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Abstract: Wireless link correlation has shown significant impact on the performance
of various sensor network protocols. Many works have been devoted to exploiting link
correlation for protocol improvements. However, the effectiveness of these designs heavily
relies on the accuracy of link correlation measurement. In this paper, we investigate
state-of-the-art link correlation measurement and analyze the limitations of existing works.
We then propose a novel lightweight and accurate link correlation estimation (LACE)
approach based on the reasoning of link correlation formation. LACE combines both
long-term and short-term link behaviors for link correlation estimation. We implement
LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding
protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and
lightweight link correlation measurements than the state-of-the-art work; and (2) greatly
improves the performance of protocols exploiting link correlation.
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1. Introduction

Wireless sensor networks (WSNs) are becoming a popular platform for real-world monitoring or
controlling systems and applications (e.g., forest monitoring [1], healthcare [2], smart homes [3],
green buildings [4], etc.). The sensor nodes are equipped with sensors, CPUs and radios with low
energy consumptions. They can support long-term and pervasive deployment [5–7]. Routing [8,9]
and flooding [10,11] are two important fundamental protocols in WSN-based applications. The routing
protocol is used for monitoring: a number of sensors collect (and possibly process) the sensing data of
interest and then transmit the data to a sink node (or base station node) in a multi-hop manner. When
the data of interest are collected, the flooding protocol is used to perform the controlling process: the
sink node transmits the controlling messages to all network nodes to perform certain actions, optimize
parameters, etc. For example, in the case of smart air-conditioner systems, such as [12], each node
first transmits air data (temperature, CO concentration, PM2.5, etc.) to the sink node (controlling node)
via the opportunistic routing (OR) protocol. Then, the sink node transmits the controlling commands
(warming, cooling, aeration, etc.) to all nodes via flooding to perform certain actions.

Recent studies have observed that link correlation has a strong impact on the performance of both
kinds of protocols [13]. We denote link correlation as the correlation of packet receptions/losses on
different links from the same sender’s broadcast. For example, for the opportunistic routing (OR, which
is a popular routing protocol used in WSNs) protocol, when links are positively correlated, there is less
spatial diversity to exploit, and the OR performance is likely to degrade; for the flooding protocol, when
links are negatively correlated, the broadcast will be less effective, and the retransmission overhead is
likely to increase.

Based on this observation, some recent works have proposed to exploit link correlation for improving
the performances of OR and flooding. Basalamah et al. [14] employ link correlation to estimate
the effectiveness of a routing forwarder and select forwarders with a weak outbound link correlation
for efficient opportunistic routing (i.e., there is much spatial diversity for this forwarder). Similarly,
Wang et al. [15] extend a link correlation-aware routing metric that favors good link quality and spatial
link diversity (negative link correlation) for efficient routing. Zhu et al. [16] use link correlation to
reduce the ACK overhead: given two positively correlated links, if the transmission succeeds on one
link, the transmission is likely to succeed on the other link, such that we can use one link’s ACK to infer
the other links’ ACKs, avoiding the ACK storm problem. Guo et al. [17] use link correlation to construct
a tree structure for flooding. The structure favors nodes with strong link quality and link correlation.

However, basically, all of these works heavily rely on the accuracy and efficiency of link correlation
measurement/estimation. For example, in [17], if the link correlation is measured inaccurately, the
structure nodes (expected to have a strong link correlation) may have a poor link correlation, and the
performance will not be improved or may even degrade.

To measure link correlation, the widely-used approach in these works is the beacon-based
measurement (BCM). With this approach, each node periodically transmits beacon messages and records
the received beacon receptions/losses in a bitmap (denoted as “1” for reception and “0” for loss). Each
node then broadcasts its bitmaps to the corresponding beacon sender nodes. After receiving the bitmaps,
a node can calculate the correlations between each pair of its outbound links. For example, the link
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correlation between links S → R1 and S → R2 can be calculated as: cSR1,R2 = NCR

NR
R2

, where NCR

denotes the number of common packet receptions of two links and NR
R2 denotes the number of received

packets at R2.
With real-world experiments and analysis, however, we observe that the beacon-based approach has

the following drawbacks: First, it lacks accuracy. Link correlation is often used to estimate performance
metrics (e.g., the expected number of transmissions) of data transmissions. More specifically, link
correlation should be essentially the correlation of data packet receptions/losses. However, beacon
messages are different from data packets in both packet length and transmission interval, which, as
we will discuss in Section 2, are two important factors impacting link correlation. Second, BCM relies
only on the historical statistics. It cannot provide timely (short-term) link correlation measurement. For
WSN-based applications requiring real-time communications, a timely link correlation measurement is
necessary [1,18]. Third, periodically exchanging beacons incur considerable measurement overhead.
Before each batch of data packet transmissions, the protocols exchange a large number of beacon
messages for measuring the link correlation. These extra transmissions may even balance out the benefits
by considering link correlation in the protocols.

To address the above-mentioned problems, in this paper, we propose a lightweight and accurate link
correlation estimation approach (LACE). Compared with BCM, LACE has three salient features: First,
instead of beacon messages, LACE directly exploits data packet reception/loss traces for measuring the
desired data packet-level link correlation. Second, LACE also combines the PHY layer information,
the received signal strength indicator (RSSI), to further calibrate the measurement results. Since RSSI
indicates the immediate link behaviors, we can extract short-term link correlation with the RSSI trace.
By combining both the RSSI-based result and the data reception trace-based statistical result, we can
get a timely, yet accurate estimation of the link correlation. Third, LACE uses beacon messages only in
the startup session. After that, LACE depends solely on the data reception history and the immediately
measured RSSI traces. Considering that RSSI measurements are fast and cheap [19] and that we have
almost eliminated the beacon exchanges, the estimation overhead is greatly reduced compared to BCM.

We implement LACE in TinyOS 2.1.2 with TelosB motes as a stand-alone interface. Then, we
incorporate LACE into existing link correlation-based OR and flooding protocols to study its impact
on end-to-end protocol performance (the number of transmissions and delay). Simulation and testbed
experimental results show that LACE: (1) provides more accurate link correlation measurement;
(2) greatly reduces the measurement overhead; and (3) that LACE-based protocols outperform their
counterparts with BCM.

The contribution of this paper is summarized as follows:

• We demonstrate the inaccuracy of beacon-based measurement and give the reasoning (Section 2).
• We propose a simple model to bridge the PHY layer information (packet length and transmission

rate) and packet-level link correlation (Section 3)
• We propose a novel link correlation estimation approach, LACE. LACE combines both link layer

and PHY layer information for lightweight and accurate link correlation estimation (Section 3).
• We implement LACE in TinyOS 2.1.2 and incorporate it into existing protocols. Experimental

results show that LACE provides more accurate link correlation measurement and that
LACE-based protocols outperform existing BCM-based protocols (Section 4).
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2. Preliminaries and Related Works

2.1. Link Correlation Metric and Measurement

Metric: There are several metrics characterizing packet-level link correlation [13,16,17]. Among all
of these metrics, conditional packet reception/loss probability (CPRP/CPLP) is the most widely-used,
due to its meaningfulness and applicability for estimating upper layer performance, such as the expected
number of transmissions (ETX). More specifically, the link correlation-aware opportunistic routing
(CAR) [15] and collective flooding (CF) [16] uses CPRP as the link correlation metric, while correlated
flooding [17] and CoCo [20] use CPLP as the link correlation metric.

Measurement: Existing works employing beacon messages for measuring link correlation function
as follows: Each node periodically transmits beacon messages and records the beacon receptions/losses
from other nodes with bitmaps, a “1” denoting a packet reception and a “0” denoting a packet loss. Then,
each node transmits the bitmaps to corresponding beacon senders. When a node obtains the bitmaps, it
is able to calculate the link correlation (CPRP/CPLP) between its outbound links. For example, with one
sender S and two receivers A and B, given two bitmaps indicating the packet receptions on S→A and
S→B, “10011” and “11001”, the link correlation can be calculated as the number of common packet
receptions divided by packet receptions on S→B, i.e., cSA,B = 2

3
. This means S→A will receive a packet

with a probability of 2/3 given that S→B receives a packet.
The above beacon-based link correlation measurement has two main drawbacks, as follows: First and

most importantly, it lacks accuracy. Beacon-based measurement uses the beacon receptions to measure
the link correlation. As we analyze in Section 2.2, since both the packet length and transmission rate of
beacons are different from those of data packets, the fractions of interference captured by beacon-based
measurement are different from the interference that has a real impact on data transmissions and the
measurement result lacks accuracy. Second, the periodic beacons incur considerable overhead. In [17],
beacons are transmitted every 10 s. However, in typical sensor networks, data packets are transmitted
every 10 min [1]. The beacons’ overhead is unacceptable.

Compared to the above commonly-used approach, LACE: (1) uses data reception bitmaps for link
correlation measurement, which is inherently accurate (the elimination of beacons also greatly reduces
the measurement overhead); and (2) combines both physical layer parameter and network layer statistics
for flexible link correlation estimation (considering both long-term and short-term link behaviors for
correlation measurement).

2.2. Link Correlation Reasoning and Measurement

Previous works have concluded that link correlation is greatly affected by shadow fading and
interference [13,21]. If two nodes have similar signal strengths and interference, they are more likely to
receive/lose packets at the same time. As a result, the link correlation between the two links would more
likely be strong.

Data transmission rate and packet length: With the above two factors, however, we can still not decide
the link correlation. The reason is that the underlying interference and noise are varying, and the data
transmissions capture only part of the interference and noise. For example, of two links A → B and
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A → C, when there is an interfering source (e.g., WiFi AP) near B and C, it is more likely that the
two links have similar packet losses and are thus highly correlated. However, the two links may also be
independent if the transmissions from A happen at the whitespace of WiFi communication. We can see
that the interference and noise captured by the packet transmissions (the interference and noise covered
by grey parts) essentially decide the link correlation.

To decide the interference and noise fractions captured by the packet transmissions, clearly, the packet
length and transmission rate are the two important factors (it is worth noting that in many WSN-based
applications, data packets are transmitted with fixed data rate [1]).

To more clearly illustrate the impact of the two factors, we use a simple example with one sender and
two nearly-placed receivers. Nearly-placed receivers have similar signal strength, noise and interference.
The sender keeps broadcasting packets, and we study the link correlation between the two links. As
depicted in Figure 1, the x-axis denotes time, and the y-axis denotes the environmental interference.
The grey blocks denote packet transmissions. PTD denotes the packet transmission duration, which is
determined by the packet length. PTI means packet transmission interval. We can see that the three
packets capture different fractions of interference, resulting in certain link correlation values. As a
result, Packets 1 and 3 are more likely to be lost at the receivers, while Packet 2 is more likely to
be independently received/lost at different receivers. The reason is that interference during Packet 2’s
transmission is low, while the interference during Packets 1 and 3 is high. Clearly, different PTIs and
PTDs will lead to different captured interference and noise, resulting in different link correlations.
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Figure 1. An example to illustrate the impacting factors of link correlation. PTD, packet
transmission duration; PTI, packet transmission interval.

Beacon-based correlation measurement (BCM) has two main drawbacks in capturing the link
correlation (i.e., the data packet reception/loss correlation). First, from the above observation, beacons
have different packet lengths and transmission rates than data packets, capturing different interference
patterns with data packet transmissions. Thus, interference that has a large impact on data packet
reception/loss correlation may not be captured by the beacons. Second, even the captured interference
is similar, since the beacons’ packet lengths are different from the data packets, the reception of
beacons and data packets will be different. Existing works have concluded that with the same
signal-to-interference and noise ratio (SINR), short packets are more likely to be correctly received [22].
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Therefore, a data packet loss may be misestimated as a reception using a beacon message, which further
yields errors for estimating data packet reception/loss correlations.

Statistical approach: A simple improving approach is to simply use data receptions/losses for
measuring link correlation, in which the link correlation is calculated based on the historical traces of
packet receptions and losses.

However, since link correlation is often used for routing decisions, the desired link correlation should
combine long-term stable behavior, as well as short-term behavior. If there are large batches of packets
to transmit, we may require long-term link correlation (the historical data plane link correlation is more
meaningful); on the other hand, if we would like to transmit only one or a small number of packets,
short-term link correlation (derived from RSSI and noise readings) is preferred.

2.3. Protocols Exploiting Link Correlation

We summarize recent works aiming at improving the protocol performance of opportunistic routing
and flooding.

Opportunistic routing: The key idea of opportunistic routing is to exploit spatial diversity to
improve the OR efficiency, i.e., a forwarder broadcasts a packet, and any relay nodes that overhear
the packet can become the next forwarders. Compared to traditional unicast routing, it can reduce the
number of retransmissions.

Basalamah et al. [14] identify that link correlation indeed has a large impact on the spatial diversity.
From the same sender, if the outbound links are weakly correlated, each receiver has different received
packets, and there is much spatial diversity. The key insight is that negative correlated links are
beneficial to opportunistic routing. The reason is that with negative link correlation, if a receiver cannot
receive the packet, it is more likely that another receiver can receive that packet. Then, we can infer
that with negative correlated links, when a packet is broadcast, at least one receiver can receive the
packet, and retransmissions are avoided. By selecting forwarders with negative correlated links, the
protocol can effectively exploit the spatial diversity in the network and reduce transmission and delay
overhead. Compared to negative correlated links, independent links (with weak or no link correlation)
are less beneficial.

Wang et al. [15] extend the work in [14] by formally designing a link correlation-aware routing
metric (expected number of transmissions, ETX), which considers both link quality and link correlation.
Moreover, it designs an efficient prioritization approach to prioritize the transmissions from high metric
value forwarders. By efficiently selecting the weakly correlated links with high link qualities, the routing
efficiency is improved.

Flooding: Traditional flooding is simple. The sink node broadcasts the flooding packets, and nodes
that received the packets reply ACKs and then re-broadcast the packets. This process goes recursively
until all network nodes receive the packets.

Zhu et al. [16] employ link correlation for efficient flooding. The proposed protocol, CF (collective
flooding), improves the flooding performance compared to previous work. CF uses link correlation to
infer the probability of a packet’s reception at different receivers. Based on this knowledge, CF calculates
the impacts of different forwarders and selects the best forwarder with the largest impact.
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Guo et al. [17] exploit link correlations for efficient flooding in low duty cycle sensor networks.
Nodes with high correlated links are grouped together in order to reduce the number of ACKs. The
grouping of nodes, however, requires each node to perform a time-consuming k-means algorithm, which
incurs a large computational overhead on resource-constrained sensor nodes. Iftekharul et al. [23] extend
Zhu et al.’s design [16] for multiple packet scenarios by employing rateless codes, which improve the
performance in terms of transmissions.

Wang et al. [21] consider link correlation in the clustering of network nodes (CorLayer). CorLayer
models the relationship between link correlation and the expected number of transmissions (ETX) and
then selects nodes with small ETXs to form clusters. Then, by connecting all clusters, the underlying
structure for efficient flooding is constructed.

Zhao et al. [20] employ link correlation for dissemination (multi-message reliable flooding).
They use link correlation, as well as link quality to model the ETX of each potential sender during
the dissemination process, such that strong link correlation neighborhoods in the network are selected
for data forwarding. After that, many optimizations on the protocols are done to further reduce the
transmission overhead and energy consumption.

The above-mentioned protocols rely on the beacon-based link correlation measurement (BCM).
The inaccuracy of BCM may balance out the benefits of considering link correlation. Moreover, the
measurement itself incurs considerable overhead. Our proposed LACE approach can be employed by all
of these works, providing more accurate and lightweight link correlation estimation, further improving
the protocol performances.

3. Main Design

In this section, we give the main design of LACE.

3.1. Overview

Our key idea comes from the observation that data and beacon capture totally different interference
and noise patterns, and the statistical approach lacks short-term estimation.

At a high level, the proposed link correlation estimation has two main parts, as shown in Figure 2:
long-term estimation and short-term estimation. Long-term estimation comes from the statistics of
historical packet receptions and losses. Short-term estimation comes from the modeled relationship
between SINR values and expected link correlation (Section 3.2). Then, we integrate the long-term
and short-term link correlation with a weighting factor α. When used for large batches of packet
transmissions, we use a large α value to represent long-term link correlation; when used for a single
packet or a small number of packet transmissions, we use a small α value to represent short-term link
correlation. We first give the notations used in this section in Table 1.

3.2. LACE Measurement

We use a simple example as follows to illustrate the workflow of LACE. S periodically transmits
data packets to its downstream nodes, A and B. When receiving the data packets, A and B record the
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packet receptions/losses from S in bitmaps, with a “1” denoting a packet reception and a “0” denoting a
packet loss. At the same time, A and B record the noise and interference, as well as the received signal
strength of S’s transmissions. Furthermore, periodically, receivers A and B reply the bitmaps, the noise
and interference traces and the signal power traces back to node S, such that S is able to calculate link
correlation CS

A,B as follows:
cSA,B = α · chSA,B + (1− α) · ciSA,B (1)

where chSA,B is the historical correlation value (estimated from the bitmaps), ciSA,B is the instant
correlation value (estimated from the PHY layer information) and α is a weighting factor. When
α is large, long-term estimation is weighted more, while when α is small, short-term estimation is
weighted more.

Data reception/

loss traces
PHY information

Long term result Short term result

Integrated result 

(LACE)

Statistical Modeling

Figure 2. Lightweight and accurate link correlation estimation (LACE) overview.

Table 1. Notations.

Notations Descriptions

cSA,B The link correlation between S→A and S→B
chSA,B The link correlation value calculated with the data packet trace
ciSA,B The instant correlation value derived from the PHY information

ctSA,B(k) The link correlation value with kcommon receptions
bA[i] The i-th bit in A’s bitmap

R(nr = k) The probability with k common packet receptions
pSA(i) Packet reception rate of link S→A
esSA symbol error rate
ecSA chip error rate

Long-term estimation: With the bitmaps from A and B, S can calculate chSA,B as:

chSA,B =

∑n
i=1(bA[i]&bB[i])∑n

i=1 bB[i]
(2)

where & denotes the bitwise AND operation and bA[i] denotes the i-th bit in A’s bitmap bA. There are
different link correlation metrics [13,16,17], and the above equation essentially calculates the metric
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of the conditional packet reception probability. Different upper layer protocols may require different
correlation metrics. It is worth noting that we can support all of the metrics for calculating packet
reception/loss correlations. For example, the metric of conditional packet loss probability can be
calculated as: chSA,B =

∑n
i=1(¬bA[i]&¬bB [i])∑n

i=1 ¬bB [i]
where ¬ is the bitwise negation operation.

The calculation is similar to the BCM approach. The difference with BCM is that: (1) the bitmaps
are recorded for data packet receptions/losses, which are representative of data plane link correlation (as
discussed in Section 2, it is the true reflection of the correlations of data packet receptions and losses);
(2) the use of data receptions and losses eliminates the need for extra periodic beacon messages, which
greatly reduces the transmission overhead; and (3) it is also worth noting that there are also cons to our
approach. Our approach can yield accurate link correlation estimation only when there are periodic data
packets. When there are few or even no data packet transmissions, our approach cannot work well, since
there are no data traces.

Short-term estimation: Next, we use RSSI to infer the instant link quality of the two links and further
estimate the short-term link correlation. When estimating the short-term link correlation with m packet
transmissions, we can calculate ciSA,B as:

ciSA,B =
m∑
k=0

ctSA,B(k) ·R(nr = k) (3)

where ctSA,B(k) is the link correlation value with k common packet receptions among m packets, and
R(nr = k) denotes the probability with k common packet receptions. ctSA,B(k) is given by:

ctSA,B(k) =
k

m∑
j=1

pSB(j)
(4)

where k denotes the number of common packet receptions and pSB(j) denotes the j-th packet reception
probability. The denominator calculates the expected number of receptions by node B.
R(nr = k) is calculated as the average probability with k common packet receptions on both links:

R(nr = k) =

∑
∀Sk∈Sm

(
k∏

j=1
pSA(j) · pSB(j)

m∏
j=k+1

(1− pSA(j) · pSB(j)))(
m
k

) (5)

where Sk denotes the set of k common packet receptions, Sm denotes the set of m packets and pSB(k)

denotes the k-th packet reception probability.
k∏

j=1

pSA(j) denotes the probability of k common packet

receptions.
m∏

j=k+1

(1−pSA(j)·pSB(j)) denotes the probability that the otherm−k packets have no common

packet receptions. For one packet transmission, the probability that both receivers receive the packet is
simply the multiplication of the two packet reception rates of the two links. The reason is that from
the PHY layer, a packet’s reception depends only on the SINR (signal-to-interference and noise ratio).
When two links have a high correlation, this means they have high fractions of common receptions.
However, the receptions on one link do not depend on the other link. Therefore, a packet’s receptions on
two links are independent of each other. There are

(
m
k

)
different cases with k common packet receptions.

Therefore, in total, R(nr = k) is the expected probability with k common packet receptions.
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The above calculation relies on the packet reception probability (pSA and pSB). pSA(i) is estimated from
the SINR value for packet i and is given according to [24]:

pSA(i) =
2l∏
j=1

(1− esSA(i, j)) (6)

The PHY layer is based on direct sequence spread spectrum (DSSS) technology employing offset
quadrature phase-shift keying (O-QPSK) modulation. One byte is translated into two symbols, and one
symbol is translated into 32 chip-long pseudo-random noise sequences [24]. Then, esSA(i) is given by:

esSR1(i, j) =

32∑
n=1

(
32

n

)
(ecSR1(i, j))

n(1− ecSR1(i, j))
32−n × Psymerr(n) (7)

where ecSA(i, j) is the chip error rate for symbol j in packet i, supposing the chip error rates are identical
to the symbols. ecSA(i) is given by:

ecSR1(i, j) =
1

2
(1−

√
SrSR1(i, j)

1 + SrSR1(i, j)
) (8)

where SrSR1(i, j) denotes the j-th SINR sample (identical to a symbol) within packet i.
With the above equations, we are able to estimate ciSA.

3.3. Practical Issues

To implement LACE on sensor nodes, we have several practical issues to tackle.
Reducing complexity: According to the above equations, we can see that to calculate the short-term

link correlation, the computational complexity is O(2m), which is high for sensor nodes. Apparently,
there is a tradeoff between the accuracy and the complexity. To reduce the overhead, we do not calculate
the average for all samples. Instead, we generate several bitmaps according to the m packet reception
ratios (derived from Equation (6)) and calculate the average value of the generated bitmaps. We introduce
a δ factor, which is the number of bitmap generations to calculate in Equation (5). Intuitively, when δ
is large, more bitmaps are generated for calculation; the result will be more accurate, but the overhead
will increase. Otherwise, the result will be less accurate, and the overhead will decrease. Therefore, for
resource-constrained platforms, delta should be set small; for more powerful devices, delta should be set
large. For example, when δ = 1, R(nr = k) is calculated as:

R(nr = k) =
k∏

j=1

pSA(j) · pSB(j)
m∏

j=k+1

(1− pSA(j) · pSB(j)) (9)

for randomly selected k common packet receptions. Then, the calculation complexity can be reduced to
O(m2), which is much more practical for resource-constrained sensor nodes.

To find an appropriate δ value, we conduct multiple experiments with varying δ values on the TelosB
platform [25]. Our experimental results show that δ = 5 achieves accuracy over 70% with only a 1.506-ms
delay. For more powerful devices, such as iMote [26], or in delay-tolerant application scenarios, δ can
be set larger to achieve more accurate estimation.
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Bitmap issues: As described above, the bitmaps are recorded at receivers and returned to the senders.
There are two key issues: First, bitmaps at different receivers should be aligned with the same time
offset. We use 32-bit length bitmaps to record the latest 32 received/lost data packets. However, the
lost packet is indirectly identified (using the sequence number difference), i.e., when a receiver loses a
packet, it can identify this packet loss only when it receives a new packet in the future. As a result, at
the time when a node loses a packet, its bitmaps are not updated until the next packet reception. Further,
bitmaps of different receivers may record different sets of packet transmissions, and the calculated link
correlation would be meaningless (as shown in the example of Figure 3).

S

A

1110101011 11100111xx

B

Figure 3. An example for bitmap aligning.

For example, sender S transmits 10 packets; node A receives 1,2,3,5,7,9,10, and node B receives
1,2,3,6,7,8. If we set the bitmap length as five and collect the bitmaps after the time of the 10th packet
transmission, the bitmaps of A and B will be 01011 and 00111. Clearly, node B’s bitmap does not record
the latest five packets (6–10); instead, it records Packets 4–8. The reason is that it is unaware of Packet 9
and 10’s transmissions.

To solve this inconsistency, we add a initial offset at the beginning of each bitmap to indicate the
start position of the bitmap. With the offset, the sender can align the bitmaps and calculate the link
correlation. We use the same example as the above to illustrate how this works: When node A and B
prepare to return the bitmaps, they add the start positions. Then, S receives two vectors, 6|01011 and
4|00111. Now, S uses the common parts of the bitmaps (010 and 111 for Packets 6–8, respectively) to
calculate link correlation ch according to Equation (2).

The second issue is the length of bitmaps: when the bitmap is long, it can represents more long-term
link behavior, but requires more memory overhead. Considering that the TelosB platform has only
10 KB RAM and that the packet payload length is no longer than 114 bytes, we set the length of
bitmaps according to the neighbor size: When a node has many neighbors, it uses short bitmaps to
save memory/transmission overhead. When a node has a small number of neighbors, it uses large
bitmaps for more accurate estimation. In our experiment, we use 32-bit length bitmaps to record the
packet receptions.
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3.4. Tuning α

As discussed above, we use a weighting parameter α to calculate the integrated correlation metric.
When α is large, the history correlation is estimated with more weight; When α is small, the instant
correlation is estimated with more weight. If the packet is received/lost at both receivers, we mark the
ground truth of link correlation as 1; if the packet is received at only one receiver, we mark the ground
truth as 0.

We record the ground truth and adaptively tune α for more accurate link correlation estimation. The
intuition is that the correlation value close to the ground truth should be more weighted: If the ground
truth of packet link correlation is 1, we increase the weight of max(ch,ci). If the ground truth of packet
link correlation is 0, we increase the weight of min(ch,ci). For example, with ch = 0.9, ci = 0.5 and
α = 0.5. If the received packets are the same, which means the instant correlation is 1 for the packet, we
increase α by inc, since the ch value is closer to 1. Note that the increased value inc can also be tuned:
α with a large inc is more sensitive to the estimation results, while α with a small inc is more accurate.
Finding a theoretical optimal α will be studied in future works.

4. Evaluation

Before presenting the evaluation results, we first show the benefits of considering link correlation
in flooding and opportunistic routing, using a simple example with one sender and two receivers. The
packet reception rates on both links are 0.5. (1) For flooding, the sender tends to deliver a number of
packets (say, 10 packets) to the two receivers. After the first round of transmission, both links have
lost five packets. With positively correlated links, the five lost packets on each link will be the same,
and the sender needs to retransmit only five packets. However, with negatively correlated links, the five
lost packets on each link will be different, and the sender needs to retransmit 10 packets (five packets
for each receiver). We can see that, if we select the senders with positive correlation for flooding, the
transmissions will be saved [17]; (2) For opportunistic routing, the sender tends to deliver a packet to
at least one node of its receivers. With one packet transmission, if the links are positively correlated,
there is a 50% probability that both links lose the packet. However, if the links are negatively correlated,
i.e., when a receiver loses a packet, the other receives the packet, we can infer that at least one node can
receive the packet. Thus, if we select the senders with negative correlated links for opportunistic routing,
the performance will be improved [15].

We can infer that if link correlation is inaccurately measured, the above benefits will degrade.
Therefore, by improving the estimation accuracy, LACE could be used for further improving the protocol
performance of flooding and opportunistic routing.

To study the effect of LACE on protocol performance, we implement a stand-alone interface of
LACE in TinyOS on TelosB motes. We first test the accuracy of link correlation estimation in
TOSSIMsimulation with a 10 × 10 network (the “Meyer-heavy” noise trace is used and the gain of
each link is randomly set in range of [−95,−70] dbm). Next we incorporate LACE into existing network
layer protocols (a link correlation-aware opportunistic routing [15] and a reliable multi-message flooding
(dissemination) protocol (CoCo) [17]) to study the performance improvements. Our 4 × 10 testbed is
used for real motes’ evaluation.
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4.1. The Accuracy of LACE

To study the estimation accuracy of LACE, we use the link correlation calculated with actual data
traces as the ground truth: If the two links receive/lose a packet at the same time, the instant correlation
is 1. Otherwise, the link correlation is 0. We use LACE to measure the link correlation before each packet
transmission and study its accuracy compared to the above ground truth. For example, if the estimated
link correlation is 0.8 and the packet is received by both links, the accuracy is 0.8; if the estimated link
correlation is 0.8 and the packet is not received by both links (at least one receiver loses the packet), the
accuracy is 1 − 0.8 = 0.2.

We conduct the experiment 100 times and then calculate the average accuracy for all packet
transmissions. Figure 4a depicts the estimation accuracy of LACE. We can see that for low and high
link correlation, the LACE accuracy is high, while for intermediate link correlation links, the LACE
accuracy is relatively low. This is due to the conditional probability-based link correlation metric having
a PRR (packet reception ratio) bias: when the two links have both low/high PRR, the probability that
they receive the packet at the same time will also be low/high. As a result, when links are high or low,
the estimated link correlation is more accurate. For intermediate links (PRR around 0.5), the estimated
ci will be around 0.25. However, the actual link correlation with two 0.5 links can be any value from
0∼1. The error is more likely to be large.
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Figure 4. Accuracy of link correlation estimation. (a) Average estimation accuracy;
(b) Variability of estimation errors.

The reason for the above bias is the use of the average or the lack of a statistical distribution for
link correlation. As discussed in Section 2.2 and in [21], the link correlation variation depends on the
background noise and interference patterns. Under different environments, the interference patterns will
be different. Thus, we can infer that the link correlation distributions will also be different with different
environments. We expect that with a given distribution, the estimation accuracy can be further improved.
We would like to study the model and distribution of link correlation in our future works.
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LACE is more accurate than beacon-based link correlation estimation (BCM). The reason is that
LACE extracts the link correlation directly from the data packet receptions. Due to the difference of data
and beacon packets, the beacon-based methods suffer from large estimation errors.

Figure 4b shows the cumulative distribution function (cdf) of the estimation accuracy of LACE
and BCM. We can see that when using LACE, about 60% of the estimations have errors under 0.2.
While using BCM, only about 25% of the estimations have errors under 0.2. The reason is two-fold:
(1) LACE directly uses data packet receptions/losses, which are more likely to capture the noise and
interference patterns experienced by periodic packet transmissions; and (2) LACE uses short-term PHY
layer information for calibration.

4.2. Testbed Results of Protocol Performance

In this section, we study the protocol performance of opportunistic routing (CAOR [15]) and flooding
(CoCo [17]) with LACE.

Figure 5 shows the delay comparison of LACE-CAOR and the original CAOR with BCM. The delay
here denotes the time from the transmission of a packet to the reception of the packet at the destination
node. We can see that LACE-CAOR’s routing delay is less than CAOR. Though the same routing
strategies are used in CAOR and LACE-CAOR, the measured/estimated link correlation is different.
With a more accurate estimation, LACE-CAOR is able to find network neighborhoods with much
spatial diversity, while CAOR’s routing decisions actually find neighborhoods with less spatial diversity.
More specifically, the performance improvement is larger in Channel 16 than in Channel 26. The reason
is that Channel 16 is has more severe interference from WiFi traffic and has a stronger link correlation
than Channel 26. There are inherently fewer neighborhoods with a weak link correlation in Channel
16 than in Channel 26. As a result, the identification of weak link correlation areas can contribute
more to the end-to-end delay performance in Channel 16. On the other hand, most neighborhoods in
Channel 26 have weak link correlations, and the BCM-based method can also find a weak link correlation
neighborhood. The performance improvement then becomes less.
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Figure 5. Delay performance evaluation with CAOR [15].
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Figures 6 and 7 evaluate the performance of CoCo and LACE-CoCo. Figure 6 shows the
measurement/estimation accuracy of LACE and BCM. We can see that: (1) as expected, LACE is more
accurate than BCM; and (2) the accuracy difference is much larger than that in Figure 4b. The reason
is that LACE-CoCo aims to disseminate multiple packets, which increases the number of samples for
calculating long-term link correlation (while in CAOR, only one packet is transmitted at a time). Since
there are more historical traces, the ch part can be estimated more accurately. On the other hand, BCM
performs similar under different data trace situations.
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Figure 6. Estimation accuracy with CoCo [20].
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Figure 7. Performance evaluation with CoCo [20].

Figure 7 shows the protocol performance of CoCo and LACE-CoCo. We can see that: (1)
LACE-CoCo greatly outperforms CoCo; (2) the improvement is much larger than the improvement
in CAOR. The reason is that link correlation in the scenario of multi-message flooding is estimated
more accurately. Thus, the desired link correlation can be more accurately identified. Since there are
multiple packets to transmit, the α is tuned large, containing a more long-term result, which is more
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stable than the short-term result and is more error-tolerate. (3) The improvements in both channels are
similar. The reason is that in CoCo, all network nodes should eventually receive the broadcast packets.
Thus, all network neighborhoods can be effective during the transmission progress, and there are more
useful routing decisions. While in CAOR, only the nodes on a certain path are used, and there is more
performance variation in OR than in multi-message flooding.

5. Conclusions

In this paper, we investigated the state-of-the-art approaches of link correlation measurement and
proposed a novel link correlation estimation framework (called LACE). Compared with existing
beacon-based approaches (BCM), LACE: (1) directly uses data packet receptions for link correlation
calculation; and (2) considers both historical data and the instant SINRs. Therefore, LACE provides
more accurate link correlation estimation. Moreover, due to the elimination of beacon messages, LACE
is much more lightweight than BCM. Experimental results show that LACE achieves more accurate link
correlation estimation and improves the performance of existing correlation-based protocols. The future
direction lies in finding a theoretical optimal tradeoff between the historical correlation value and the
instant value to meet various requirements from upper-layer protocols.
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