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Abstract: This paper presents a novel algorithm for the localization of mixed far-field 

sources (FFSs) and near-field sources (NFSs) without estimating the source number. Firstly, 

the algorithm decouples the direction-of-arrival (DOA) estimation from the range estimation 

by exploiting fourth-order spatial-temporal cumulants of the observed data. Based on the 

joint diagonalization structure of multiple spatial-temporal cumulant matrices, a new  

one-dimensional (1-D) spatial spectrum function is derived to generate the DOA estimates 

of both FFSs and NFSs. Then, the FFSs and NFSs are identified and the range parameters of 

NFSs are determined via beamforming technique. Compared with traditional mixed sources 

localization algorithms, the proposed algorithm avoids the performance deterioration 

induced by erroneous source number estimation. Furthermore, it has a higher resolution 

capability and improves the estimation accuracy. Computer simulations are implemented to 

verify the effectiveness of the proposed algorithm. 

Keywords: sensor array signal processing; DOA estimation; far-field; near-field; source 

localization; range estimation; fourth-order cumulants 
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1. Introduction 

Source localization has received considerable attention in sensor array signal processing over the past 

decades [1]. Most of the existing algorithms concentrate on far-field sources (FFSs), whose wavefronts 

are plane waves. Many high resolution algorithms have been proposed for the direction-of-arrival (DOA) 

estimation under the far-field assumption, such as the multiple signal classification (MUSIC) method [2], 

the estimation of signal parameters via rotational invariance technique (ESPRIT) [3], and their 

derivatives [4–6]. However, in many practical applications, the radiating sources may lie in the Fresnel 

region of the array [7], which is defined as [0.62(D2/λ)½, 2D2/λ] where  is the wavelength of the 

sources and D symbolizes the array aperture. In this region, the spherical wavefronts are characterized 

by both DOA and range parameters [8]. Consequently, traditional FFS DOA estimation algorithms are 

no longer applicable for near-field sources (NFSs) localization. Fortunately, many advanced algorithms 

have been proposed for NFSs localization, including the 2-D MUSIC algorithm [8], the covariance 

approximation (CA) method [9,10], the weighted linear prediction method [11], and the rank-reduction 

(RARE) type algorithms [12–14]. 

Moreover, both FFSs and NFSs may coexist in many situations of interest, such as seismic 

exploration, electronic surveillance and speaker localization using microphone arrays. Most of the 

algorithms which deal with pure FFSs or pure NFSs, may fail in the scenarios of mixed sources. 

Accordingly, there has been an increasing interest in mixed sources localization. A two-stage MUSIC 

(TSMUSIC) algorithm [15] is firstly developed to localize mixed FFSs and NFSs. Based on fourth order 

cumulants, the TSMUSIC algorithm can successfully estimate the parameters of mixed sources. 

However, its computational complexity is high due to the construction of high order cumulant matrices. 

To relieve the computational burden, an efficient oblique projection MUSIC (OPMUSIC) algorithm is 

proposed in [16], which only utilizes second-order statistics. However, this algorithm suffers from severe 

array aperture loss. In [17], a low-complexity ESPRIT algorithm is advanced to locate the mixed  

far-field and near-field cyclostationary sources. Yet, array aperture loss and reduced range estimation 

accuracy are two slight limitations of this method. In [18], the authors extend the array aperture by 

utilizing a special nested sparse linear array, which can improve the estimation accuracy. Unfortunately, 

the range estimation suffers from spurious peaks problem in this scheme. Based on the generalized 

ESPRIT (GESPRIT) algorithm [19], many algorithms have been proposed to localize mixed  

sources [20–23]. In [22], the related far-field components are eliminated from the signal subspace to 

improve the estimation accuracy. But its far-field component elimination technique would bring extra 

estimation errors. A covariance differencing method is proposed in [20,21] to generate more reasonable 

classification of the source types. Based on ESPRIT-Like and polynomial rooting, an efficient mixed 

sources localization algorithm is presented in [23]. However, for these GESPRIT-based algorithms, the 

number of NFSs they can resolve is less than half of the number of array sensors [24]. In [25–27], the 

authors utilize the sparse signal recovery technique for mixed sources localization, which provide 

improved estimation accuracy. The algorithms in [26,27] are based on the construction of fourth order 

cumulant matrices and vectors, whereas the anti-diagonal elements of the second-order array covariance 

matrix is exploited in [25]. However, these sparse-recovery-based algorithms call for an enormous 

amount of computations. Besides, the regularization parameter that balances the tradeoff between 
Frobenius norm and  norm is difficult to determine.  

λ
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Note that all of the previous algorithms are based on linear array configurations which assume that 

the array sensors are placed along the y-axis and the sources are located in the y-z plane. Therefore, only 

two-dimensional (2-D) parameters (elevation angles and ranges) need to be estimated. Recently, some 

methods are developed to localize mixed sources in the three-dimensional (3-D) space, which is 

characterized by range, azimuth angle and elevation angle. For these algorithms, the geometric structure 

of the array is critical for the localization performance. Based on a cross array, the authors in [28] have 

decoupled the 3-D parameters estimation problem into one-dimensional (1-D) spectral functions in three 

stages. Also, a separated steering vector-based algorithm is proposed in [29] using cross array 

configuration. In [30], spherical microphone arrays are utilized for 3-D localization. By exploiting the 

recurrent relation between spherical harmonics, the DOAs are obtained from ESPRIT-like approach and 

the ranges are determined by 1-D MUSIC spectral search. 

However, all of the abovementioned methods are based on subspace decomposition, which requires 

exact determination of the source number. Although some designed criteria, such as the Akaike 

information criterion (AIC) [31] and the minimum description length (MDL) detection criterion [32], 

can be used to estimate the source number, they tend to generate erroneous estimates of the number of 

sources under the condition of low signal-to-noise ratio (SNR) and small sample size [33]. Furthermore, 

most of these methods need that both the number of FFSs and the number of NFSs are known or correctly 

estimated, which is an even more difficult task in practical applications. If the source enumeration of the 

FFSs or the NFSs is incorrect, these subspace based methods will suffer from performance deterioration 

induced by underestimation as well as overestimation of the subspace dimension. 

In view of the previous analyses, the mixed sources localization problem is faced with the following 

main difficulties: (1) being able to localize mixed sources successfully with unknown source number;  

(2) reasonable classification of FFSs and NFSs; (3) avoiding multidimensional search; (4) alleviating 

aperture loss; (5) avoiding parameter matching. 

Aiming at addressing the abovementioned difficulties, we propose in this paper a novel localization 

algorithm for mixed FFSs and NFSs. Firstly, we construct multiple fourth-order spatial-temporal 

cumulant matrices, which only depend on the DOA information. Based on the joint diagonalization 

structure of these matrices, a novel 1-D spatial spectrum function is derived to generate the DOA 

estimates of both FFSs and NFSs. Then, with the DOA estimates, the range parameters are obtained and 

automatically paired via beamforming technique. Also, the types the sources are reasonably identified. 

Compared with the traditional methods, the proposed one does not require the knowledge of the source 

number, and therefore prevents the performance deterioration induced by erroneous source enumeration. 

In addition, our method avoids multidimensional spectral search and aperture loss. Moreover, both the 

temporal and spatial structures of the observed data are utilized in our method, which also contribute to 

the improvement of resolution ability and estimation accuracy. Due to the linear array configuration, our 

algorithm is limited to localize mixed sources only in the 2-D domain (elevation angle and range). To 

address the azimuth-elevation-range (3-D) localization problem, we can extend the proposed algorithm 

by applying planar arrays, such as cross array, rectangular array and circular array. 

The rest of the paper is organized as follows: Section 2 introduces the signal model of mixed FFSs 

and NFSs. The proposed method is described in Section 3. In Section 4, we reveal a relationship between 

TSMUSIC and the proposed method. Section 5 presents a comparison among TSMUIC, OPMUSIC and 
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the proposed algorithm. In Section 6, simulations are conducted to validate the performance of  

our method. We conclude this paper in Section 7. 

Throughout the paper, the complex conjugate, transpose, Hermitian transpose, pseudo inverse are 

denoted by (•)*, (•)T, (•)H and (•)†, respectively. Im represents a m m×  identity matrix, and 0m,n is a m n×  

zero matrix. 

2. Problem Formulation 

Consider K independent narrowband sources (near-field or far-field) sensed by a symmetric uniform 

linear sensor array (ULSA), which is composed of 2M + 1 omnidirectional sensors, as shown in Figure 1. 

All of these sensors are placed along the y-axis, with the inter-element spacing being d. Moreover, we 

assume that the impinging signals are in the y-z plane. As shown in Figure 1, the azimuth angles of 

impinging sources become 90° in this scenario, therefore, only the elevation angles and ranges need to be 

estimated. However, the proposed algorithm can be easily extended to address azimuth-elevation-range 

(3-D) localization problem by utilizing planar arrays or placing additional sensors along the x-axis. 

The present signal model involves K1 sources in the far-field and the rest K2 sources in the near-field, 

where K2 = K − K1. 

kθ
kr

M− 1− 0 1

d
x

z

M y

 

Figure 1. Symmetric uniform linear sensor array (ULSA) configuration for the proposed algorithm. 

With the array center being the phase reference point, the data observed by the mth sensor at time 

index t has the following form: 

( ) ( ) ( )
1

mk

K
j

k m
k

m t s t tx e nτ

=

= +  (1)

where ( )ks t  is the kth source signal, ( )mn t  represents the mth sensor noise, mkτ  is the phase shift 

associated with the kth source propagation time delay between the reference sensor and the mth sensor, 

which is of the form: 

2
2 2 sin

1 1k k
mk

k k

r mdmd

r r

π θτ
λ

   = + − −    
(2)

where λ  is the source wavelength. It is obvious that the phase shift mkτ  is a nonlinear function of the 

DOA parameter kθ  and the range parameter kr . As a result, traditional FFS DOA estimation algorithms 

are no longer applicable. If the kth source is in the near-field, mkτ  can be approximated as: 
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2
mk k km mτ α β≈ +  (3)

herein, kα  and kβ  are so-called electric angles given by [8]: 

2
sink k

dπα θ
λ

= − , 
2

2cosk k
k

d

r

πβ θ
λ

=  (4)

Note that, for the FFSs, the second term kβ  is approximated by zero and the associated range 

parameter kr  is assumed to be ∞. 

In a matrix form, the array output vector x(t) can be modeled as: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0

1

, , , ,

, ( )

T

M M

K

k k k
k

t x t x t x t

r s t t

t t

θ

−

=
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= +

= +



x

a n

As n

 

 (5)

where s(t) is the 1K ×  signal vector of the K sources: 

( ) [ ]1( ), , ( ), , ( )
T

k Kt s t s t s t=s    (6)

n(t) is the (2 1) 1M + ×  sensor noise vector: 

 (7)

A is the (2 1)M K+ ×  steering matrix: 

( ) ( ) ( ) ( )0, , , ,
T

M Mt n t n t n t−=   n    (8)

with ( ),k krθa  being the steering vector of the kth source: 

( ) ( ) ( )2 2

, , ,1, ,k k k k

T
j M M j M M

k kr e e
α β α βθ − + + =   

a    (9)

Given the observed array data, a novel algorithm is proposed in Section 3 to localize and distinguish 

the mixed sources successfully, under the following hypotheses. 

(1) The DOA parameters , 1, ,k k Kθ =   are distinct; 

(2) The incoming signals are mutually independent, narrowband stationary, and non-Gaussian, 

having nonzero fourth-order cumulants; 

(3) The noise is zero-mean, additive (white or color) Gaussian, and statistically independent from 

all impinging sources; 

(4) In order to avoid the phase ambiguity, the inter-sensor spacing d should be within a  

quarter wavelength. 

3. The Proposed Algorithm 

3.1. Construction of the Spatial-Temporal Fourth-Order Cumulant Matrices 

In this subsection, we apply the fourth-order cumulants to construct multiple spatial-temporal 

cumulant matrices. Due to the high degrees of freedom (DOF) available from cumulants, the resultant 
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cumulant matrices are able to decouple the DOA estimation from the range estimation. Moreover, the 

array aperture size is fully utilized in these cumulant matrices so that the aperture loss problem  

is circumvented. 

According to the definition in [34], at time lag τ , the fourth order spatial-temporal cumulant of the 
array outputs ( )mx t τ− , ( )nx t , ( )px t , ( )qx t  can be written as: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
( ) ( )

2 2 2 2

2 2 2 2

* *

* *

1 1 1 1

* *

1

4,

cum , , ,
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cum , , ,
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k k k k k k k k

k k

k

m n p q

K K K K
j m m j n n j p p j q q

k k k k
k k k k

K j m q n p m q n p

k k k k
k

j m q n p m
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s t e s t e s t e s t e

e s t s t s t s t
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1

k
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

 

(10)

where , , , [ , ]m n p q M M∈ − , { }* *
4, ( ) ( ), ( ), ( ), ( )sk k k k kc cum s t s t s t s tτ τ= −  is the fourth-order cumulant of 

the kth source signal sk(t). For a given time lag τ , a ( ) ( )2 1 2 1M M+ × +  fourth-order cumulant matrix 

( )4x τC  can be constructed, with its ( )1, 1m M n M+ + + + th element being: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( )2* *
4, , 4,

1

cum , , , k

K
j m n

m n m m n n sk
k

c x t x t x t x t c e ατ τ τ −
− −

=

= − =  (11)

Assuming that the source cumulants 4, ( )skc τ  are nonzero for L different time lags lτ (1 l L≤ ≤ ),  

we can formulate L fourth-order spatial-temporal cumulant matrices, which can be expressed in a  

matrix form: 

( ) ( ) ( ) ( ) ( )4 4 4,
1

K
H H

x l s l sk l k k
k

cτ τ τ θ θ
=

= =C AC A a a ,   1, ,l L=   (12)

where 4 4, 1 4,( ) [ ( ), , ( )]s l s l sK ldiag c cτ τ τ=C   is a K K×  diagonal matrix, ( ) ( )1 , , Kθ θ=   A a a  is the 

(2 1)M K+ ×  virtual steering matrix, and 2 2( 1) 2( 1) 2( ) [ , , ,1, , , ]k k k kj M j M j M j M T
k e e e eα α α αθ − − − −=a    is the 

(2 1) 1M + ×  virtual steering vector. It is noteworthy that, in the cumulant domain, the observed NFSs 

are transformed into virtual FFSs, since the cumulant matrices ( )4x lτC  (1 l L≤ ≤ ) only contain the  

DOA information. 

3.2. DOA Estimation without Knowledge of Source Number 

From Equation (12), it is evident that each of the L spatial-temporal cumulant matrices spans the same 

column space with that of the virtual steering matrix A . Therefore, with the joint diagonalization 

structure of the multiple cumulant matrices, we can utilize these matrices simultaneously to identify the 

column space of A  and generate the DOA estimates of the mixed sources. 
For the kth source, one can always find a vector 2 1M

k
+∈b C  which is orthogonal to the range space 

spanned by the virtual steering vectors except ( )kθa , i.e.: 
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( ) ( ) ( ) ( ){ }1 1 1, , , , ,k k k Kspan θ θ θ θ− +⊥b a a a a   (13)

and the following notation can be equally used: 

( ) ( )
0

H
H k k

i k

i k

i k

θθ
=

=  ≠

a b
a b  (14)

Substituting Equation (14) into Equation (12) leads to: 

( ) ( ) ( ) ( ) ( )4 4,
1

K
H

x l k si l i i k l k
i

c dτ τ θ θ θ
=

= =C b a a b a  (15)

where ( ) ( )4,
H

l sk l k kd c τ θ= a b  is a scalar. This equation reveals that if the variable θ  equals to one of 

the sources’ DOAs, there always exists a scalar ld  that makes ( )4 x lτC b  and ( )θa  colinear. Note that 

Equation (15) applies to all time lags lτ (1 l L≤ ≤ ). Consequently, we can transform the DOA estimation 

problem into the following optimization problem: 

( ) ( ) ( ) 2

4
1

min , ,

s.t. 1

L

x l l
l

J d
θ

θ τ θ
=

= −

=

b d C b a

d

 (16)

where θ  is the DOA parameter of interest, 2 1M +∈b C  and 1[ , , ]T L
Ld d= ∈d  C  are the nuisance 

parameters. In order to avoid the trivial solution {b=0, d=0}, the constraint 1=d  is added. 

From Equation (16), it is obvious that the computational complexity of this estimator is prohibitive 

when b and d are unknown. Therefore, to decrease the computational load, we first decouple the DOA 

parameter θ  from other parameters, where only 1-D spectral search is required. 

The objective function in Equation (16) can be expanded as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 4 4
1 1

2*
4

1 1

, ,
L L

H H H H
x l x l l x l

l l

L L
H H

l x l l
l l

J d

d d

θ τ τ τ θ

θ τ θ θ

= =

= =

   = −   
   

 − + 
 

 

 

b d b C C b b C a

a C b a a

 (17)

Let:  

( ) ( ) ( ) ( )2 1 2 1
4 4

1

L
M MH

x l x l
l

τ τ + × +

=

= ∈C C C C  (18)

( ) ( ) ( ) ( ) ( ) ( )2 1
4 1 4, , M LH H

x x Lθ τ θ τ θ + × = ∈ Q C a C a C  (19)

In view of that 
2

1
1

L

ll
d

=
= = d  and ( ) ( ) 2 1H Mθ θ = +a a , ( ), ,J θ b d  in Equation (17) can be 

rewritten as: 

( ) ( ) ( ), , 2 1H H H HJ Mθ θ θ= − − + +b d b Cb b Q d d Q b  (20)

In order to decouple the nuisance parameter b from the objective function, we set the partial derivative 

of ( , , )J θ b d  with respect to b be zero, i.e.: 
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( ) ( )( ) 2 1

, ,
2 M

J θ
θ +

∂
= − =

∂
b d

Cb Q d 0
b

 (21)

which yields: 

( )†
opt θ=b C Q d  (22)

Substituting Equation (22) into Equation (20), the optimization problem without the nuisance 

parameter b is of the following form: 

( ) ( ) ( )†min , 2 1

s.t. 1

H HJ Mθ θ θ= + −

=

d d Q C Q d

d
 (23)

Apparently, the objective function in Equation (23) is equivalent to maximizing ( ) ( )†H H θ θd Q C Q d  

with respect to d. Suppose the eigenvalue decomposition (EVD) of ( ) ( )†H θ θQ C Q  produces: 

( ) ( )
2 1

†

1

M
H H

m m m
m

θ θ λ
+

=

= Q C Q v v  (24)

where 1 2 1Mλ λ +≥ ≥  are the eigenvalues arranged in the descend order, and , 1, ,2 1m m M= +v   are 

the corresponding eigenvectors. Accordingly, the maximum value of ( ) ( )†H H θ θd Q C Q d  is given by: 

( ) ( ){ }
2 1 2 1 2†

1
1 1

max max max
M M

H H H H H
m m m m m

m m
θ θ θ

θ θ λ λ λ
+ +

= =

   = = =   
   
 d Q C Q d d v v d d v  (25)

The last equation holds when 1=d v  is the eigenvector corresponding to the maximum eigenvalue of 

( ) ( )†H θ θQ C Q , which is 1λ . Therefore, the estimation of DOA is further simplified as: 

( ) ( ) ( )( )†min 2 1 max eig HJ Mθ θ θ= + − Q C Q  (26)

Herein, ‘max eig’ stands for the maximum eigenvalue of a square matrix. Consequently, the DOA 

estimates of the mixed sources can be obtained from the highest peaks of the following 1-D spectral function: 

( ) ( ) ( )( )†

1

2 1 max eig H
P

M
θ

θ θ
=

+ − Q C Q
 (27)

3.3. Range Estimation and Source Classification  

In order to circumvent the source number enumeration, the minimum variance distortionless response 

(MVDR) beamformer [35,36] is utilized in this subsection for the range estimation problem. The output 

power spectrum of the MVDR beamformer is: 

( ) ( ) ( )1

1
,

, ,MVDR H
P r

r r
θ

θ θ−=
a R a

 (28)

where { ( ) ( )}HE t t=R x x  is the second-order array covariance matrix. With the DOA estimates obtained 

in the previous subsection, the 2-D spectrum search over the DOA-range plane could be reduced to 1-D 

search on the range domain. Therefore, by substituting the estimated DOA k̂θ  back into Equation (28), 

the range kr  can be obtained as: 
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( ) ( )1

1
ˆ max

ˆ ˆ, ,
k Hr

k k

r
r rθ θ−

=
a R a

 
(29)

Since the NFSs lie in the Fresnel region, r is searched over [0.62(D2/λ)½, 2D2/λ]. If the estimation k̂r  

is in the Fresnel region, the corresponding source is identified as a near-field one; otherwise, it is 

determined to be in the far-field. Note that, in this procedure, the DOA estimation and range estimation 

are automatically paired without any additional operation. 

3.4. Implementation of the Proposed Algorithm 

Based on the above analyses, the implementation of the proposed algorithm is summarized as follows: 

Step 1. Calculate the L fourth-order spatial-temporal matrices ( )4 , 1, ,x l l Lτ =C   according to 

Equation (11); 
Step 2.  Construct the matrices C and ( )θQ  from Equations (18) and (19); 

Step 3.  Use Equation (27) to plot the DOA spectrum function ( )P θ , and find the DOA estimates; 

Step 4.  Find the range estimates using Equation (29), and classify the types of the sources; 

4. Analogy between the Proposed Algorithm and TSMUSIC 

In this subsection, we analyze the relationship between the proposed algorithm and TSMUSIC in the 

framework of subspace decomposition. If we take only one single spatial-temporal cumulant matrix 
( )4 1 0x τ =C , the matrices C and ( )θQ  in Equations (18) and (19) will be simplified as: 

( ) ( )4 40 0H
x x=C C C  (30)

( ) ( ) ( )4 0H
xθ θ=Q C a  (31)

and consequently, ( ) ( )†H θ θQ C Q  can be reformulated as: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
4

††
4 4 4 40 0 0 0

x

H H H H H
x x x xθ θ θ θ θ θ= = CQ C Q a C C C C a a P a  (32)

where ( ) ( ) ( )( ) ( )
4

†

4 4 4 40 0 0 0
x

H H
x x x x=CP C C C C  is the projection matrix that projects the vector in the 

vector space 2 1M +C  onto the column space of ( )4 0xC . Note that, ( ) ( )†H θ θQ C Q  is reduced to a scalar. 

Accordingly, the spectrum function in Equation (27) becomes: 

( ) ( ) ( )
4

1

2 1
x

H
P

M
θ

θ θ
=

+ − Ca P a
 (33)

The eigenvalue decomposition (EVD) of ( )4 0xC  yields: 

( ) 2
4 0 H H

x s s s n nσ= +C E Λ E E E  (34)

where sΛ  is the diagonal matrix containing K large eigenvalues. Es is the ( )2 1M K+ ×  signal subspace 

eigenvector matrix of ( )4 0xC . En is the ( ) ( )2 1 2 1M M K+ × + −  eigenvector matrix spanning the noise 

subspace of ( )4 0xC . Based on the orthogonality between the virtual steering matrix A  and the noise 

subspace, TSMUSIC has the following DOA spectrum function [15]: 



Sensors 2015, 15 3843 

 

 

( ) ( ) ( )
1

TSMUSIC H H
n n

P θ
θ θ

=
a E E a

 (35)

Since ( )4 0xC  is computed using fourth-order cumulants, 2 0σ =  (cumulants suppress additive 

Gaussian noise). In this case, ( )4 0xC  spans the same range space of Es, i.e., 4span( (0)) span( )x s=C E . 

Consequently, the projection matrix 
4 xCP  can be also formulated as: 

( )
4

1

x

H H H
s s s s s s

−
= =CP E E E E E E  (36)

By substituting Equation (36) into Equation (33), the DOA spectrum function of the proposed 

algorithm becomes: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1

1 1

2 1 2 1

1

H H H H
s s M n n

H H
n n

P
M M

θ
θ θ θ θ

θ θ

+

= =
+ − + − −

=

a E E a a I E E a

a E E a

 (37)

which is identical to Equation (35). Therefore, we come to an interesting conclusion that the DOA 

estimator for TSMUSIC is a special case of our method, if only one spatial-temporal cumulant matrix is 

utilized. However, our method does not require the estimation of the source number, which makes it  

practically attractive. 

5. Discussion 

In this section, we compare the proposed algorithm with two newly developed mixed sources 

localization algorithms: TSMUSIC [15] and OPMUSIC [16]. We discuss all of these three methods from 

the following aspects: 

(1) Computational complexity: Concerning the computational complexity, we only compare the 

major multiplications involved in the construction of the statistical matrices, eigenvalue decomposition 

(EVD) and spectral search. The searching steps for the DOA parameter and the range parameter are 

denoted as θΔ  and rΔ . Let T and 2M + 1 symbolize the snapshot number and sensor number, 

respectively. TSMUSIC requires computing two fourth-order matrices with dimension 

( ) ( )2 1 2 1M M+ × +  and ( ) ( )4 1 4 1M M+ × + , performing EVD of the two matrices, and executing 

spectral search for DOA estimation. OPMUSIC involves constructing two second-order covariance 

matrices with dimension ( ) ( )2 1 2 1M M+ × +  and ( ) ( )2 2M M+ × + , performing EVD of the two 

matrices, and executing spectral search for DOA and range estimation. The proposed algorithm 

constructs L fourth order cumulant matrices ( )4 x lτC , a second order covariance matrix R, C and ( )θQ , 

whose dimensions are ( ) ( )2 1 2 1M M+ × + , ( ) ( )2 1 2 1M M+ × + , ( ) ( )2 1 2 1M M+ × +  and ( )2 1M L+ × , 

respectively. In addition, it requires implementing the EVD of R, as well as performing spectral search 

for DOA and range estimation. The comparison results are listed in Table 1. Summing these  

three components, we can determine the major computational burden of TSMUSIC as 

( ) ( ) ( ) ( ) ( )( )2 2 3 3 2
9 2 1 9 4 1 4 / 3 2 1 4 / 3 4 1 180 2 1 /M T M T M M MO θΔ+ + + + + + + + + . For OPMUSIC, 

the main complexity is ( ) ( ) ( ) ( )( ( )2 2 3 3 2
2 1 2 4 / 3 2 1 4 / 3 2 180 2 1 /M T M T M MO M θΔ+ + + + + + + + +  

)2 3 1/2 2(2 / 0.62( / ) )(2 1) /K D D M rλ λ Δ+ − + , while that of the proposed algorithm needs about 
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( ) ( )( ( )3 2 22 2 3 29 (2 1) (2 1) (2 1) ( 1) 4 / 3 2 1 180 2 1 / 2 1L M T M T L M L M M M MO θΔ+ + + + + + + + + + + + + ⋅
)2 3 1/2(2 / 0.62( / ) ) /K D D rλ λ Δ− . Therefore, the computational complexity of the proposed algorithm is 

higher than that of TSMUSIC and OPMUSIC. However, it is important to note that the proposed 

algorithm does not require the knowledge of the source number, which is highly desirable for practical 

applications where detection of the source number is generally a very difficult task. 

Table 1. Computational complexity comparison. 

Algorithms Statistical Matrices EVDs Spectral Search 
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(2) Maximum number of resolvable sources: With an ULSA of 2M + 1 sensors, TSMUSIC can 

construct ( ) ( )2 1 2 1M M+ × + -dimensional matrix. Based on the subspace theory, it needs at least one 

eigenvector of the constructed matrix to span the noise subspace. Therefore, TSMUSIC can localize up 

to 2M sources. Similarly, OPMUSIC can handle only M sources simultaneously due to the half aperture 

loss in overlapping operation. However, the proposed algorithm does not require subspace 

decomposition. It only needs to assume 2 1K M≤ +  to ensure that there exists a nonzero vector kb  

satisfying Equation (14). In other words, the maximum number of resolvable sources for the proposed 

algorithm is 2M + 1 with the same sensor array configuration. As a result, our method outperforms 

TSMUSIC and OPMUSIC in resolving more sources. 

6. Simulation Results 

In this section, several numerical simulations are conducted to validate the performance of the 

proposed algorithm relative to TSMUSIC [15] and OPMUSIC [16]. In the following simulations, we 

consider an symmetric ULSA composed of 2M + 1 = 9 (M = 4) elements with . The impinging 

signals are narrowband, noncoherent, equi-power and with the non-Gaussian form . For the 

proposed algorithm, L = 5 spatial-temporal cumulant matrices at the first five time lags are considered. 

Moreover, it is always assumed that the source number is correctly estimated for TSMUSIC and 

OPMUSIC. The performance is measured in terms of spatial spectrum, probability of resolution (PR) 

and root mean-square error (RMSE). The PR is defined as the ratio between the number of successful 

resolution and the total number of Monte Carlo runs. If the DOA estimates of two sources  

/ 4d λ=
( ) kj t

ks t e ω=

ˆ , 1, 2k kθ =
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satisfy , they are said to be successfully resolved. Herein,  signifies the angular 

separation between the two sources. The RMSE is defined as: 

 (38)

where  stands for the parameters such as  and ,  denotes the estimation of  in the nth trial, 

and  is the number of Monte Carlo runs. 

In the first experiment, we investigate the maximum number of resolvable sources for the proposed 

algorithm. We consider the mixed sources scenario that four FFSs are located at , 

, , , and five NFSs are placed at 

, , , , , 

respectively. The snapshot number and the SNR equal to 200 and 20 dB, respectively. Figure 2 indicates 

the DOA spectra from 10 independent realizations. It is evident that, with the 9-element ULSA, there 

are nine clearly discernible peaks corresponding to these mixed sources, which is in agreement with the 

analysis in Section 5. 

 

Figure 2. Mixed sources direction-of-arrival (DOA) spectra obtained with the proposed 

method. K = 9, 2M + 1 = 9. 10 independent trials are realized. 

In the second experiment, the scenario of coexistence of one FFS and one NFS is investigated, with 

the location parameters being 1 1( 2 , 1.5 )rθ λ= − ° =  (NFS) and 2 2( 2 , )rθ = ° = +∞  (FFS). The snapshot 

number and the SNR equal to 500 and 5 dB, respectively. Ten independent trials of DOA spectrum 

estimates using the three methods are realized as is shown in Figure 3. It is obvious that, for the proposed 

method, there are two distinct peaks corresponding to the actual DOAs of the two mixed sources. 

However, TSMUSIC and OPMUSIC fails to distinguish the two closely spaced angles 1θ  and 2θ . This 

is because that, for closely spaced sources, it is very difficult for the subspace-based algorithms to 

correctly identify the signal subspace and noise subspace with low SNR, while the proposed method 

does not need any decomposition and identification of the subspaces. 

In the third experiment, the PR of the three algorithms versus SNR is explored. Consider two 

uncorrelated equi-power sources locating at 1 1( 2 , 1.5 )rθ λ= − ° =  (NFS) and 2 2( 2 , )rθ = ° = +∞  (FFS), 

with number of snapshots being 500. The SNR varies from −5 dB to 28 dB in steps of 3 dB. At each 

ˆ / 2k kθ θ− < Δ Δ
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SNR, 500 independent Monte Carlo trials are performed. Figure 4 illustrates the PR of the three 

algorithms as a function of SNR. It is obvious that the proposed method has the best resolution ability 

since it reaches a full PR at the lowest SNR threshold (1dB). For TSMUSIC and OPMUSIC, the SNR 

thresholds of full PR are 10 dB and 25 dB, respectively, which are much higher than that of our method. 

This is due to the fact that TSMUSIC and OPMUSIC suffer from the leakage between the signal 

subspace and noise subspace when SNR is low, while the subspace decomposition is not required in our 

algorithm, which promotes the resolution ability at low SNRs. Moreover, OPMUSIC has the worst 

resolution ability since its DOA estimator has a half aperture loss, while the array size is fully utilized 

in TSMUSIC and our method. 

 

Figure 3. Mixed sources DOA spectra obtained with Two-Stage MUSIC (TSMUSIC), 

Oblique-Projection MUSIC (OPMUSIC) and the proposed method. 10 independent trials are 

realized for each method. 

 

Figure 4. Probability of resolution (PR) versus signal-to-noise ratio (SNR). 500 independent 

trials are realized for each of the three methods. 
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In the fourth experiment, we study the estimation accuracy of the three algorithms as a function of 

SNR. A more general mixed sources scenario is considered, where two FFSs are located at 

1 1( 10 , )rθ = ° = +∞ , 2 2( 50 , )rθ = ° = +∞ , and two NFSs are placed at 3 3( 10 , 1.5 )rθ λ= − ° = , 

4 4( 30 , 3 )rθ λ= − ° = , respectively. The SNR varies from −5 dB to 35 dB in steps of 5 dB, and the 

snapshot number is fixed at 200. At each SNR, 500 independent Monte Carlo trials are performed. 

Figures 5–7 illustrate the RMSEs of DOA and range estimates using the three algorithms. It can be seen 

that the estimation accuracy (both DOA and range) of the proposed algorithm outperforms that of 

TSMUSIC and OPMUSIC, especially in the low SNR region. This can be also explained from the fact 

that incorrect identifications of signal subspaces are likely occur at low SNRs, which would deteriorate 

the performance of TSMUSIC and OPMUSIC. At the high SNR region, the DOA estimation accuracy 

of TSMUSIC approaches to that of our method, which is in agreement with the analysis presented in 

Section 4. OPMUSIC has the worst DOA estimation accuracy because of its half aperture loss. As for 

the range estimation, in the low SNR region, the proposed algorithm is still superior to TSMUSIC and 

OPMUSIC, which is mainly a result of the propagation error from the previous DOA estimation stage. 

In the high SNR region, however, OPMUSIC and our method have almost the same performance. 

Additionally, TSMUSIC has the worst range estimation performance since it only utilizes the 

information of a single eigenvector with the smallest eigenvalue to obtain the range estimates. As is 

described in [15], the DOA estimates and the range estimates are obtained from two different stages in 

TSMUSIC. In the first stage, a special cumulant matrix is constructed and decomposed. DOAs can be 

obtained via high resolution MUSIC algorithm. In the second stage, another particular cumulant matrix 

is constructed to avoid the estimation failure problem. However, it only utilizes the information of a 

single eigenvector with the smallest eigenvalue to obtain the range estimates in this stage. Therefore, 

TSMUSIC has a good performance in bearing estimation but a worst performance in range estimation 

in the simulations.  

 

Figure 5. Root mean-square errors (RMSEs) of near-field sources (NFSs) DOA estimates 

versus SNR. 500 independent trials are realized for each of the three methods. 
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Figure 6. RMSEs of far-field sources (FFSs) DOA estimates versus SNR. 

 

Figure 7. RMSEs of NFSs range estimates versus SNR. 

In the fifth experiment, the same parameters as the third experiment are adopted except that the SNR 

is set equal to 15 dB, and the number of snapshots varies from 10 to 1000. At each snapshot number, 

500 independent Monte Carlo trials are performed. The RMSEs of DOA and range estimation are shown 

in Figure 8–10. It is obvious that the RMSEs (both DOA and range) of the three algorithms decrease 

monotonically as the snapshot number increases. This is due to the fact that a larger sampling number 

will produce better estimate of the cumulant matrices and the covariance matrices for stationary data. 

Furthermore, when the snapshot number is large enough, the proposed algorithm slightly outperforms 

TSMUSIC and OPMUSIC. This is because that: (1) the array aperture is fully utilized in this algorithm; 

(2) both the temporal and spatial structures of the observed data are utilized in our method, which also 

contribute to the improvement of estimation accuracy. However, when the sample size is small  

(i.e., snapshot number = 10), the DOA estimation accuracy of our method is a little bit inferior to that of 

TSMUSIC and OPMUSIC. This can be explained that the estimation of the spatial-temporal cumulant 

matrices is not reliable when the sample size is insufficient. 
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Figure 8. RMSEs of NFSs DOA estimates versus snapshot number. 500 independent trials 

are realized for each of the three methods. 

 

Figure 9. RMSEs of FFSs DOA estimates versus snapshot number. 500 independent trials 

are realized for each of the three methods. 

 

Figure 10. RMSEs of NFSs range estimates versus snapshot number. 500 independent trials 

are realized for each of the three methods. 
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In the last experiment, we compare the computational complexity of the three algorithms. Suppose 

that there are 2M + 1 = 9 sensors, and that the searching steps θΔ  and rΔ  are set as 0.1° and 0.05λ , 

respectively. The number of snapshots varies from 10 to 1000. Furthermore, we define K = 2 and L = 5. 

Figure 11 illustrates the computational burden of these algorithms as a function of the snapshot number. 

It is clear that the proposed algorithm has slightly higher complexity than TSMUSIC, while OPMUSIC 

is most efficient in computational complexity since it only involves second-order statistics. 

 

Figure 11. Computational complexity of the three methods versus snapshot number. 

7. Conclusions 

In this paper, a novel algorithm has been proposed for the localization of mixed FFSs and NFSs. 

Based on the joint diagonalization structure of multiple fourth-order spatial-temporal cumulant matrices 

and the beamforming technique, the DOA and range parameters of FFSs and NFSs have been determined 

respectively. Compared with some existing mixed source localization methods, the new method has the 

main advantage that it does not require the information of the source number. Such an advantage is 

practically attractive since mixed source enumeration is typically a very difficult problem. In addition, 

we have found that our method is a generalization of the TSMUSIC algorithm in [15], which only utilize 

one single spatial-temporal cumulant matrix. Moreover, the proposed algorithm avoids multidimensional 

search, aperture loss and parameter matching. According to the simulation results, the proposed method 

outperforms TSMUSIC and OPMUSIC in both resolution ability and estimation accuracy, especially 

when the SNR is low. 

It is worth mentioning that there are two slight limitations of the proposed algorithm. First, the 

construction of cumulant matrices leads to high computational load. Second, it is limited to localize 

mixed sources only in the 2-D domain (elevation angle and range). To put the proposed algorithm into 

further applications, several steps of the future work can be shown as follows: 

1. To reduce the computational complexity, second-order statistics and real-valued transformation 

may be applied. 

2. To extend the proposed algorithm for joint azimuth-elevation-range (3-D) estimation problem, 

we may employ planar arrays, such as cross array, rectangular array and circular array. 

0 100 200 300 400 500 600 700 800 900 1000
10

5

10
6

10
7

Snapshot number

C
om

pu
ta

tio
na

l c
om

pl
ex

ity

 

 

OPMUSIC

TSMUSIC

Proposed



Sensors 2015, 15 3851 

 

 

Acknowledgments 

This work is supported by Changjiang Scholars and Innovative Research Team in University 

(IRT0954), National Nature Science Foundation of China (NSFC) under Grant 60971108, Aerospace 

Science Foundation under Grant 20120181009, the Fundamental Research Funds for the Central 

Universities under Grant BDY061428. 

Author Contributions 

All authors contributed extensively to this paper. Jian Xie provided the main idea and wrote the paper; 

Haihong Tao conceived the experiments, modified the manuscript and provided many valuable 

suggestions; Xuan Rao and Jia Su performed the experiments and analyzed the results. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. 

IEEE Signal Process. Mag. 1996, 13, 67–94. 

2. Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans.  

Antennas Propag. 1986, 34, 276–280. 

3. Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. 

IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. 

4. Zoltowski, M.D.; Kautz, G.M.; Silverstein, S.D. Beamspace Root-MUSIC for minimum 

redundancy linear arrays. IEEE Trans. Signal Process. 1993, 41, 2502–2507. 

5. Haardt, M.; Nossek, J.A. Unitary ESPRIT: How to obtain increased estimation accuracy with a 

reduced computational burden. IEEE Trans. Signal Process. 1995, 43, 1232–1242. 

6. Pesavento, M.; Gershman, A.B.; Haardt, M. Unitary root-MUSIC with a real-valued 

eigendecomposition: A theoretical and experimental performance study. IEEE Trans. Signal Process. 

2000, 48, 1306–1314. 

7. Johnson, R.C. Antenna Engineering Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA,  

1993; pp. 26–29. 

8. Huang, Y.; Barkat, M. Near-field multiple source localization by passive sensor array. IEEE Trans. 

Antennas Propag. 1991, 39, 968–975. 

9. Lee, J.; Chen, Y.; Yeh, C. A covariance approximation method for near-field direction-finding using 

a uniform linear array. IEEE Trans. Signal Process. 1995, 43, 1293–1298. 

10. Noh, H.; Lee, C. A covariance approximation method for near-field coherent sources localization 

using uniform linear array. IEEE J. Ocean. Eng. 2013, 38, 1–9. 

11. Grosicki, E.; Abed-Meraim, K.; Hua, Y. A weighted linear prediction method for near-field source 

localization. IEEE Trans. Signal Process. 2005, 53, 3651–3660. 

12. Zhi, W.; Chia, M.Y.W. Near-field source localization via symmetric subarrays. IEEE Signal 

Process. Lett. 2007, 14, 409–412. 



Sensors 2015, 15 3852 

 

 

13. Tao, J.; Liu, L.; Lin, Z. Joint DOA, range, and polarization estimation in the fresnel region.  

IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2657–2672. 

14. He, J.; Ahmad, M.O.; Swamy, M. Near-field localization of partially polarized sources with a  

cross-dipole array. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 857–870. 

15. Liang, J.; Liu, D. Passive localization of mixed near-field and far-field sources using two-stage 

MUSIC algorithm. IEEE Trans. Signal Process. 2010, 58, 108–120. 

16. He, J.; Swamy, M.; Ahmad, M.O. Efficient application of MUSIC algorithm under the coexistence 

of far-field and near-field sources. IEEE Trans. Signal Process. 2012, 60, 2066–2070. 

17. Liu, G.; Sun, X.; Liu, Y.; Qin, Y. Low-complexity estimation of signal parameters via rotational 

invariance techniques algorithm for mixed far-field and near-field cyclostationary sources 

localisation. IET Signal Process. 2013, 7, 382–388. 

18. Wang, B.; Zhao, Y.; Liu, J. Mixed-order MUSIC algorithm for localization of far-field and  

near-field sources. IEEE Signal Process. Lett. 2013, 20, 311–314. 

19. Gao, F.; Gershman, A.B. A generalized ESPRIT approach to direction-of-arrival estimation.  

IEEE Signal Process. Lett. 2005, 12, 254–257. 

20. Liu, G.; Sun, X. Spatial differencing method for mixed far-field and near-field sources localization. 

IEEE Signal Process. Lett. 2014, 21, 1331–1335. 

21. Liu, G.; Sun, X. Two-stage matrix differencing algorithm for mixed far-field and near-field sources 

classification and localization. IEEE Sens. J. 2014, 14, 1957–1965. 

22. Liu, G.; Sun, X. Efficient method of passive localization for mixed far-field and near-field sources. 

IEEE Antennas Wirel. Propag. Lett. 2013, 12, 902–905. 

23. Jiang, J.; Duan, F.; Chen, J.; Li, Y.; Hua, X. Mixed near-field and far-field sources localization 

using the uniform linear sensor array. IEEE Sens. J. 2013, 13, 3136–3143. 

24. Xie, J.; Tao, H.; Rao, X.; Su, J. Comments on “Near-Field Source Localization via Symmetric 

Subarrays”. IEEE Signal Process. Lett. 2015, 22, 643–644. 

25. Tian, Y.; Sun, X. Passive localization of mixed sources jointly using MUSIC and sparse signal 

reconstruction. Aeu-Int. J. Electron. C. 2014, 68, 534–539. 

26. Tian, Y.; Sun, X. Mixed sources localisation using a sparse representation of cumulant vectors.  

IET Signal Process. 2014, 8, 382–388. 

27. Wang, B.; Liu, J.; Sun, X. Mixed sources localization based on sparse signal reconstruction.  

IEEE Signal Process. Lett. 2012, 19, 487–490. 

28. Jiang, J.; Duan, F.; Chen, J. Three-dimensional localization algorithm for mixed near-field and  

far-field sources based on ESPRIT and MUSIC method. Prog. Electromagn. Res. 2013, 136,  

435–456. 

29. Liang, J.; Liu, D.; Zeng, X.; Wang, W.; Zhang, J.; Chen, H. Joint azimuth-elevation/(-range) 

estimation of mixed near-field and far-field sources using two-stage separated steering vector-based 

algorithm. Prog. Electromagn. Res. 2011, 113, 17–46. 

30. Huang, Q.; Wang, T. Acoustic source localization in mixed field using spherical microphone arrays. 

EURASIP J. Adv. Signal Process. 2014, 2014, 1–16. 

31. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 

19, 716–723. 



Sensors 2015, 15 3853 

 

 

32. Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. 

Speech Signal Process. 1985, 33, 387–392. 

33. Djuric, P.M. A model selection rule for sinusoids in white Gaussian noise. IEEE Trans. Signal Process. 

1996, 44, 1744–1751. 

34. Van, J. TIME-MUSIC DOA estimation based on the exploitation of an arbitrary-order temporal 

structure in the data. In Proceedings of Sensor Array and Multichannel Signal Processing 

Workshop, Sitges, Spain, 18–21 July 2004; pp. 308–312. 

35. Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57,  

1408–1418. 

36. Wolfel, M.; McDonough, J. Minimum variance distortionless response spectral estimation.  

IEEE Signal Process. Mag. 2005, 22, 117–126. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


