal to dn (increased at each migration). The compiled AML
code frame requires 181 words, including the embedded data space, boot section and LUT.

6.3. Code Frame Synthesis

The compiled AML machine program, which was synthesized from the previous Example 3, is shown
with assembler mnemonics in the following Example 4. The program frame is partitioned according to
Figure 6, beginning with a boot section (address range: 0–15), followed by the LUT (Start Address 16),
and the parameter and variable definitions (Start Address 58) adding embedded data space after each
object definition, which is part of the code frame. The LUT reserves four words for each object (variable,
parameter, activity, function) used in this program frame. The object type (first column) is already filled.

The agent parameter is initialized by the store instruction at Address 74, getting the data from stack,
which is pushed onto the data stack in the boot section (modified at agent process instantiation). For
example, if the agent program is created with the parameter dn = 5, a typical boot section contains
the instruction sequence SETLUT(18) VAL(5) .. BRANCH(2) CALL(9). The first instruction
sets the LUT pointer relative to the code frame start, and the second pushes the argument onto the stack.
The branch instruction ensures a complete initialization of the code frame (jumping over the transition
section call). The last branch instruction (address range: 179–181) jumps back to the last instruction in
the boot section calling the transition network.

The boot section is also used for the migration request, performed by the code in the address range
119–133. The move operation itself only prepares the migration (reset of the boot section), which is
finalized by the last suspend instruction. The code between modifies the boot section by morphing the
actual stack content to instructions in the boot section. After the migration, a full code frame initialization
is required, therefore requiring the BRANCH(2) CALL(9) sequence at the end of the boot section. The
boot section of the transition network (address range: 150–153) is modified for saving the current control
state (that is, the instruction pointer) by creating a long branch to the next instruction to be executed after
migration (within an activity word) and the full code frame initialization.

Each time a code frame is initialized by executing the top-level instructions, the LUT is updated by
the VAR/DEF/TRANS instructions (updating the current code address). This self-initialization approach
enables the modification of the code frame, e.g., reconfiguration and recomposition of agent programs.

The execution of the TCALL and TBRANCH instructions in the transition section relies on the LUT,
too. The TBRANCH looks up and updates the secondary column (initially zero) of a LUT row for the
relative address computation, reaching the respective TCALL. Again, this approach ensures the highest
degree of flexibility and independence from any other computational unit or VM data.

Sensors 2015, 15 4538

Example 4 Compiled AML assembler code from Example 3. First part: boot, LUT, variable and
activity/function relocation section (KIND NAME [off0 + off1] #LUT); second part: machine instructions
shown in ADDR: AML format.

BOOT [000000+0] LUT LUT [000016+2]

PAR dn [000058+3] #1

VAR x [000062+3] #2

VAR dx [000066+3] #3 VAR m [000070+3] #4

WORD A0 [000076+3] #4

WORD A1 [000089+3] #6 WORD A2 [000101+3] #7

WORD A3 [000134+3] #8 TRANS trans [000147+3] #9

BOOT

0000 : SETLUT 18 0001 : NOP ..

0014 : BRANCH 2 0015 : CALL 9

LUT

0016 : LUT 0017 : VAL 40

0018 : VAL 2 0019 : DATA 0020 : DATA 0021 : DATA First LUT row

0022 : VAL 1 0023 : DATA 0024 : DATA 0025 : DATA Second LUT row

..

0058 : VAR 0063 : VAL 1 0064 : VAL 1 0065 : DATA

0062 : VAR 0067 : VAL 2 0068 : VAL 1 0069 : DATA

..

Parameter Initialization

0074 : REF 1 0075 : STORE

Activity A0

0076 : DEF 0077 : VAL 5

0078 : VAL 10 0079 : VAL 0 0080 : REF 4 0081 : STORE

0082 : VAL 0 0083 : REF 3 0084 : STORE 0085 : VAL 0

0086 : REF 3 0087 : STORE 0088 : EXIT

Activity A1

0089 : DEF 0090 : VAL 6 0091 : VAL 9 0092 : VAL 1

0093 : VAL 2 0094 : VAL 2 0095 : VAL 0 0096 : IN

0097 : QBLOCK 0098 : REF 2 0099 : STORE 0100 : EXIT

Activity A2

0101 : DEF 0102 : VAL 7 0103 : VAL 33 0104 : REF 4

0105 : FETCH 0106 : REF 2 0107 : FETCH 0108 : ADD

0109 : VAL 2 0110 : DIV 0111 : REF 4 0112 : STORE

0113 : REF 3 0114 : FETCH 0115 : VAL 1 0116 : SUB

0117 : REF 3 0118 : STORE 0119 : VAL 1 0120 : VAL 0

0121 : MOVE 0122 : VAL -1 0123 : SETCF 0124 : VAL 1

0125 : STOC 0126 : TOR 0127 : REF 1 0128 : FETCH

0129 : VAL 1 0130 : FROMR 0131 : VTOC 0132 : VAL 1

0133 : SUSP 0134 : EXIT

Activity A3

0135 : DEF 0136 : VAL 8 0137 : VAL 9 0138 : VAL 1

0139 : REF 4 0140 : FETCH 0141 : VAL 2 0142 : VAL 0

0143 : OUT 0144 : VAL -1 0145 : CLEAR 0146 : EXIT

Transition Network Section

0147 : TRANS 0148 : VAL 9 0149 : VAL 29

0150 : NOP 0151 : NOP 0152 : NOP 0153 : NOP

0154 : TCALL 5 0155 : VAL 1 0156 : TBRANCH 6 0157 : END

0158 : TCALL 6 0159 : REF 3 0160 : FETCH 0161 : REF 1

0162 : FETCH 0163 : LT 0164 : TBRANCH 7 0165 : REF 3

0166 : FETCH 0167 : REF 1 0168 : FETCH 0169 : GE

0170 : TBRANCH 8 0171 : END

0172 : TCALL 7 0173 : VAL 1 0174 : TBRANCH 8 0175 : END

0176 : TCALL 8 0177 : END

0178 : EXIT

Transition Section Call, referenced from Boot section

0179 : VAL 15

0180 : VAL -1

0181 : BRANCHL

7. Agent Platform Simulation

The proposed agent processing platform is a massive parallel data processing system. The
composition of networks with these processing nodes creates a massive distributed system. The agent
behavior model used in this work reflects the parallel and distributed system. However, it is a challenge

Sensors 2015, 15 4539

to test and validate the operational and functional behavior of a MAS consisting of hundreds and
thousands of agents processed on hundreds of agent platform nodes. The monitoring of such a large
parallel and distributed system is nearly impossible in a technical real-world system. For this purpose, a
multi-agent-based simulation environment is used to simulate the distributed agent platform network
on architectural level. That means that all components, i.e., the VM and the managers, shown in
Figure 5 are simulated with non-mobile state-based agents and the SeSAm simulator [21], simulating the
processing of code frames representing agents on the proposed platform architecture. This simulation
model uses agents to simulate the processing of the agents introduced in Sections 2 and 3. In SeSAm,
the agent behavior model is based on a similar, but simpler, ATG model compared with the AAPL
model introduced in this work. SeSAm agents communicate with each other by accessing agent body
variables of other agents (that is, a shared memory model). This approach is only suitable in a simulation
environment and not in a real-world distributed deployment of agents.

Though the simulation model has no fixed timing model regarding the real processing platform (e.g., a
microchip), a time step in the simulation is equivalent to the processing of one machine instruction, which
corresponds roughly to 5–10 clock cycles required in an RTLimplementation of the PAVM platform for
the same code processing. The relationship for a software implementation of the PAVM platform is
about 100–1000 machine instructions on a generic microprocessor for each simulation step.

The simulation environment addresses two different simulation goals: (1) testing, profiling and
validation of the agent processing platform; and (2) testing, profiling and validation of algorithms
and multi-agent system use cases, for example event-based distributed sensor data processing in sensor
networks. Technical failures, like connection losses or complete node failures, can be simulated using
Monte-Carlo simulation methods.

!"#$"% &'()*+,+-'.

/01$$

"2& &'()-345

/1/"! !"/ /-(*3,+'5

/6$7

/6$

!"#"
$%&'()*

89&

!,.,:45

$+,
$#%'"-)

!"#"
$%&'()*

$./&01
2%3)0*

!"#$%&'"() *()'+(%

,&'& -./0&)12

3 45*

!"#$%&%'$()"*$

6(72 6(72

812)' 9&)&12+

62':(+; 9&)&12+

!"1)&% 9&)&12+

<"+'$&% 9&/0")2

62':(+; *())2/'"()

<"+'$&% 812)' 5+(/2==

/1! &'()-345

Figure 8. (Left) Simulation environment with the simulation world of a sensor network
with sensor nodes containing the PAVMprocessing platform (with multiple VM and manager
components, each simulated using an agent); (Right) The simulator operates on a database
for storing output and reading input data (e.g., the program code).

Sensors 2015, 15 4540

The entire simulation environment uses a database for storing output and reading input data, e.g.,
the program code, shown in Figure 8. The SQLD database server not only provides a standard
SQL-based database interface, it additionally provides an Remote Procedure Call (RPC) interface, which
allows programs to communicate and synchronize with each other. This feature enables multi-domain
simulations, for example incorporating external mathematical computations with MATLAB or FEM
simulators for testing and evaluating structural monitoring systems (but, this work is not concerned with
this). On the other hand, the code output of the AFL compiler AFC can be immediately stored in the
database and read by the simulator.

The SeSAm simulator was originally only a GUI-based programming interface for the composition
of the simulation model, which is not suitable for large models. To overcome this limitation, a textual
representation of the SeSAm simulation model with the SEM language was developed, which can be
compiled with the SEMC compiler to an XML simulation model, which can be imported directly by the
simulator (native model file format).

The simulation world consists of a 10 by 10 mesh network of sensor nodes and some dedicated
computational nodes at the outside of the network, which is not relevant for the following case study.
Each network node consists of a process, signal and two network managers and four virtual processing
machines, each with its own code and stack memory segments. The physical code frame size is set to
1024 words. Overall, 400 VMs with a total of seven million memory cells are simulated simultaneously.
The simulator uses 1621 immobile (SeSAm) agents to simulate the platform components and the
network. Furthermore, agents are used to simulate the network connections between nodes (resources
in the terms of SeSAm). Each sensor node, represented by a node agent, provides a set of sensor values
by storing data tuples in the node tuple database, which can be processed by other agents. There is a
world agent, which updates the sensor values for all nodes. The set of sensor data is read from the SQL
database, the dimension and the values of which depend on the use case being simulated.

8. Case Study: A Self-Organizing System

In this section, a self-organizing MAS (SoS) is implemented with AAPL and transformed to αFORTH
to show the suitability and resource requirements of the proposed agent processing platform. The
AFM machine code is tested and evaluated by using the agent-based platform simulation environment
introduced in the previous section.

8.1. The Algorithms

Faulty or noisy sensors can disturb data processing algorithms significantly. It is necessary to isolate
noise from well operating sensors. Usually, sensor values are correlated within a spatially close region,
for example in a spatially-distributed load-measuring network using strain-gauge sensors. The goal
of the following MAS is to find extended correlated regions of increased sensor intensity (compared
to the neighborhood) due to mechanical distortion resulting from externally-applied load forces. A
distributed, directed diffusion behavior and self-organization are used, derived from the image feature
extraction approach (proposed originally by [22]). A single sporadic sensor activity not correlated with

Sensors 2015, 15 4541

the surrounding neighborhood should be distinguished from an extended correlated region, which is the
feature to be detected.

The feature detection is performed by the mobile exploration agent, which supports two main
different behaviors: diffusion and reproduction. The diffusion behavior is used to move into a region,
mainly limited by the lifetime of the agent, and to detect the feature; here, the region with increased
mechanical distortion (more precisely, the edge of such an area). The detection of the feature enables the
reproduction behavior, which induces the agent to stay at the current node, setting a feature marking and
sending out more exploration agents in the neighborhood. The local stimulus H(i,j) for an exploration
agent to stay at a specific node with coordinates (i,j) is given by Equation (4).

H(i, j) =
R∑

s=−R

R∑
t=−R

{‖S(i+ s, j + t)− S(i, j)‖ ≤ δ}

S : Sensor Signal Strength

R : Square Region around (i, j)

(4)

The calculation of H at the current location (i,j) of the agent requires the sensor values within the
square area (the region of interest (ROI)) R around this location. If a sensor value S(i + s,j + t) with
i, j∈{−R,..,R} is similar to the value S at the current position (difference is smaller than the parameter δ),
H is incremented by one.

If the H value is within a parameterized interval ∆= [ε0,ε1], the exploration agent has detected the
feature and will stay at the current node to reproduce new exploration agents sent to the neighborhood.
If H is outside this interval, the agent will migrate to a different neighbor node and restart the
exploration (diffusion).

The calculation of H is performed by a distributed calculation of partial sum terms by sending out
child explorer agents to the neighborhood, which can send out more agents until the boundary of the
region R is reached. Each child agent returns to its origin node and hands over the partial sum term to his
parent agent. Because a node in the region R can be visited by more than one child agent, the first agent
reaching a node sets a marking MARK. If another agent finds this marking, it will immediately return
to the parent. This multi-path visiting has the advantage of an increased probability of reaching nodes
having missing (non-operating) communication links. An event agent, created by a sensing agent, finally
delivers sensor values to computational nodes, which is not considered here.

The AAPL algorithm in short notation is shown in Algorithm 1, exhibiting a subclass definition for
the neighborhood perceptor agents (helpers). The definition of the agent class Explorer begins at Line 6,
defining two parameters dir and radius. The direction parameter determines the (initial) spatial migration
direction of the agent, and the radius parameter limits the exploration region. The root class defines the
activities {init, percept, reproduce, diffuse}, and the subclass, beginning at Line 78, defines the activities
{percept_neighbor, move, goback, deliver}. Two signal handlers are installed (Lines 58, 61), processing
WAKEUP and TIMEOUT signals. The main transition set of the root class (Π) is defined at Line 68, and
the transition set of the child class exploring the neighborhood (π) is defined at Line 105.

The corresponding AFL program consists of 236 source code lines only and is compiled into 721 code
and 197 data words with a total code frame size of 918 words. The explorer child subclass requires
648 code and data words (resulting in a 30% reduction of the code frame size).

Sensors 2015, 15 4542

Algorithm 1 Definition of the explorer agent behavior class, including the explorer child subclass

1 κ: { SENSORVALUE,FEATURE, H, MARK } set of key symbols
2 ξ: { TIMEOUT, WAKEUP } set of signals
3 δ: { NORTH,SOUTH, WEST, EAST, ORIGIN } set of directions
4 ε1 =3; ε2 = 6; MAXLIVE = 1; some constant parameters
5
6 Ψ Explorer: (dir,radius) → {
7 * Body Variables *
8 Σ: { dx, dy, live, h, s0, backdir, group } global persistent variables
9 σ: { enoughinput, again, die, back, s, v } local temporary variables
10
11 Activities
12 α init: {
13 dx ← 0; dy ← 0; h ← 0; die ← false; group ← ℜ{0..10000};
14 if dir ≠ ORIGIN then
15 ⇔dir; backdir ← ϖ(dir)
16 else
17 live ← MAXLIVE; backdir ← ORIGIN
18 ∇+(H,$self,0);
19 ∇%(SENSORVALUE,s0?)
20 }
21 α percept: {
22 enoughinput ← 0;
23 ∀{nextdir∈δ | nextdir ≠ backdir ∧ ?Λ(nextdir)} do
24 enoughinput++;
25 Θ→Explorer.child(nextdir,radius)
26 τ+(ATMO,TIMEOUT)
27 }
28 α reproduce: {
29 live--;
30 ∇×(H,$self,?);
31 if ?∇(FEATURE,?) then ∇-(FEATURE,n?) else n ← 0;
32 ∇+(FEATURE,n+1);
33 if live > 0 then
34 π*(reproduce → init)
35 ∀{nextdir∈δ | nextdir ≠ backdir ∧ ?Λ(nextdir)} do
36 Θ→(nextdir,radius)
37 π*(reproduce → exit)
38 }
39 α diffuse: {
40 live--;
41 ∇×(H,$self,?);
42 if live > 0 then
43 dir ← ℜ{nextdir∈δ | nextdir ≠ backdir ∧ ?Λ(nextdir)}
44 else
45 die ← true
46 }
47 α exit: { ⊗($self) }
48
49 inbound: (nextdir) → {
50 case nextdir of
51 | NORTH → dy > -radius
52 | SOUTH → dy < radius
53 | WEST → dx > -radius
54 | EAST → dx < radius
55 }
56
57 Signal handler
58 ξ TIMEOUT: {
59 enoughinput ← 0

Sensors 2015, 15 4543

60 }
61 ξ WAKEUP: {
62 enoughinput--;
63 if ?∇(H,$self,?) then ∇-(H,$self,h?);
64 if enoughinput < 1 then τ-(TIMEOUT);
65 }
66
67 Main Transitions
68 ∏: {
69 entry → init
70 init → percept
71 percept → reproduce | (h ≥ ε1 ∧ h ≤ ε2) ∧ (enoughinput < 1)
72 percept → diffuse | (h < ε1 ∨ h > ε2) ∧ (enoughinput < 1)
73 reproduce → exit
74 diffuse → init | die = false
75 diffuse → exit | die = true
76 }
77 Explorer child subclass
78 ϕ child: {
79 α exit imported from root class
80 ξ TIMEOUT
81 ξ WAKEUP
82 α percept_neighbour {
83 if not ?∇(MARK,group) then
84 back ← false; enoughinput ← 0; ∇τ(MTMO,MARK,group); ∇%(SENSORVALUE,s?);
85 h ← (if |s-s0| ≤ DELTA then 1 else 0);
86 ∇+(H,$self,h);
87 π*(percept_neighbour → move)
88 ∀{nextdir∈δ | nextdir ≠ backdir ∧ ?Λ(nextdir) ∧ inbound(nextdir)} do
89 Θ→(nextdir,radius)
90 π*(percept_neighbour → goback | enoughinput < 1)
91 τ+(ATMO,TIMEOUT)
92 }
93 α move: {
94 backdir ← ϖ(dir); (dx,dy) ← (dx,dy) + ∂(dir);
95 ⇔dir;
96 }
97 α goback: {
98 if ?∇(H,$self,?) then ∇-(MARK,$self,h?) else h ← 0;
99 ⇔backdir;
100 }
101 α deliver: {
102 ∇-(H,$parent,v?); ∇+(H,$parent,v+h);
103 ξWAKEUP ⇒ $parent;
104 }
105 π: {
106 entry → move
107 move → percept_neighbour
108 deliver → exit
109 goback → deliver
110 }
111 }
112 }

Figures 9 and 10 summarize the analysis results for a typical simulation run of the above-described
SoS MAS, with a stimulated sensor network region of four by two nodes having sensor values differing
significantly from the neighborhood (shown in the inner black rectangle in Figure 8). The analysis shows

Sensors 2015, 15 4544

the VM load factor, the agent processing statistics and the agent population (related to the SoS MAS) in
the entire network for the test run. The VM load is the fraction of processing to the idle time of a VM,
for each VM in the range [0.0,1.0], and is cumulated for all VMs of a node (node VM load factor). To
clarify this, if all VMs are busy 100% of the time, the node load factor is x if the number of VMs per
node is x. The mean value is an averaged node VM load factor of all nodes, which are processing SoS
agents, and the maximum value is the peak value of one VM of this group.

The MAS population has a peak number of 140 agents, with originally eight root agents created by
the sensor nodes. The analysis evaluates the temporally resolved processing load of the VMs in the
extended region populated with explorer and explorer child agents only (in the outer black rectangle in
Figure 8). Different platform configurations were investigated with four, two and one VM(s) per node.
Depending on the number of VMs per node, the feature is recognized by the MAS after 5050, 6200
and 8800 simulation steps, respectively, which shows a significant performance decrease by reducing
the available number of VMs. The average speedup compared with one VM for this specific MAS
and network situation is 2.2 for four and 1.5 for two parallel processing VMs. The fine-grained platform
simulation of program code processing requires only 100-times more simulation steps than a comparable
pure behavior-based agent simulation (directly implementing AAPL agents with SeSAm agents, shown
in [4]). Each explorer agent requires about 1000 machine instruction to achieve its goal and termination.
Neglecting communication and migration time, the total computational execution time of an explorer
agent on a hardware platform with a 10-MHz clock frequency requires less than 1 ms! A node in the
populated region processes up to 10 different agent programs, shown in the right diagram of Figure 9.

0 2000 4000 6000
0

50

100

150

0

1

2

3

4

50.00

0.75

1.50

2.25

3.00
0 2000 4000 6000

time [simulation step]

 Agents

 VM Load Max

 VM Load Mean

0 2000 4000 6000
0

2

4

6

8

10
0

2

4

6

0

3

6

9
0 2000 4000 6000

time [simulation step]

 Proc. Max

 Proc. mean

 Susp. Proc. Max

Figure 9. Analysis results for a typical run of the SoS multi-agent system (MAS) with a
correlated cluster of 4 × 2 nodes having significant different sensor values compared with
the neighborhood (with four VMs/node, the max and mean computation related to nodes
in the region of active nodes processing at least one program/agent) (load: the fraction of
processing to the idle time of a VM set).

Sensors 2015, 15 4545

0 2000 4000 6000 8000
0

50

100

150

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0 2000 4000 6000 8000

time [simulation step]

 Agents

 VM Load Max

 VM Load Mean

0 5000 10000
0

50

100

150

0.0

0.5

1.0

0.0

0.5

1.0

0 5000 10000

time [simulation step]

 Agents

 VM Load Max

 VM Load Mean

Figure 10. Analysis results with two VMs (left) and only one VM (right) per node (the
feature is recognized after 6200 and 8800 simulation steps, respectively) (load: the fraction
of processing to the idle time of a VM set).

9. Discussion and Conclusions

In this work, a novel agent processing platform architecture for code-based mobile agents in
large-scale heterogeneous sensor networks, including low-resource microchip nodes, was introduced.
The standalone agent processing platform, a multi-core stack processor, can be implemented entirely at
the microchip level and requires no operating system and no boot code. Alternatively, the processing
platform can be implemented efficiently in software with code and operational compatibility, enabling
deployment in heterogeneous network environments, inter-connecting hardware and software platforms
executed on generic microprocessors.

The stack-based FORTH programming language was extended with powerful statements for agent
control, migration, replication and communication, available entirely at the machine level, resulting in
the AFL programming language, comparable in expressiveness to the high-level agent programming
language, AAPL, but focused on and optimized for the FORTH VM platform. The machine instruction
set AML is a subset of the AFL programming language with agent process control extensions.

The introduced simulation environment simulates the processing of the program code and addresses
two different simulation goals: (1) testing, profiling and validation of the agent processing platform;
and (2) testing, profiling and validation of algorithms and multi-agent system use cases, for example
event-based distributed sensor data processing in sensor networks. Technical failures, like connection
losses or complete node failures, can be simulated using Monte-Carlo simulation methods.

Sensors 2015, 15 4546

9.1. Suitability

The proposed mobile program-based agent approach is well suited for massive distributed multi-agent
systems with a common cooperation goal and subclassification features. Examples are self-organizing
systems used for pattern and feature recognition or event-based sensor distribution in large-scale
networks. These distributed algorithms require replication and diffusion behavior with neighborhood
exploration by forked child agents delivering pre-computed information parts (divide and conquer
strategy). The agent mobility, which supports the migration between different execution platforms
in mesh-like heterogeneous networks, and the agent interaction by using tuple-space databases and
global signal propagation aid with solving data distribution and synchronization issues in the design
of distributed heterogeneous sensor networks. The AFL and AML program code can be efficiently
compiled from a high-level agent behavior specification using the AAPL programming language. The
agent processing VM supporting the AML instruction set was matched to and optimized for the AAPL
behavior model and agent-specific statements. A typical program code size of an agent employed in
sensor networks for sensor pre-processing and distribution consists of about 1000 words (assuming a
16-bit machine requiring only 2000 bytes). Due to powerful and expressive agent behavior-specific
statements, the overall efficiency (regarding code size and processing speed) is considerably good,
especially compared with generic register-based or Java VMs (for example, pointed out in [15] and [8]).
The migration of agents requires only the transfer of the program code encapsulated in messages.
A migrated program code frame can be started on the new node or VM, immediately leading to
short start-up latencies. The code frame is self-initializing, which means there is no operating system
service required.

9.2. Efficiency

The multi-core hardware implementation of the VM benefits significantly from the parallel processing
of agents on different VMs. The software implementation can benefit from parallelization and pipelining
by using a multi-threaded implementation of the VM architecture. The hardware VM requires about
two to four clock cycles to execute simple instructions (see [16]) and about 10 to 100 clock cycles for
complex statements like the SUSPEND or the IN/OUT operations. The software implementation of the
VM requires about 100 host machine instructions to execute simple and about 1000–10,000 machine
instructions to execute complex statements. The memory requirements of the hardware and software
VM implementations depend on the maximal number of agents to be processed.

9.3. Drawbacks and Issues

The fixed-size code frame approach with embedded data is not suitable for large data sets, which must
be carried by agents, for example a multi-dimensional matrix, like images.

Agent programs must be forked and created on the VM currently processing the parent process. If
there are not enough physical code frames available for this particular VM, this operation fails. Load
balancing based on consumed computation time and allocated frames can be required by using code
frame migration from one VM to another VM on the same network node.

Sensors 2015, 15 4547

Task scheduling only occurs if the currently processed agent program returns from an activity word
call. Activities with high computation time can delay the processing of other waiting agent programs
significantly. Preemptive scheduling of tasks with time slice scheduling is required, which is actually
not implemented.

9.4. Outlook

The low-resource requirement of the PAVM architecture enables the implementation of the
agent processing platform with embedded and interpreted programming languages, e.g., JavaScript.
A JavaScript implementation of the processing platform offers the merging of web services with sensor
networks, extending the activity domain of agents significantly and enabling unified service-orientated
sensing systems.

A. Appendix

A.1. AAPL Short Notation

Figure A1. AAPL short notation and symbols related to the dynamic ATG and agent
interaction model.

Sensors 2015, 15 4548

A.2. Common AFL/AML FORTH Data Processing Command Words

AFL AFM Description

1 VAL(1) Value literal word pushed on data stack
dup DUP Duplicate top element of data stack
rot ROT Rotate the three top elements of the data stack
swap SWAP Swap the two top elements of the data stack
>r TOR Move the top element of the data stack to the return stack
r> FROMR Move the top element of the return stack to the data stack
@ FETCH Store the value of a variable (memory) on the data stack
! STORE Store top of the stack in a variable (memory)
+ ADD Add the two top elements of the data stack and store result on the stack
- SUB Subtract the two top elements of the data stack and store result on the stack

* MUL Multiply the two top elements of the data stack and store result on the stack
> GT Compare the two top elements of the data stack and store result on the stack
< LT Compare the two top elements of the data stack and store result on the stack
= EQ Compare the two top elements of the data stack and store result on the stack

Conflicts of Interest

The author declares no conflict of interest.

References

1. Rogers, A.; Corkill, D.D.; Jennings, N.R. Agent Technologies for Sensor Networks. IEEE Intell.
Syst. 2009, 24, 307–308.

2. Zhao, X.; Yuan, S.; Yu, Z.; Ye, W.; Cao, J. Designing strategy for multi-agent system based large
structural health monitoring. Expert Syst. Appl. 2008, 34, 1154–1168.

3. Bosse, S. Design of Material-Integrated Distributed Data Processing Platforms with Mobile
Multi-Agent Systems in Heterogeneous Networks. In Proceedings of the 6th International
Conference on Agents and Artificial Intelligence ICAART 2014, Angers, France, 6–8 March
2014; doi:10.5220/00048175006-90080.

4. Bosse, S.; Lechleiter, A. Structural Health and Load Monitoring with Material-Embedded Sensor
Networks and Self-Organizing Multi-Agent Systems. Procedia Technol. 2014, 15, 669–691.

5. Guijarro, M.; Fuentes-fernández, R.; Pajares, G. A Multi-Agent System Architecture for
Sensor Networks. In Multi-Agent Systems—Modeling, Control, Programming, Simulations and
Applications; Alkhateeb, F., Ed., InTech: Rijeka, Croatia, 2011.

6. Zhou, B.; Zhu, H. A Virtual Machine for Distributed Agent-Oriented Programming. In
Proceedings of the Twentieth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2008), San Francisco, CA, USA, 1–3 July 2008.

7. Meunier, J.A. A virtual machine for a functional mobile agent architecture supporting distributed
medical information. In Proceedings of the 12th IEEE Symposium on Computer-Based Medical
Systems, Stamford, CT, USA, 18–20 June 1999; pp. 177–182.

Sensors 2015, 15 4549

8. Li, C.; Lu, Z.; Li, L.; Zhang, S. A mobile agent platform based on tuple space coordination.
Adv. Eng. Softw. 2002, 33, 215–225.

9. Müller, R.; Alonso, G.; Kossmann, D. A virtual machine for sensor networks. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, Lisbon,
Portugal, 21–23 March 2007; pp. 145–158.

10. Muldoon, C.; O’Hare, G.M.P.; O’Grady, M.J.; Tynan, R. Agent migration and communication
in WSNs. In Proceedings of the Ninth International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT 2008), Otago, New Zealand, 1–4 December
2008; pp. 425–430.

11. Sansores, C.; Pavón, J. An Adaptive Agent Model for Self-Organizing MAS. In Proceedings of the
7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Estoril, Portugal, 12–16 May 2008; pp. 1639–1642.

12. Bosse, S.; Pantke, F. Distributed computing and reliable communication in sensor networks
using multi-agent system. Prod. Eng. 2013, 7, 43–51.

13. Bosse, S. Processing of Mobile Multi-Agent Systems with a Code-Based Agent Platform
in Material-Integrated Distributed Sensor Networks. In Proceedings of the 1st International
Electronic Conference on Sensors and Applications, 1–16 June 2014; doi:10.3390/ecsa-1-d010.

14. Rather, E.D.; Colburn, D.R.; Moore, C.H. The evolution of Forth. In Proceeding of HOPL-II The
Second ACM SIGPLAN Conference on History of Programming Languages, Cambridge, MA,
USA, 20–23 April 1993; Volume 28, pp. 177–199.

15. Marques, I.L.; Ronan, J.; Rosa, N.S. TinyReef: A Register-Based Virtual Machine for
Wireless Sensor Networks. In Proceedings of 2009 IEEE Sensors, Christchurch, New Zealand,
25–28 October 2009; pp. 1423–1426.

16. Bosse, S. Distributed Agent-Based Computing in Material-Embedded Sensor Network Systems
with the Agent-on-Chip Architecture. IEEE Sens. J. 2014, 14, doi:10.1109/JSEN.2014.2301938.

17. Pelc, S. Programming Forth; MicroProcessor Engineering Limited: Southampton, UK, 2011.
18. G144A12 Chip Reference & F18A Technology Reference; Product Databook, Document DB001

& DB002; GreenArray: Incline Village, NV, USA, 2011.
19. Gelernter, D. Generative communication in Linda. ACM Trans. Program. Lang. Syst. (TOPLAS)

1985, 7, 80–112.
20. Qin, Z.; Xing, J.; Zhang, J. A Replication-Based Distribution Approach for Tuple Space-Based

Collaboration of Heterogeneous Agents. Res. J. Inf. Technol. 2010, 2, 201–214.
21. Klügel, F. SeSAm: Visual Programming and Participatory Simulation for Agent-Based Models.

In Multi-Agent Systems—Simulation and Applications; Uhrmacher, A.M., Weyns, D., Eds.;
CRC Press: Boca Raton, FL, USA, 2009.

22. Liu, J. Autonomous Agents and Multi-Agent Systems; World Scientific Publishing:
Singapore, 2001.

c© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction and State-of-the-Art
	Agent Behavior Modeling: The Activity-Based Agent Model and Graphs
	Agent Classes
	The Dynamic ATG and Sub-Classing

	Agent Behavior Programming: The High-Level AAPL
	Agent Interaction and Coordination
	Agent Mobility
	Agent Classes

	Architecture: Agent Processing Platform
	Platform Architecture
	 Token-Based Agent Processing
	Instruction Format and Coding
	Process Scheduling and VM Assignment

	Agent FORTH: The Intermediate and the Machine Language
	Program Code Frame
	Agent Processing
	Agent Creation and Destruction
	Agent Modification and Code Morphing
	Tuple Database Space
	Signal Processing
	Agent Mobility
	Examples

	 Synthesis and Transformation Rules
	Agent Creation Using Code Morphing
	Agent Migration Using Code Morphing
	Code Frame Synthesis

	Agent Platform Simulation
	Case Study: A Self-Organizing System
	The Algorithms

	Discussion and Conclusions
	Suitability
	Efficiency
	Drawbacks and Issues
	Outlook

	Appendix
	AAPL Short Notation
	Common AFL/AML FORTH Data Processing Command Words

	Conflicts of Interest

