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Abstract: The resonator of a solid-state vibratory gyro is responsible for sensing angular 

motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused 

by manufacturing defects. The defect causes a frequency difference between two working 

modes which consist of two nodes and two antinodes. The difference leads to the loss of 

gyroscopic effect, and thus the resonator cannot sense angular motion. In this paper, the 

resonator based on an axisymmetric multi-curved surface shell structure is investigated and 

an approach to eliminate frequency splits is proposed. Since axisymmetric multi-curved 

surface shell resonators are too complex to be modeled, this paper proposes a simplified 

model by focusing on a common property of the axisymmetric shell. The resonator with 

stochastic imperfections is made equivalent to a perfect shell with an imperfect mass point. 

Rayleigh’s energy method is used in the theoretical analysis. Finite element modeling is used 

to demonstrate the effectiveness of the elimination approach. In real cases, a resonator’s 

frequency split is eliminated by the proposed approach. In this paper, errors in the theoretical 

analysis are discussed and steps to be taken when the deviation between assumptions and the 

real situation is large are figured out. The resonator has good performance after processing. 

The elimination approach can be applied to any kind of solid-state vibratory gyro resonators 

with an axisymmetric shell structure. 
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1. Introduction 

Solid-state wave gyroscopes arose as a new type of gyro at the end of 20th century [1]. Their basic 

principle is the Coriolis effect [2]. This kind of gyroscope can be used to measure the angular velocity 

of a rotating body by testing the inertia effect of standing waves [3]. In contrast to traditional gyros,  

the new gyros are simple, all-solid state, highly reliable [4], and low cost. In addition, they can resist 

high impacts. 

The resonator is a key part of the vibratory gyro. There are various of structures such as beam [5], 

tuning fork and axisymmetric structures [6]. Axisymmetric structures includes hemispherical shell [7,8], 

cylindrical shell [9,10] and ring structures [11]. At present, the Hemispherical Resonator Gyro (HRG) is 

the Coriolis vibratory gyro with the highest accuracy and it is used in many mature products. In 1979, 

the Delco Electronics Corporation produced the first HRG. HRGs were first used in spatial inertial 

reference units in 1996. After 14 years of usage, the gyro had worked over 12-million operating gyro 

hours in total with an 100% mission success rate in space [12]. This indicates its high reliability and long 

lifespan. In this regard, the vibratory gyro with axisymmetric shell is very promising. 

In the study of vibratory gyros with axisymmetric-shell resonators, Liu Ning presented an angular 

rate vibratory gyro called the bell-shaped vibratory gyro [13]. This vibratory gyro was inspired by a 

Chinese traditional bell based on an axisymmetric multi-curved surface shell structure. One such 

structure is shown in Figure 1. A bell-shaped vibratory gyro’s impact resistance is up to 10,000 g. The 

performance of this gyro’s impact resistance is much better than that of any other vibratory gyro, so that 

it can be widely used in weapon systems. 

 

Figure 1. Axisymmetric multi-curved surface shell structure. 

The working mode of a bell-shaped resonator is shown in Figure 2. From the perspective of the 

resonator’s bottom, it has four antinodes. The axisymmetric shell has two sets of four-antinode modes. 

They are orthogonal to the structure [14] and they also have the same natural frequency. However, the 

imperfections caused by manufacturing defects will bring about frequency splits, i.e., the two sets of 

four-antinode modes’ natural frequencies are not equal. When a resonator has a frequency split, the 

vibration shape can also be influenced by the imperfections besides rotation and the Coriolis effect, and 
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the gyroscopic effect will be lost. As a result, the frequency split must be eliminated. Xi, X. et al. 

discussed the impacts of frequency splits on cylindrical resonators and studied the relationship between 

the frequency split and the vibration axis shift angle of a vibrating cylindrical resonator [15], but his 

research did not include the elimination of the frequency split. Tao, Y. et al. presented ways to eliminate 

a cupped-shell resonator’s frequency split with experiments [16]. Fox showed the impact of adding or 

trimming the mass point on a perfect ring resonator by adopting the Rayleigh-Ritz method [17]. Later, 

Fox built a model that adds an equivalent imperfect mass point to a perfect ring and proposed a method 

to eliminate the frequency split [18]. The frequency split of an imperfect hemispherical shell is also 

studied with the same method in [19]. 

 

Figure 2. A bottom-up view of a resonator’s working mode (different colors represent 

different amplitudes). 

However, the published literatures all focus on simple structures like ring, hemisphere and cylinder 

shells. In this paper, we studied the frequency split of an axisymmetric multi-curved surface shell 

resonator. The shape of bell-shaped resonator is very complex and its middle surface cannot be described 

by a single linear function, which makes it difficult to analyze. The starting point of this research is not 

to use a complicated mathematical description, but rather to simplify it by summarizing the similarities 

of an axisymmetric shell resonator’s vibration. The equivalent imperfect mass point concept is applied 

in this paper. The aim of this paper is to propose an elimination method that adds balance mass at a given 

position with a given mass that is proven theoretically. In the FEM simulation and Experimental sections, 

we discuss the errors of the theoretical analysis, reduce its limitations, and prove the effectiveness of the 

elimination method. The proposed frequency split elimination method is suitable for all imperfect 

axisymmetric shell resonators. 

2. Resonator’s Analysis of Vibratory Mechanics 

The imperfect axisymmetric multi-curved surface shell resonator can be equaled to a perfect 

axisymmetric multi-curved surface shell with one equivalent mass point at its bottom (see Figure 3). The 

equivalent model and real imperfect shell have the same natural frequency and mode shape. This 

equivalent model is based on the assumption that the imperfections are small enough so that the mode 

shape can be described by Equation (7). The theories of elasticity and vibration are applied. 
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Figure 3. A resonator’s curvilinear coordinates. 

2.1. Imperfect Resonator’s Equivalent Model 

An axisymmetric multi-curved surface shell resonator’s curvilinear coordinates is shown in  

Figure 3, where φ stands for latitude, θ stands for longitude and γ stands for the dimension which is 

perpendicular to the φ-θ surface. u, v, and w represent the resonator’s displacement in three directions. 

R1 (MJ) and R2 (MI) is main curvature radius at point M. A and B are supposed to be the Lame 

coefficients in φ and θ directions. Since the resonator is an axisymmetric shell, Equation (1) is obtained. 

R1 and R2 are functions that only depend on φ. We do not need to know the algebraic expressions of R1 

and R2 in the analysis: 

 (1)

The material of resonator is isotropic and uniform. It is assumed that the top of the resonator’s 

displacement is 0. The Rayleigh-Ritz method is employed to calculate the resonator’s natural frequency. 

The kinetic energy of vibrating prefect resonator is calculated by Equation (2):  

 
(2)

Here ρ represents the density of the material. Q and T stand for the latitudes at the top and bottom of the 

resonator respectively. h stands for the thickness of the resonator. According to the shell theory 

hypothesis [20], the mode shape functions are expressed by Equation (3) [1,13]: 

 

(3)

where n denotes the mode number. n is 2 when the resonator is working in four-antinode modes.  

ω0 denotes the natural frequency of perfect shell and C denotes the magnitude of mode shape. U, V and 

W are the Rayleigh functions of the resonator. These functions also can be calculated numerically 

through a simple iteration process which is presented in [21]. The potential energy of a vibrating 

resonator is written as: 
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(4)

where σ denotes stress and е denotes strain. The relationship between stress and strain can be found  

in [20]. According to the Rayleigh-Ritz method [22]:  

 (5)

So: 

 
(6)

Mass points are added to the bottom of the resonator. The mode shape of the resonator with added 

mass will change. It is assumed that the imperfections are so small that all other influences can be 

ignored, except for the shift angle ξ, as is shown in Figure 4. The coordinate of the ith added mass  

point is (T, θi, 0) and the mass is mi, so the displacement of the added mass points on the resonator is 

shown below [19]:  

 

(7)

ωn denotes the natural frequency of the shell with added mass points. The total kinetic energy of resonator 

with mass points is:  

 (8)

where Km denotes the kinetic energy of added mass point. The change of resonator’s potential energy 

can be ignored after adding the mass points [19]. The natural frequency of shell with mass points is 

denoted by ω0 in Equation (9): 

 

(9)

ω0 is expressed by Equation (6). ξ is the stationary value of ωn [19], so:  

 
(10)

Substitute Equation (9) into Equation (10):  

 
(11)

The shift angle ξ can be calculated by Equation (11). 
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Figure 4. The contrast between the mode shape of a perfect resonator with and without added 

mass points. 

Besides the discussion of how added mass points influence a perfect shell, now the paper will discuss 

how to make an imperfect shell equivalent to a perfect shell with one mass point. The equivalent mass 

point is attached at the bottom (φ = T) of the perfect shell. Suppose θp is the position of equivalent imperfect 

mass point, and mp is the mass, thus shift angle ξ can be calculated by Equation (11):  

 

(12)

Since two different shift angles are concluded from Equation (12), two different natural frequencies 

can be calculated by substituting Equation (12) into Equation (9). To obtain the obvious gyroscopic 

effect, the resonator of the gyro is designed to have a large amplitude in the γ direction [13]. This 

indicates that W(T)2 > V(T)2 and U(T)2 > V(T)2, so:  
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(15)

2.2. The Approach to the Elimination of Frequency Split 

Uniformly distributed balance mass points are added to the bottom of the imperfect resonator (φ = T) 

to eliminate frequency split. The mode number n is 2. Suppose that mi and θi (i = 1, 2, 3...) denote the 

mass and position of balance mass points. Then θi and mi can be expressed by Equation (16): 

 

(16)

M is the total mass of balance mass points. N is the number of balance mass points (“N” and “n” are 

different parameters.). Assuming that the shift angle (ξL) of the imperfect shell mode shape is 0 and the 

mass of the equivalent imperfect mass point is mp, the equivalent imperfect mass point’s position θp is 0, 

as shown in Figure 5. Firstly, we begin with adding one balance mass point (i.e., N = 1). Figure 5a shows 

the mass point distribution. 

Substituting the parameters into Equation (9): 

 

(17)

where: 

 

(18)

From Equation (17), we conclude that the absolute value of function Z plays a decisive role in the 

frequency split. The frequency split is getting smaller when the absolute value of Z is getting smaller. If 
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calculated. Figure 6 respectively shows the relationship between the absolute value of Z and θ1 as well 

as that between the absolute value of Z and total mass M (here M = m1). 

θ1 ranges from 0 rad to 2π rad and M ranges from 0.5·mp to 1.5·mp (see Figure 6). The figure shows 

that |Z| is varying wavily along θ1 when M is a constant. |Z| reaches its minimum when θ1 equals either 

0.25π, 0.75π, 1.25π, or 1.75π. These four values of θ1 can be the positions where balance mass points 

are added. When M is smaller than mp, the peak-to-peak value of |Z| is positively correlated to the value 
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moving upward. When M equals mp and θ1 equals either 0.25π, 0.75π, 1.25π or 1.75π |Z| will be 0, and 

the frequency split disappears. 

Secondly, if we add two balance mass points (i.e., N= 2), the position of the balance mass points are 

θ1, θ2 and the mass is m1, m2, where θ1 = θ2 + π. Figure 5b shows the distribution. Substituting those 

parameters into Equations (9) and (11), the conclusion is similar to the result of adding one balance mass 

point (here M = m1 + m2). If M equals mp and θ1 equals either 0.25π, 0.75π, 1.25π or 1.75π, the frequency 

split disappears. 

Thirdly, if we add four balance mass points (i.e., N = 4) as is shown in Figure 5d, the conclusion is 

also similar to adding one point (here M = m1 + m2 + m3 + m4). Finally, we consider other values of N 

(i.e., N = 3, 5, 6…). Figure 5c shows the distribution when N = 3. According to the symmetry of mass 

points’ distribution and the Dirichlet formula, we conclude: 

 

(19)

Substituting Equation (19) into Equation (11), we conclude that ξL = θp. Then, substituting the 

conclusion into Equation (9): 

 

(20)

According to Equation (20), when N ≠ 1, 2 or 4, no matter what the values of mi and θi are, the 

frequency split cannot be eliminated (since mi and θi satisfy Equation (16)). 

 

Figure 5. Distribution of equivalent imperfect mass point and balance mass points  

(N = 1, 2, 3, 4). 
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Figure 6. The relationship between |Z| and θ1 as well as that between |Z| and M. 

2.3. Theoretical Result and Discussion 

The frequency split model is established by using the equivalent imperfect mass point model. Mass 

and position of an equivalent mass point are calculated by Equation (15). One thing to note is that all 

previous analyses are based on the hypothesis of a thin shell and Equation (7)’s assumption. The 

approach to eliminate the frequency split is concluded through theoretical analysis, which is to add one, 

two or four balance mass points (N = 1, 2, or 4) to the resonator to form a 0.25π-rad angle with the 

antinode of the lower-natural-frequency mode (there are four antinodes when n = 2) in the θ direction. 

The total mass of the balance mass point is equal to the mass of the equivalent imperfect mass point. 

Although frequency splits can be eliminated when some kind of unevenly distributed balance mass 

points are added to the resonator, uniformly distributed balance mass points will not make the center of 

mass deviate from the symmetric axis of the resonator. Therefore, the uniformly distributed mass points 

can make the real mode shape closer to the assumption (Equation (7)) and the theoretical analysis closer 

to reality (this will be validated in Section 3). This paper only discusses the method to eliminate 

frequency splits by adding balance masses. The method of trimming (removing) masses can be 

concluded with the same analysis, but we will not discuss it any further in this article. 

3. FEM Simulation of the Elimination Method 

3.1. Simulation Conditions 

The finite element method (FEM) is used to verify the conclusions mentioned above. The shape of 

resonator is shown in Figure 7. The FEM software ANSYS is applied. Element SHELL 63 is employed 

to simulate the perfect shell. Element MASS 21 is used to represent the added mass point. The material 

is Ni43CrT. It retains a stable modulus of elasticity when the temperature changes [3]. The properties of 

the material are shown in Table 1. 

The elimination method drawn from above is based on Equation (7)’s assumption, so the gap between 

the actual mode shape of an imperfect shell and the mode shape assumed by Equation (7) may affect the 

validity of the elimination method. In the simulation, different gap levels are set and their influence on 
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the elimination method is discussed. Frequency splits are created by adding calculated mass points to 

the perfect shell to make it imperfect. Different frequency split cases with different levels of mode shape 

gap should have the same equivalent mass point models in the simulation. In order to achieve an obvious 

simulation result, the mass of an equivalent imperfect mass point (mp) is 0.04 g, the frequency split is 

about 120 Hz and the shift angle ξL is 0°. 

 

Figure 7. The size of resonator which is simulated. 

Table 1. The properties of Ni43CrTi. 

Name of Parameter Value 

Density (kg·m ) 8170 
Poisson’s ratio 0.3 

Young modulus (GPa) 196.76 

Table 2. (a) The impacts of latitude divisions on simulation results; (b) The impacts of 

longitude divisions on simulation results. 

(a) 

Number of Latitude 
Divisions (Longitude 

Divisions Is 60) 

Perfect Shell (Unit: Hz) Imperfect Shell (mp = 0.04 g) (Unit: Hz) 

Higher Natural 
Frequency (ωnH) 

Lower Natural 
Frequency (ωnL) 

Higher Natural 
Frequency (ωnH) 

Lower Natural 
Frequency (ωnL) 

120 6740.0 6740.1 6706.5 6581.4 
180 6738.4 6738.3 6704.8 6579.8 
360 6737.5 6737.4 6703.7 6578.9 
720 6737.4 6737.2 6703.6 6578.9 

(b) 

Number of Longitude 
Divisions (Latitude 

Divisions Is 360) 

Perfect Shell (Unit: Hz) Imperfect Shell (mp = 0.04 g) (Unit: Hz) 

Higher Natural 
Frequency (ωnH) 

Lower Natural 
Frequency (ωnL) 

Higher Natural 
Frequency (ωnH) 

Lower Natural 
Frequency (ωnL) 

50 6737.6 6737.4 6703.8 6579.1 
70 6737.6 6737.4 6703.8 6579.1 
90 6737.6 6737.4 6703.8 6579.1 

110 6737.6 6737.4 6703.8 6579.0 
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It is well known that the accuracy of FEM results depends on the mesh size. Simulation results with 

different mesh sizes are shown in Table 2. It is obvious that the FEM induces a frequency split even in 

a perfect resonator model. Under the abovementioned simulation conditions, the perfect shell is 

simulated and the frequency split is about 0.2 Hz. This error can be ignored, compared to deliberately 

creating a frequency split (about 120 Hz). Table 2 also shows that the changes of the simulation results 

are slight when the latitude division is over 360 and longitude division is over 50, so the latitude division 

is set at 360 and the longitude division is set at 60 and the influence of mesh size can be ignored. 

3.2. Simulations and Results 

Frequency split case 1: one imperfect mass point is added to the bottom of a perfect shell (mass is 

0.04 g and position θ is 0°), as the tiny green dot shows in Figure 8; Case 2: two imperfect mass points 

are added (each has a mass of 0.02 g and positions of 0° and 180°), as the tiny red dots show in  

Figure 8; Case 3: four imperfect mass points are added (each has a mass of 0.01 g and a positions of 0°, 

90°, 180° and 270°), as the tiny blue dots show in Figure 8. According to Equations (11) and (15), the 

mass and positions of the three frequency split cases’ equivalent mass points all satisfy the simulation 

conditions (mass (mp) is 0.04 g, ξL is 0°). 

Mode shapes of the imperfect and perfect resonator are computed by FEM software. Figure 8 shows 

imperfect shells’ and perfect shell’s amplitude ratio along the γ-axis at the resonators’ bottom. If 

imperfections are not small enough, we can see the gap between the imperfect shell’s amplitude and the 

sine curve as expressed in the assumption (Equation (7)). The gap is enlarged in Figure 8. As a result of 

the uniformly distributed imperfect mass, frequency split Case 3 is the closest one to Equation (7)’s 

assumption (see the black line in Figure 8), while Case 1 shows the maximum gap with Equation (7)’s 

assumption among the three frequency split cases. 

 

Figure 8. The mode shape of the perfect and imperfect resonator (the amplitude ratio is along 

the γ-axis at the resonators’ bottom, negative amplitudes represent the phase difference of π rad). 
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(a) 

(b) 

(c) 

Figure 9. (a) The distribution of added mass points for eliminating frequency split Case 3;  

(b) The relationship between θ1 and frequency split for eliminating frequency split Case 3  

(M = 0.04 g); (c) The relationship between mass of balance points M and frequency split for 

eliminating frequency split Case 3 (θ1 = π/4). 

The elimination method is first applied to eliminate the frequency split of imperfect shell Case 3. The 

results are simulated by FEM software. According to the elimination methods, one balance mass point 

with a mass of M and with a position of θ1, or two balance mass points with masses of M/2 and with 

positions θ1 and θ1 + π, or four balance mass points with masses of M/4 and positions of θ1, θ1 + π/2,  

θ1 + π, and θ1 + 3π/2 are added to the imperfect resonator to eliminate the frequency split, as shown in 

Figure 9. Three elimination methods are compared in Figure 9. Figure 9a shows the distribution of 

balance mass points and imperfect mass points. Figure 9b shows the relationship between θ1 and the 



Sensors 2015, 15 3216 

 

 

frequency split. It is clear that the minimum frequency split position (θ1) is π/4 rad (i.e., 45°), which 

draws the same conclusion as in Section 2. Figure 9c shows the relationship between M and the frequency 

split. The value of the frequency split is the smallest when the total mass of two or four balance points 

is 0.04 g, and when the mass of one balance point is 0.036 g. This result is a little different from our 

previous conclusion. Moreover, the method with four balance mass points turns out to be the best. 

(a) 

(b) 

(c) 

Figure 10. (a) The distribution of added mass points for eliminating frequency split Case 2; (b) 

The relationship between θ1 and frequency split for eliminating frequency split Case 2  

(M = 0.04 g); (c) The relationship between mass of balance points M and frequency split for 

eliminating frequency split Case 2 (θ1 = π/4). 

Then the method is applied to eliminate the frequency split of imperfect shell Case 2. Three 

elimination methods are also compared in Figure 10. Figure 10a shows the distribution of balance mass 
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points and imperfect mass points. Figure 10b shows the relationship between θ1 and the frequency split. 

When four balance mass points are added, the minimum frequency split occurs when position (θ1) is  

π/4 rad, but when one or two balance mass points are added, the minimum frequency split position is 

slightly less than π/4 rad. This result is a little different from the conclusion obtained above. Figure 10c 

shows the relationship between M and the frequency split. The value of the frequency split is the smallest 

when the mass of two or four balance points is 0.04 g, and when the mass of one balance point is 0.0365 g. 

(a) 

(b) 

(c) 

Figure 11. (a) The distribution of adding mass points for eliminating frequency split Case 1;  

(b) The relationship between θ1 and frequency split for eliminating frequency split Case 1  

(M = 0.04 g); (c) The relationship between mass of balance points M and frequency split for 

eliminating frequency split Case 1 (θ1 = π/4). 
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Finally the method is applied to eliminate the frequency split of imperfect shell Case 1. Three 

elimination methods are compared in Figure 11. Figure 11a shows the distribution of added mass points. 

Figure 11b shows the relationship between θ1 and the frequency split. When four balance mass points 

are added, the minimum frequency split occurs when position (θ1) is π/4 rad. The frequency split is 

minimum when one balance point is added and θ1 is slightly over π/4 rad (about 46°). The minimum 

frequency split position (θ1) of two balance points is less than π/4 rad. Figure 11c shows the relationship 

between M and the frequency split. The minimum frequency split mass is 0.04 g when one balance point 

is added, or the mass is 0.044 g when two or four balance points are added. 

3.3. Discussions 

We can see that when the gap between the actual mode shape of an imperfect shell and the mode 

shape assumed by Equation (7) are not small enough, so the simulation results are a little different from 

the theoretical conclusion. It is clear that the imperfection does not only change shift angle ξ, but also 

changes the amplitude. The amplitude curve of an imperfect resonator is not a sine curve anymore. The 

minimum frequency split position and mass will change when the amplitude curve deviates from a sine 

curve. In the three frequency split cases, the amplitude curves of Cases 2 and 3 are the closest to a sine 

curve. In these two cases, the elimination method with four balance mass points works better and closely 

matches the theoretical result. This is because the points in the method with four balance mass points are 

more uniformly-distributed than in the method with one or two balance mass points, but for Case 1, the 

minimum frequency split position and mass all disagree with the theoretical analysis. This is due to the 

fact that the amplitude curve of Case 1 deviates from a sine curve, as shown in Figure 8. The less the 

deviation is, the closer the theoretical analysis and real situation will be, so when Case 1 occurs in a 

practical application, by adding mass at the position of the lower natural frequency mode’s antinode with 

largest amplitude ,we can adjust the amplitude of four antinodes to the same level. The amplitude curve 

will be then be closer to a sine curve and elimination methods with four balance mass points can be 

applied and the frequency split will be effectively eliminated. 

4. Experiments and Verification 

The real resonator used in the experiment is shown in Figure 12. Piezoelectric patches are used to 

excite and detect the vibration of the resonator. The instrument connection flow chart for natural frequency 

measurement is shown in Figure 13. The piezoelectric patches are numbered. The piezoelectric patches 

chosen to excite electrodes have an angle of 180° with each other. For example, No. 3 and No. 7 are 

chosen as exciting electrodes in Figure 13. The piezoelectric patches which have an angle of 90°. with 

the exciting electrodes are chosen as detecting electrodes, for example, No. 1 and No. 5 are chosen in 

Figure 13. Natural frequency should be measured twice. If No. 1, No. 5, No. 3 and No. 7 patches are 

used as detecting and exciting electrodes in the first measurement, then No. 2, No. 6, No. 4 and No. 8 

patches should be used as detecting and exciting electrodes in the second measurement. 

Figure 14 shows the process of frequency split elimination. Firstly, the frequency split is measured 

by connecting these electrodes to a frequency-scanning meter. The output port of the frequency-scanning 

meter is connected to the exciting electrodes and the input port is connected to the detecting electrodes, 

as shown in Figure 13. Secondly, the amplitude curve is measured by a laser Doppler vibrometer.  
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Figure 15 indicates the instruments’ connection for amplitude curve measurement. The resonator is fixed 

on a turntable. The turntable is controlled by the controller which is shown at the bottom right of  

Figure 15. The signal generator generates the exciting signal. Then we should decide whether the 

amplitude of the four antinodes needs to be adjusted. This step is designed to solve the elimination 

problem when we are in practical situations similar to frequency split Case 1. We need to adjust the 

amplitude of the four antinodes to the same level. Finally, we add a balance mass at four frequency-split-

eliminating positions with the same equivalent mass point mass. 

 

Figure 12. The real resonator and piezoelectric patches. 

 

Figure 13. The instrument connection flow chart for natural frequency measurements. 

Measure the shape of vibration 
and  shift angle  with  laser 

doppler vibrometer 

Adjust the amplitude of 
four antinode to the 

same level

Add the balance mass points at 
frequency-split-minimum position 

of resonator and eliminate the 
frequency split 

Measur the frequency split with 
frequency-scanning meter 

Yes

No
Measure the 

frequency split again 

Decide whether the amplitude 
of four antinode need to be 

adjusted  

 

Figure 14. The flow chart of frequency split elimination. 
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Figure 15. The instruments’ connection flow chart for amplitude curve measurement. 

Figure 16 shows the amplitude curve measured by a laser Doppler vibrometer at the lower natural 

frequency. Table 3 shows the node and antinode amplitude values. Surface flatness of the resonator, 

eccentricity of the bases and the bias of the laser beam will all lead to some measurement errors.  

After all, the amplitude curve is close to a sine curve, so according to the analysis above, the  

frequency-split-eliminating positions for adding mass are 81°, 171°, 261°, and 351°. The total mass of 

balance points can be calculated by Equation (15), though the procedure is complex. The equivalent 

imperfect mass is much smaller than the resonator, so the relationship between the mass of the equivalent 

imperfect mass points and the frequency split is almost linear. For the convenience of calculation, we 

can estimate the mass of balance points with experimental data. Figure 17 shows the frequency 

spectrogram of the resonator before processing and after processing. The frequency split is about 16 Hz 

(the frequency difference between two peaks) and four little blocks with the same mass are added at the 

bottom of the resonator with θi at 81°, 171°, 261° and 351°. The frequency split drops below 0.5 Hz. The 

elimination method is thus proven very effective. 

 

Figure 16. The amplitude curve measured by a laser Doppler vibrometer. 
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Table 3. The amplitude measured by a laser Doppler vibrometer. 

Antinode Position (°) Amplitude (nm) Node Position (deg) Amplitude (nm) 

36 536.1 81 16.1 
126 536.7 171 21.8 
216 531.9 261 14.2 
306 533.3 351 17.1 

The mass and position of the balancing masses need to be controlled accurately when eliminating the 

frequency split. The Q-factor of the resonator may affect the procedure of the elimination method. Under 

the current Q-factor value, it is hard to measure the frequency split on the frequency spectrogram when 

the frequency split is below 1 Hz. A higher Q-factor is required when a smaller frequency split is needed. 

(a) 

(b) 

Figure 17. (a) Frequency spectrogram of the resonator before eliminating the frequency 

split; (b) Frequency spectrogram of the resonator after eliminating the frequency split. 

5. Conclusions 

This paper presents a way to analyze the frequency split problem of an axisymmetric multi-curved 

surface shell resonator. The concept of equivalent mass points is used to model the imperfections.  

The paper proposes an approach to eliminate the frequency split. The best balance position has an angle 

of 0.25π, 0.75π, 1.25π or 1.75π with respect to the antinode of the mode which has the lower natural 

frequency. The total mass of the balance mass point is equal to the equivalent imperfect mass point. 
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FEM and experiments are used to verify the method’s effectiveness. The approach can be used on other 

kinds of resonators with an axisymmetric thin shell structure because there is no requirement on the form 

of function U(φ), V(φ), W(φ) in Equation (3). The resonator can be used to detect the angular rate after 

being processed with this method. 
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