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Abstract: This work aims to compare the performance of new methods to estimate the Soil 

Moisture Content (SMC) of bare soils from their spectral signatures in the reflective 

domain (0.4–2.5 µm) in comparison with widely used spectral indices like Normalized Soil 

Moisture Index (NSMI) and Water Index SOIL (WISOIL). Indeed, these reference spectral 

indices use wavelengths located in the water vapour absorption bands and their 

performance are thus very sensitive to the quality of the atmospheric compensation. To 

reduce these limitations, two new spectral indices are proposed which wavelengths are 

defined using the determination matrix tool by taking into account the atmospheric 

transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear 

correlation (NINSOL) and Normalized Index of Nswir domain for Smc estimatiOn from 

Non linear correlation (NINSON). These spectral indices are completed by two new 

methods based on the global shape of the soil spectral signatures. These methods are the 

Inverse Soil semi-Empirical Reflectance model (ISER), using the inversion of an existing 

empirical soil model simulating the soil spectral reflectance according to soil moisture 

content for a given soil class, and the convex envelope model, linking the area between the 

envelope and the spectral signature to the SMC. All these methods are compared using a 

reference database built with 32 soil samples and composed of 190 spectral signatures with 

five or six soil moisture contents. Half of the database is used for the calibration stage and 

the remaining to evaluate the performance of the SMC estimation methods. The results 

show that the four new methods lead to similar or better performance than the one obtained 

by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of 
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determination R2 varies between 0.74 and 0.91 with the best performance obtained with the 

ISER model. In a second step, simulated spectral radiances at the sensor level are used to 

analyse the sensitivity of these methods to the sensor spectral resolution and the water 

vapour content knowledge. The spectral signatures of the database are then used to 

simulate the signal at the top of atmosphere with a radiative transfer model and to compute 

the integrated incident signal representing the spectral radiance measurements of the 

HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from 

the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. 

The SMC estimation methods are then applied on the retrieve spectral reflectances. The 

adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the 

application of the convex envelope and ISER models to boarder spectral bands lead to an 

error on the SMC estimation. The best performance is then obtained with the ISER model 

(RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE 

(from 6.4% to 7.8%) and R² (between 0.79 and 0.83) values. In the atmosphere 

compensation processing, an error on the water vapour content is introduced. The most 

robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and 

ISER model. The convex envelope model and NSMI index require an accurate estimation 

of the water vapour content in the atmosphere.  

Keywords: soil moisture content; bare soil; spectral reflectance; spectral indices; soil model 

 

1. Introduction 

Surface soil moisture plays a key role to understand the exchange of water and heat energy between 

the land surface and the atmosphere through evaporation, to evaluate soil trafficability [1], to 

characterize plant health [2] or soil texture features like soil organic carbon or clay contents [3,4]. 

Remote sensing techniques have several advantages in comparison with others in situ methods 

(gravimetric, electromagnetic, thermal…) for monitoring Soil Moisture Content (SMC) [5], as they 

provide better temporal and spatial coverages [6]. At high spatial resolution, the most popular 

technique to sense soil moisture is based on active microwave sensor. This is due to the high 

sensitivity of the backscattered signal to the dielectric constant of soil and of its moisture [7] 

completed to its soil penetration capability. Nevertheless, the quality of the retrieved soil moisture is 

highly dependent on the surface roughness [7]. On the other side, hyperspectral imagery has 

demonstrated its potential to retrieve the soil moisture but its performance depends on the soil color 

and texture, the presence of organic material and crusts [7–10]. Further, the penetration depth in the 

optical domain is significantly lower and can only allow us to quantify the uppermost layer in a  

soil column. 

Despite these drawbacks, there is a real interest to estimate the SMC from such sensors [11,12] as 

several hyperspectral space missions are planned for the near future: Hyperspectral Precursor of the 

Application Mission (PRISMA) [13], and Environmental Mapping and Analysis Program (EnMAP) [14] 

will be respectively launched in 2015 and 2018, or HYPerspectral IMagerie (HYPXIM) [15] planned 
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before 2025. These three missions cover the reflective domain from 0.4 µm to 2.5 µm with a 10 nm 

spectral resolution. Such characteristics open the way to retrieve SMC from space data as proposed  

by [16]. 

Numerous studies have been conducted, mainly with laboratory measurements, to characterize the 

influence of SMC on the spectral reflectance. Angström [17] demonstrated through laboratory 

measurements that soil moisture content had an impact on the behavior of soil spectral reflectances in 

the solar domain. This work exhibited a decrease of the reflectance level as SMC increased due to a 

darkening of the soil surface. Later, other laboratory results over bare soils [18] confirmed this 

behavior which has, then, been used to develop SMC approaches based on spectral reflectances.  

Nevertheless, investigations to explore the possibility of estimating soil moisture content from 

multispectral or hyperspectral remote sensing data, were penalized by the lack of specific databases. 

Liu et al. [19] measured the spectral reflectances of ten soil samples controlling the SMC during a 

drying process. These measurements have been completed using the database described in [20] 

including the spectral reflectances of about thirty natural soil samples in (0.4–2.5 µm) depending on the 

SMC and measured in the laboratory. This database was used to analyze the relationship between the 

SMC and the reflectance spectra. The laboratory measurements were limited to a few SMC levels (five 

or six) due to experimental constraints (drying time for example). In order to go beyond this limitation, 

a semi-empirical soil model was then proposed in [20] to simulate bare soil spectral reflectances for 

SMC levels not determined by experimentation and compared to state-of-the-art models. The 

conclusions pointed out that a representative database is necessary to analyze the impact of the SMC 

variation on soil spectral reflectances, to model this spectral behavior according to SMC and then to 

specify robust SMC assessment methods based on spectral signatures in the (0.4–2.5 µm) domain. 

Three main approaches of SMC estimation can be distinguished: combination of spectral  

bands [21–23], exponential or Gaussian spectral models [24,25], and geostatistical methods [26–28]. 

Liu et al. [22] tested the first type of approaches using eighteen bare soil samples with different 

moisture contents characterized in the laboratory. Several analytical methods were tested: a relative 

approach normalizing the spectral reflectance of wet soil by the spectrum of the corresponding dry 

soil, a derivative approach based on the finite difference method, and an approach by difference 

computing a waveband difference. They concluded that SMC estimation using the relative method in 

the Short Wavelength InfraRed (SWIR) domain (1.4–2.5 µm) was more efficient. Concerning the use 

of spectral indices for estimating SMC, the best results were obtained with Water Index  

SOIL (WISOIL) [6], Shortwave Angle Slope Index (SASI) [23] and Normalized Soil Moisture  

Index (NSMI) [21]. These indices have been validated by reflectance measurements in the laboratory 

at different SMC over many bare soils. These results have led us to keep NSMI and WISOIL as 

reference methods. The main drawback of these indices is the use of wavelengths located in the water 

vapour absorption bands, making them very sensitive to the quality of the atmosphere compensation.  

Lobell et al. [25] have developed a spectral exponential model and applied it on four bare soil spectra 

measured in laboratory. Their results confirmed the strong potential of the SWIR domain for SMC 

estimation. Whiting et al. [24] proposed the Soil Moisture Gaussian Model (SMGM) to fit an inverted 

Gaussian function to the convex hull boundary points in the (1.8–2.8 µm) region of a bare soil 

spectrum. The area of one side of the Gaussian function above the spectral continuum was then related 

to SMC. The model performance estimated in laboratory measurements were: R2 of 94% and a mean 
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RMSE of 0.027 g·g−1 [24]. However, the SMGM displayed poor performance for high soil water 

contents (like contents higher than 0.32 g·g−1). These models need a priori knowledge of the soil 

texture or have to be calibrated previously on soil samples taken from the analyzed area before the 

processing of the entire area. The geostatistical methods are based on the knowledge of the spatial 

distribution of soil moisture for predicting runoff at the observation area scale. These methods require 

in situ humidity measurements and use interpolation techniques for the analysis of the distribution of 

the soil moisture at spatial scale [26–28]. The most common interpolation techniques are moving 

average, trend surface and kriging. The applicability of these techniques depends on various factors 

such as distribution of sampled data in the observation area, the type of surfaces to be generated and 

tolerance of estimation errors. An adequate geometric correction processing in order to limit the high 

influence of topography in soil moisture estimation is necessary for the geostatistical methods. To 

conclude, there is a real need to specify methods undisturbed by the atmosphere compensation  

for an application on outdoor spectral measurements, without previous calibration on laboratory 

measurements of specific samples collected on the analyzed area, without any need for in situ SMC 

measurements for the method calibration, and reliable for extreme SMC values (like fully saturated 

soil or arid ground).  

The objective of this work is then to present new methods of SMC estimation based on the spectral 

signature of bare soils measured in laboratory trying to overcome some limitations of the existing 

methods and analyze the impact of the atmosphere in order to anticipate their application on in field 

measurements and airborne hyperspectral acquisitions. Two approaches are then investigated to reach 

this objective: the spectral indices and the general spectral shape methods. The proposed methods are 

compared to the reference indices, NSMI and WISOIL. Section 2 presents the database of the 

laboratory measurements and the soil spectral model. Section 3 describes the SMC estimation 

methods. Section 4 compares the performance of the methods applied on the database and on 

simulated data representing at sensor level signal in order to analyze the impact of the sensor spectral 

resolution and the atmospheric water vapor content.  

2. Description of the Reference Data Set and the Related Soil Spectral Model 

As one of the proposed methods, the ISER model is based on an empirical spectral reflectance 

model depending on the SMC presented in [20], its main characteristics are presented in this section.  

2.1. The Reference Database 

The database [20] is composed of 32 natural soil samples, covering different ranges of texture (clay, 

limestone, sandy) and coloration. These samples were collected over eight locations in France (from 

South-West to South-East) (Table 1).  
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Table 1. Characteristics of the bare soil samples where the area name is defined as [France 

Department ID][Nearby Town], followed by the number of collected samples, the 

geographic area location and the corresponding Munsell color code (Y: Yellow; YR: 

Yellow Red). Extracted from [20]. 

Area Name Number 
Geographic Location Munsell Color Code [29] 

Latitude Longitude Hue Value Chroma 

11Belvis 1 42°51′02″N 02°04′32″E 2.5Y 6 6 
11Malves 1 43°15′08″N 02°26′26″E 2.5Y 7 4 
12Vabres 1 43°41′35″N 02°25′35″E 2.5YR 4 4 

13Crau 2 43°8′59″N 06°04′27″E 
10YR 
10YR 

4 
5 

6 
4 

24Coulouniex 1 45°11′11″N 00°42′00″E 2.5Y 4 2 

30Camargue 18 43°40′37″N 04°37′43″E 
2.5Y 
2.5Y 

5 
6 

2 
2 

30Pujaut 1 44°00′17″N 04°46′29″E 2.5Y 8 1 
31Fauga 2 43°23′47″N 01°17′39″E 2.5Y 4 3 

31Lauraguais 2 43°23′59″N 01°43′05″E 
2.5Y 
2.5Y 

5 
5 

4 
3 

81Lautrec 1 43°42′22″N 02°08′20″E 2.5Y 3 3 
81StJulien 1 43°59′22″N 02°20′45″E 5Y 8 1 
84Avignon 1 43°56′55″N 04°48′30″E 2.5Y 7 2 

2.2. Measurement Method and Laboratory Devices  

Soil spectral reflectances were measured in the laboratory with an ASD (Analytical Spectral 

Devices) Fieldspec-Pro spectroradiometer in the (0.4–2.5 µm) spectral domain. with a spectral 

resolution of 3 nm in the (0.4–1.0 µm) domain and of 10–12 nm in the (1.0–2.5 µm) domain. A 

Spectralon panel was used as white reference. The experimental protocol was as follows: each soil 

sample was put in a Petri dish (6 cm of diameter by 1 cm of thickness) and humidified until saturation. 
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Figure 1. Spectral signatures according to SMC (in %g) for a soil sample of the area name 

30Camargue (Table 1).  
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Successive SMC levels were artificially obtained by progressively drying the sample in a laboratory 

oven (at 333.15 °K during 30 min). After each drying step, the reflectance spectrum of each soil 

sample was measured and the gravimetric or mass SMC was measured by weighting the sample. The 

fully dried sample was obtained after a period of 24 h in the oven. Finally, the spectral reflectances of 

each soil sample were acquired for five or six SMC levels: six SMC levels for 30 soil samples and five 

SMC values for two soil samples. An illustration of the soil spectral reflectances for six soil moisture 

contents is given in Figure 1.  

2.3. Description of the Soil Empirical Spectral Model  

The knowledge of the soil texture is assumed by most of the spectral soil models. To avoid this 

limitation, the proposed model is based on an a priori soil classification defined according to the 

global spectral shape of the dry soil reflectances [20]. Figure 2 illustrates the observed spectral 

behaviour of the dry samples (defined in the Table 1) in the VISible (VIS; (0.4–0.8 µm)) and Near and 

Shortwave InfraRed (NSWIR; (0.8–2.5 µm)) spectral domains.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Wavelength (µm)

R
ef

le
ct

an
ce

s

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

 

Figure 2. A priori soil classes according to the spectral behaviour of the dry soil samples.  

According to [20], the soil samples with the same spectral behaviour are then grouped together in 

seven a priori spectral classes defined by Figure 2 and Table 2.  

The semi-empirical soil model linking the spectral reflectance to the SMC for a given a priori soil 

class defined by the Table 2, is retained. Its analytical formulation is the following: 

( ) ( ) ( ) ( )λλλλρ lglgl
l
SMC cSMCbSMCa

g
+⋅+⋅= 2  (1)

where l designs the soil spectral class, a, b and c are the spectral coefficients of the polynomial 

function in the solar domain. The spectral coefficient c is equivalent to the spectral signature of the dry 

soil and has a major impact on the polynomial function. The other spectral coefficients a and b are 

relatively less important [20].  

Its intrinsic performance has been estimated by computing the standard deviation σ and the 

coefficient of determination R2. The soil model performance shows that, among all of the a priori 

classes, R2 is better than 97% with σ lower than 0.01. Moreover the model performance leads to a 

better correlation (98%) than the one obtained with the Lobell’s model (79%) [20,25]. 
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Table 2. The a priori spectral classification of the dry soil samples. 

A Priori Soil  
Spectral Class 

Number of  
Soil Samples 

Spectral Behaviour Description of Dry Soil Samples in the VIS and 
NSWIR Domains 

Class 1 5 

VIS: Concave spectral signature, then convex without high level 
(presence of iron oxide) 
NSWIR: Concave spectral signature in the 0.8–1.2 µm range, then 
convex with a medium level 

Class 2 1 
VIS: Concave spectral signature then convex without high level 
NSWIR: Convex spectra in the 0.8–2.5 µm domain with a medium level 

Class 3 18 
VIS: Concave spectral signature, then convex without high level 
NSWIR: Spectra with slope ascending in the 0.8–1.2 µm domain, then 
convex with a medium level 

Class 4 3 

VIS: Spectral signature weakly concave with low level (presence of 
organic matter) 
NSWIR: Spectra with slope ascending in the 0.8–1.2 µm domain, then 
convex with a medium level 

Class 5 1 

VIS: Spectral signature not particularly convex with high level  
(large amount of calcium and small quantity of iron oxide) 
NSWIR: Concave spectral signature in the 0.8–1.2 µm range,  
then convex with a medium level 

Class 6 2 
VIS: Concave spectral signature, then convex without high level 
NSWIR: Weakly concave spectral signature in the 0.8–1.2 µm domain 
with an upslope and a low level 

Class 7 1 
VIS: Spectral signature not particularly convex with high level 
NSWIR: Convex spectra in the 0.8–2.5 µm domain with a medium level 

3. Description of the Methods to Estimate the Soil Moisture Content 

3.1. Spectral Indices 

Specific wavebands, known for stretching and bending vibrations of water and mineral-hydroxyl 

bands, have been successfully used to predict moisture content. The strongest water absorption 

strengths (at 1.2, 1.4, and 1.9 µm) correspond also to spectral region where atmospheric water vapor 

absorbs, rendering the methods using these spectral bands ineffective or underperforming. The  

state-of-the-art indices are listed in Table 3. 

Table 3. Existing spectral indices suitable for SMC assessment (ρ reflectance). 

Spectral Index Specific Spectral Bands  Formulation  

NSMI  1.800 µm; 2.119 µm 
119.28.1

119.28.1

ρρ
ρρ

+
−

 

WISOIL 1.30 µm; 1.45 µm 
30.1

45.1

ρ
ρ

 

The wavelengths at 1.8 µm and 1.45 µm operated respectively by NSMI and WISOIL are located at 

the border of the atmospheric water vapour absorption band (Figure 3). The WISOIL and NSMI 
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performance is then very dependent on the quality of the atmosphere compensation processing. 

Therefore, there is a need to define new spectral indices less sensitive to the atmosphere. Moreover it 

should be noted that WISOIL is using the 1.45 µm band corresponding to the atmospheric carbon 

dioxyd absorption band. Its impact is considered as negligible. 

 

Figure 3. Location of the wavelengths operated by the spectral indices. These wavelengths 

are showed in the atmospheric transmission (Left) and the soil spectral signatures 

according to SMC (Right) graphs.  

The new indices are defined according to the procedure proposed by Haubrock et al. [21]. The 
coefficient of determination for the linear regression [31] between SMC and a quantity ),( jinormX λλ , 

derived from the spectral reflectance, is plotted in a matrix where the first wavelength value iλ  is 

referred to by the abscissa axis and the second wavelength jλ  is referred to by the ordinate axis 

(Equation (2) and Figure 4). This matrix is called regression matrix and the color scale from 0 to 0.87 

represents the corresponding R2 value. This regression analysis is completed by a non-linear 

appropriate regression procedure [16,30].  

 

Figure 4. Determination matrix for ),( jinormX λλ  computed with the reference database in 

the (1–2.5 µm) domain by linear regression (Left) and non linear regression (Right). 
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According to this procedure, the normalized ratio ),( jinormX λλ  defined by the following equation is 

computed on the data set described in the Section 2: 

)()(

)()(
),(

ji

ji
jinormX

λρλρ
λρλρ

λλ
+
−

=  (2)

where ( )iλρ  and ( )jλρ  respectively represent the reflectance values at the wavelengths iλ  and jλ  

belonging to the reflective domain (0.4–2.5 µm). 
The corresponding regression matrix is shown on Figure 4. The wavelength pairs ),( ji λλ  which are 

very sensitive to SMC are located in the spectral range (1–2.5 µm). The highest R2 coefficients are 

around 80% for wavelengths located in the (2–2.4 µm) range. The wavelength pairs leading to the 
highest determination coefficients between the SMC and the quantity ),( jinormX λλ  are then deduced 

by applying a threshold to the determination matrix in order to define the wavelengths used to 

construct these new indices: 

o 2.076 µm and 2.228 µm for ),( jinormX λλ : R2 = 87% − linear regression  

o 2.122 µm and 2.23 µm for ),( jinormX λλ : R2= 87% − non-linear regression. 

The impact of atmospheric water vapour absorption bands is taken into account to choose these 

wavelengths by excluding the selected wavelengths corresponding to an atmospheric transmission 

lesser than 0.8 (Figure 3). These results lead to the following spectral indices:  

Normalized Index of NSWIR domain for Smc estimatiOn from Linear regression (NINSOL) 

23.2076.2

23.2076.2

ρρ
ρρ

+
−=NINSOL  (3)

• Normalized Index of NSWIR domain for Smc estimatiOn from Non-linear regression (NINSON) 

23.2122.2

23.2122.2

ρρ
ρρ

+
−=NINSON  (4)

3.2. General Spectral Shape Methods 

A new general spectral shape method based on the convex envelope and using the area criteria is 

proposed. The convex envelope of the spectral signature is computed on the entire solar spectrum  

(0.4–2.5 µm) (Figure 5, left). The area under the curve is achieved by subtracting the convex envelope 

and the spectrum itself. This criteria is related to the SMC (Figure 5, right). A linear regression model 

is then defined to link the SMC to this area. 
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Figure 5. Illustration of the convex envelope method applied on a measured spectral 

signature (Left) and the difference between convex envelope and spectrum according to 

SMC (Right). 

A second method using the soil semi-empirical spectral model (presented in Section 2.3) is 

proposed. This model (Equation (1)) is inverted in order to retrieve, for a given a priori soil class and 

the related spectral signature, the corresponding SMC. The retrieved gravimetric soil moisture content 

SMCg is the one that minimizes the quadratic error defined by the following equation:  

( )( )
=

+⋅+⋅−=
q

i
gglinput icSMCibSMCiaiE

0

22 )()()()(ρ  (5)

where i is the wavelength, q is the number of wavelengths on the spectral range (0.4–2.5 µm) and 

inputρ  is the spectral reflectance.  

In the following, this method is named Inverse Soil semi-Empirical Reflectance (ISER) model. 

4. Results and Discussion 

4.1. Comparison of the SMC Estimation Methods  

4.1.1. Principle of the Performance Analysis 

The SMC estimation methods described in the Section 3 are applied on the reference database 

defined in Section 2.1 in order to compare their performance using the coefficient of determination 

(R2) and the Root Mean Square Error (RMSE) [30]. The dataset is divided in two groups. The first one 

(called calibration data set) is used to calibrate the methods and includes 95 spectral signatures. The 

second one (called validation data set) is used to the validation and includes the 95 remaining spectral 

signatures. For each method, the comparison process is as follows:  

• Calibration stage: The measured spectral signatures and the corresponding SMC of the 

calibration data set are used to achieve the linear regression between the index values and the 

SMC for NINSOL, WISOIL, NSMI and between the area values and the SMC for the convex 

envelope model. Similarly, the non-linear regression between SMC and the NINSOL values is 

deduced owing to the calibration data set ; 



Sensors 2015, 15 3272 

 

 

• Validation stage: The SMC is estimated with the validation data set owing to the linear (or non- 

linear) relation deduced in the calibration stage. The quality of the SMC estimation is assessed 

by computing the R2 and the RMSE.  

The RMSE is expressed as follows: 

N

SMCSMC
RMSE

N

i

est
i

mes
i

=

−
= 1

2)(
 (6)

where est
iSMC is the estimated SMC for the soil sample i, mes

iSMC  is the measured SMC for the same 

sample i and N is the number of samples.  
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Figure 6. Variation of the SMC according to NSMI (calibration stage, Left) and 

representation of estimated SMC with NSMI according to measured SMC (validation 

stage, Right). The dashed black lines represent the boundaries of an error of 20%. 

Figure 6 represents the calibration (left) and the validation (right) stages for NSMI.  

4.1.2. Results 

The comparison between the estimated SMC by the ISER model with the validation data set and the 

measured SMC is illustrated for each a priori soil spectral class in the Table 4. The RMSE ranges 

between 2% and 4%. R2 is better than 0.90 according to the a priori soil class. 

Table 4. The R2 and RMSE values obtained with the inverse model for each a priori soil class. 

Soil Spectral Class R2 RMSE (%) 

Class 1 0.90 4.1 
Class 2 0.95 2.2 
Class 3 0.90 4.0 
Class 4 0.95 3.6 
Class 5 0.97 1.9 
Class 6 0.91 3.7 
Class 7 0.96 2.1 
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The soil spectral classes composed by an unique soil (class 2, class 5 and class 7) have RMSE 

values lower than 3% and a corresponding error lower than 10%. Soil class 3, which includes the 

largest number of samples, is mainly characterized by an error on the SMC estimation lower than 20% 

(Figure 7).  
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Figure 7. Representation of estimated SMC with the inverse model according to measured 

SMC for the a priori soil class 3. The dashed black lines represent the boundaries of an 

error of 20%. 

The synthesis of the performance comparison is given in Table 5. The RMSE and R2 are computed 

with the validation data set. This is equivalent for the ISER model to calculating the RMSE and R2 for 

all the classes. The results for NSMI, WISOIL and NINSON are illustrated in the Figure 6 (right) and 

the Figure 8. The R2 values of NSMI and WISOIL are respectively 73% and 79%. Better results are 

obtained with NINSOL (87%) and NINSON (85%). 52% of the SMC values obtained with NSMI have 

an error higher than 20% (24% for WISOIL). For the new indices, 70% of the estimated SMC values 

are characterized by an error lower than 20%. For the convex envelope model, R2 is equal to 0.8. The 

corresponding RMSE is 5.6%. 
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Figure 8. Representation of estimated SMC according to measured SMC for WISOIL 

(Left) and NINSOL (Right). The dashed black lines represent the boundaries of an error  

of 20%. 
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The R2 values obtained with NSMI and WISOIL are consistent with those in literature. In [21], 

NSMI led to R2 value of 0.61 for 467 field soil samples measured in the laboratory with their natural 

soil moisture rates and consisting of different sands and clayey substrates. A similar coefficient of 

determination (R2 = 0.6) was observed for 11 artificially prepared samples (each sample was 

artificially wetted in steps of 2% until saturation which ranged between 18% and 24% depending on 

the soil sample). In [6], the R2 values obtained with WISOIL ranged from 0.72 to 0.96 for 3 soil 

samples (a dark colored silt/loam soil with approximately 5% organic matter, a red colored clay soil 

and an iron rich soil) according to the SMC level.  

Table 5. Synthesis of methods and performance computed with validation data set. 

Method Type Reference R2 RMSE (%) 
NSMI Index [21] 0.74 6.2 

WISOIL Index [6] 0.79 5.7 
NINSOL Index § 3.1 0.87 4.4 
NINSON Index § 3.1 0.85 4.8 

Convex envelope model General shape § 3.2 0.80 5.6 
ISER model  General shape § 3.2 0.91 3.8 

The performance of the convex envelope is equivalent to WISOIL and NSMI performance. 

NINSON and NINSOL indices provide similar results. The inverse soil spectral model shows overall 

the best performance. All the methods, except for ISER, can be applied whatever the soil texture and 

without a priori information on the soil spectral behavior. The ISER model leads to the best 

performance with further information on the dry soil spectral signature.  

4.2. Sensibility of the SMC Estimation Methods to the Atmosphere Conditions 

4.2.1. Method Description 

In order to evaluate the sensitivity of the SMC estimation methods to the atmospheric water vapour 

content, end-to-end simulations are achieved. The spectral radiances at the top of the atmosphere are 

computed with a radiative transfer tool according to a given spectral signature of the database (see 

section 2.1). The spectral radiances are then integrated over the wavelength bands of the hyperspectral 

sensor. An atmospheric compensation tool is then applied to retrieve the on ground surface 

reflectances and to deduce the estimated SMC with the methods described in Section 3. 

The radiative transfer computations are done with MODerate resolution atmospheric 

TRANsmission (MODTRAN4 [31,32]). The surface reflectance retrieval is achieved with the 

atmospheric compensation tool COde de Correction atmosphérique Hyperspectrale d’Images de 

Senseurs Embarqués (Cochise [33]) from spectral radiances acquired by a hyperspectral system on 

board an aircraft. Two types of errors are simulated:  

• The atmosphere is assumed well known. Let US0 (called nominal case) be the standard 

atmosphere used to compute the spectral radiances at sensor level. The SMC estimation methods 

are then applied on the retrieved spectral reflectances with the atmospheric compensation tool. 

The adaptation of the spectral index wavelengths to the sensor spectral bands (band centre 
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wavelengths and spectral resolution) and the application of the convex envelope and ISER 

models to boarder spectral bands lead to an error on the SMC estimation. The intrinsic error of 

the atmospheric compensation tool has an impact on the spectral signatures used to estimate the 

SMC (RMSE is within 3% in [34]). The SMC values estimated for US0 are compared to the SMC 

values computed with the SMC estimation methods applied on the database. The SMC values for 

US0 are then compared with the measured SMC of the database with the R2 and the RMSE; 

• To achieve the atmosphere compensation, the atmosphere conditions need to be known. In this 

work, we only consider the most impacting factor for the SMC estimation methods: the water 

vapour content. An error is then introduced on the water vapour content. The error on the SMC 

due to an uncertainty on the water vapour content (represented by the atmosphere USx, x = 1, 2, 

3 or 4) is expressed as a percentage: 

)0(

)()0(

USSMC

USxSMCUSSMC

i

ii
i

−=δ  (7)

where i is the soil sample, )(USxSMCi  is the estimated SMC corresponding to the USx atmosphere  

(x = 1, 2, 3 or 4) for the sample i. 

The corresponding bias is expressed in the SMC unit (%g): 


=

−=
N

i
ii USxSMCUSSMCUSxbias

1

)()0()(  (8)

N represents the number of soil samples.  

4.2.2. Input Description 

The scene is composed of a flat and homogeneous ground in a standard atmosphere (US Standard 

Atmosphere 1976) [32] corresponding to an integrated water vapour content of 1.5 g·cm−2. The ground 

spectral properties are defined owing to the database.  

The hyperspectral sensor is the airborne HYMAP hyperspectral instrument [35] covering the spectral 

domain (0.4–2.5 µm) with 128 spectral bands, a spectral resolution ranging from 15 to 20 nm and a 

spatial resolution around 4 m at 2000 m height. The selected wavelengths (defined in the Section 3.1) 

associated to each index have first to be adapted to the spectral characteristics of the sensor. 

Nevertheless, the difference between the index wavelengths and the central wavelengths of the HYMAP 

spectral bands does not exceed 3 nm. The inputs of the US0 nominal case are summarized in Table 6.  

Table 6. Parameters of the nominal case US0. 

Hyperspectral System  HYMAP 

Acquisition conditions 
System altitude: 2000 m 
Viewing angle: Nadir 
Hour: 11 h UT 

Atmosphere 
Atmospheric profile: US Standard 
Integrated vapour content: 1.5 g·cm−2 

Scene description  

Surface temperature: 293 °K 
Measured spectral signature (one by soil spectral class) for 
three SMC levels varying from 0% to 46% corresponding to 
dry, intermediary and saturated levels 
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Figure 9. Total atmospheric transmission of the US standard profile for integrated vapour 

contents from 0.5 g·cm−2 to 2.5 g·cm−2.  

The impact of the atmospheric water vapour content on the SMC estimation methods is analyzed 

owing to four simulation cases (US1 to US4) corresponding to the variation of the integrated vapour 

content from 0.5 g·cm−2 to 2.5 g·cm−2 (the water vapour content values are 0.5, 1.0, 2.0, 2.5 g·cm−2,  

0.5 g·cm−2 corresponds to a very dry atmosphere and 2.5 g·cm−2 represents a tropical atmosphere). The 

variation of water vapour content modifies the total atmospheric transmission in depth and in width 

(Figure 9).  

4.2.3. Results 

The results are provided in Figure 10 and Table 7. The sensor spectral resolution has a limited 

impact on the spectral indices and the spectral shape methods performance (Figure 10). The NSMI 

relative error is around 1% for SMC higher than 15% and 10% for SMC lower than 15%. The WISOIL 

exhibits a relative error in the order of 1.5%. NINSOL offers a relative error lower than 10% for SMC 

over 15%. The NINSON relative error is about 5%. The relative error of the convex envelope model is 

6%. Its performance is comparable to NSMI according to the SMC levels. The ISER model is 

characterized by a relative error lower than 10% whatever the SMC value. The highest RMSE value 

and lowest R2 are related to NSMI. The convex envelope area and WISOIL deliver similar 

performance as NINSOL and NINSON. The ISER model is the most robust.  

Table 7. Synthesis of the R2 and RMSE values computed on the estimated SMC for US0 

and the corresponding measured SMC. 

Method R2 RMSE (%) 

NSMI 0.79 7.8 
WISOIL 0.83 6.7 
NINSOL 0.80 6.3 
NINSON 0.83 6.4 

Convex envelope model 0.80 7.1 
ISER model  0.96 2.9 
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Figure 10. Spectral indices (NSMI, WISOIL, NINSOL, NINSON) and general shape 

methods (convex envelope, ISER model—Representation of the SMC computed on the 

simulated spectra (nominal case US0) according to SMC estimated on the corresponding 

measured spectra (point lines on each side of the central line give the limit of an error of  

5% and the long-dashed lines an error of 10%). 

Secondly, the impact of an uncertainty on the water vapour content is analysed. The results are 

presented in the Table 8. The NSMI errors are lower than 5% for SMC higher than 15% and lower 

than 10% for lower SMC values, regardless of the atmospheric water vapour content. For instance, 

when the water vapour content is increasing from 1.5 g·cm−2 to 2.5 g·cm−2 (US0 to US4), the average 

error of the SMC assessment is increasing of around 6 %. NSMI, operating with the Hymap spectral 

bands based on central wavelengths at 1.80 µm and 2.12 µm, is impacted by the water vapour content 

variation owing to the wavelength at 1.80 µm (Table 3). The NMSI leads to the higher bias values.  

Table 8. Synthesis of the relative error (mean, standard deviation) (Equation (7)) and bias 

values (Equation (8)) computed on the estimated SMC for US0 case and the corresponding 

SMC for other simulation cases. 

Method Bias (%g) Mean Relative Error (%) Standard Deviation of the Relative Error (%) 

Case US1 US2 US3 US4 US1 US2 US3 US4 US1 US2 US3 US4 

NSMI 0.5 0.3 −0.3 −0.6 4.8 2.6 2.8 5.8 4.2 2.3 2.5 5.1 

WISOIL −0.1 −0.1 0.1 0.1 0.7 0.3 0.3 0.7 0.8 0.4 0.4 0.8 

NINSOL −0.1 −0.1 0.1 0.1 1.1 0.5 0.5 1.1 2.5 1.1 1.1 2.4 

NINSON −0.1 −0.1 0.1 0.1 1.3 0.6 0.5 0.9 2.6 1.3 1.0 1.9 

Convex envelope model −0.6 −0.3 -0.1 −0.1 4.7 2.2 4.4 16.2 3.0 1.6 6.0 25.0 

ISER model 0. 0. 0.1 0.1 0.0 0.0 0.1 0.5 0.0 0.0 0.6 1.9 

The variation of the water vapour absorption bandwidth has a low influence on WISOIL, NINSON 

and NINSOL owing to their operated wavelengths (Equations (3) and (4)). The average error on the 

SMC assessment and the bias are stable regardless of the error on the water vapour content (less than 

or equal to 1.3%).  
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Figure 11. Convex envelope method—Representation of the SMC estimated for the US1 

to US4 cases according to SMC estimated for the US0 case for SMC lower than 15%. 

The estimated SMC with the convex envelope area leads to error lower than 5% for SMC values 

higher than 15%. Moreover, the increase of the water vapour content results in a significantly 

overestimation of the SMC value (if the water content increases from 1.5 g·cm−2 (US0) to 2.5 g·cm−2 

(US4) for SMC values lower than 15% (negative values of bias in the Table 8 and Figure 11), To 

conclude, the overestimation of the atmospheric water vapour content has an important impact  

for this method. Thus, NSMI and the convex envelope lack robustness if the water vapour content is 

not well known. WISOIL, NINSOL, NINSON and the ISER model are less sensitive to the variation of 

this atmospheric parameters than NSMI and the convex envelope. The ISER model is the most robust 

to atmospheric water vapour content errors.  

5. Conclusions  

New SMC estimation methods based on soil spectral signatures of the reflective spectral domain 

(0.4–2.5 µm) are presented. These methods are validated on a data set including 32 different soil 

samples collected in the South of France. These methods have been compared to existing methods 

found in the literature, and their sensibility to the atmosphere compensation process has been analyzed.  

The specification of SMC assessment criteria is put forth using existing reference data measured in 

the laboratory. Determination matrixes are used to define two spectral indices (NINSON and 

NINSOL) by taking into account the atmospheric transmission. These new indices are compared to the 

existing spectral indices NSMI and WISOIL. The proposed spectral shape methods include the convex 

envelope model and the ISER model based on the inversion of the empirical soil spectral model. This 

last one aims to estimate the SMC assuming that the soil spectral class (related to the spectral shape of 

the dry soil) is known a priori. All these methods are applied on the database in order to evaluate their 

performance. The NINSON and NINSOL indices provide similar performance close to the 

performance of WISOIL and NSMI. The ISER model shows overall the best performance. 
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The work is then extended to remote sensing. Synthetic airborne radiances are simulated using the 

spectral reflectances of the database. After a spectral integration to simulate the HYMAP spectral 

bands, an adaptation of the spectral index wavelengths to the sensor bands is necessary. The induced 

errors are then lower than 10% and the most robust and efficient method is the ISER model (RMSE of 

3%, in comparison to 6%–8% for the others methods). 

The atmospheric compensation tool is then applied by introducing an uncertainty on the water vapor 

content. The sensitivity study in relation to the atmospheric water vapor content has yielded the 

following results: 

• Whatever the selected method and error, the most important impact is obtained for SMC lower 

than 15%; 

• NSMI and the convex envelope model are less robust than the other methods; 

• WISOIL, NINSOL and NINSON are slightly affected by the variation of the water vapor content; 

• The ISER model exhibits the best performance. 

In the near future, these methods will be tested on a wider data set including other soil textures. 

Further works will be pursued to evaluate the performance to retrieve the SMC from real remote 

sensing images acquired on a bare soil landscape in order to define rules for their use according to their 

robustness taking into account the soil roughness, the presence of sparse vegetation, the presence of 

soil organic carbonates … In the presence of sparse vegetation, a sensitivity study will be conducted in 

order to analyze the atmospheric carbon dioxide impact on the performance of WISOIL. The ISER 

model does not need the soil texture but rather uses as input the dry reflectance shape in order to 

deduce the corresponding spectral class. Multi-temporal analysis is an efficient opportunity to access 

to this information. The application of the ISER model to multi-temporal data will be tested  

in the future. For achieving these objectives, several airborne experiments are planned on soils with 

different textures at different periods in the year with joint in situ measurements. 
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