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Abstract: Solutions in the field of Ambient Assisted Living (AAL) do not generally use 

standards to implement a communication interface between sensors and actuators. This makes 

these applications isolated solutions because it is so difficult to integrate them into new or 

existing systems. The objective of this research was to design and implement a prototype 

with a standardized interface for sensors and actuators to facilitate the integration of 

different solutions in the field of AAL. Our work is based on the roadmap defined by 

AALIANCE, using motes with TinyOS telosb, 6LoWPAN, sensors, and the IEEE 21451 

standard protocol. This prototype allows one to upgrade sensors to a smart status for easy 

integration with new applications and already existing ones. The prototype has been 

evaluated for autonomy and performance. As a use case, the prototype has been tested in a 

serious game previously designed for people with mobility problems, and its advantages 

and disadvantages have been analysed. 
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1. Introduction 

Monitoring systems have traditionally been wired systems. Wireless technologies are changing this 

tendency, as shown in many scientific papers [1,2]. They are becoming popular in Ambient Assisted 

Living (AAL). Wireless Sensor Networks (WSN) are becoming increasingly important for monitoring 

patients both in the clinical setting and at home. WSN are fundamental in AAL since these smart 

systems, tailored to users’ needs, collect information about users and their ambience in order to 

provide personalized feedback. 

WSNs consist of spatially distributed, autonomous sensors (sensing nodes) that cooperate to 

monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, etc. 

They have several advantages over traditional wired systems: ease of use, reduced risk of failure, 

reduced user discomfort, enhanced mobility and lower cost of care delivery. As previously stated, the use 

of standards is not common in WSNs, thereby reducing the interoperability of the actual solutions. Using 

a standard is especially important in AAL applications where there are many different kinds of sensors. 

The aim of the research presented in this paper has been to design and implement a prototype for 

transducers with a standardized interface that can be applied in the AAL domain. To this end, the next 

section, Section 2, provides a brief introduction to AAL systems, presenting the European AAL 

roadmap and typical AAL system implementations. Section 3 describes the standards used for these 

types of systems, while Section 4 describes in greater detail Standard IEEE 21451, the one used for the 

design of the prototype presented in Section 5 of this paper. Section 6 includes the evaluation of  

the prototype and the integration in a use case in Section 7. The paper concludes with the results  

and discussion. 

2. AAL Systems 

AAL, as defined in [3], refers to intelligent systems of assistance and represents a paradigm  

shift—in society as well as technology—that will walk hand in hand with “human-centred computing”,  

with the emphasis laying on user friendliness, situation awareness and distributed service support for 

human interaction. Their emergence provides a solution for the aging population. From this 

perspective, different projects have addressed the economic and social problems raised by aging 

populations. The most popular solutions for addressing the problem are those based on monitoring 

people at home, which can reduce the costs of caregivers, trips to clinics or hospitals, etc. It also makes 

them more independent, increasing their quality of life. 

2.1. Components of AAL Systems 

The AAL system structure is defined in [4], which presents a roadmap for AAL. It describes the 

main trends and analyses them from a demographic, economic and technological point of view. This 

document defines a reference architecture model that has been presented in the European project 

MyHeart [5] for remote patient monitoring. 

One of the contributions of this document is the scheme presented in Figure 1, a three-layer 

networking approach to enable communication and connectivity between devices and services in the 

area of AAL. It is divided in the following components: 
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• Personal Area Network (PAN) and Local Area Network (LAN) devices: sensors and actuators 

that can be worn by the subject and stationary sensors located in the environment. 

• PAN and LAN interface: for the connectivity, communication and data exchange between PAN 

and LAN devices with the Application Hosting Device. 

• Application Hosting Device: in charge of four main tasks, communication with the PAN and 

LAN devices, communication with Wide Area Network (WAN) services, data storage and 

interaction with the user.  

• WAN Interface: connects the Applications Hosting Device with external services via Internet. 

• WAN Services: services that process, store, and execute actions with the obtained data. 

 

Figure 1. Structure of an AAL system as defined by the AALIANCE Ambient Assisted 

Living Roadmap (Ambient Intelligence and Smart Environments) [4]. 

2.2. Solutions in the AAL field for Monitoring of the Elderly 

As previously stated (Section 2) AAL systems are presented to solve the problems arising from the 

increasing aging population. In this area there are two main solutions for monitoring the elderly at 

home: wearable sensors and smart homes. Both solutions are based on the use of sensors to gather data 

from the subject and/or the environment. The type of sensor, its interface, the transmission technology, 

etc. varies for each situation, making integration a challenge. 

2.2.1. Wearable Sensors 

Although a wearable sensor cannot be an AAL solution on its own, it can be part of one by 

providing relevant data about the subject. This type of solution involves one or more sensors that are 

always carried by the subject. Nowadays most of the population uses a smartphone, which integrates 

different kinds of sensors such as accelerometers, gyroscopes, global positioning systems (GPS), etc, 

but there are also sensors that can be in the normal clothes that we wear. 

Wearable sensors are used for many purposes [6]:  
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• Assisted living, activity recognition, the use of wearable sensors for activity recognition is 

usually based on the use of one or more accelerometers [7], for fall monitoring [8] and other 

kinds of applications.  

• Continuous health and behavioural monitoring, where Wearable Health-Monitoring Systems 

(WHMS) allow the monitoring of physiological measures [9]. 

• Rehabilitation, wearable sensors, such as accelerometers [10] are used to provide support in 

rehabilitation processes. 

Wearable sensors can provide several measures, for example, blood glucose, cardiac activity, blood 

pressure, etc. They go wherever the user goes; this means that the user will not go out of the area 

covered by the sensors. They don’t require expensive installation or maintenance. On the other hand, 

they require the user to be a very active part of the system. The user has to remember to carry the 

sensors every day and, as they are powered by batteries, their autonomy is low, and they must be 

recharged quite often. 

2.2.2. Smart Homes 

The three levels of solutions for monitoring people at home are described in [11]. Smart houses are 

on the highest level. Health Houses, equipped with a set of sensors are able to evaluate many different 

variables. There are several home monitoring implementations [12,13] using a high level solution: 

• The multipurpose in-home monitoring platform presented in [14] implements a monitoring 

system based on ZigBee. ZigBee and Bluetooth are the most popular transmission technologies 

used for AAL and health applications [1] due to their low power consumption. A “sensor common 

interface” has been developed for this platform. The main function of this interface is to separate 

the radio technology from the measurement hardware. It has been noted that the lack of common 

standardised communication interfaces is still a huge problem for WSN developers. Other issues 

such as acceptability problems have also been encountered. For instance, bed sensors were 

excluded in the first trial because of the anxiety caused by the technology. 

• Another solution [15], also based on ZigBee wireless sensors, introduces two wellness functions to 

determine the wellness of the elderly. It is difficult to define the term wellness completely because 

the term changes according to different influential factors such as culture, experience, belief, 

religion, context, etc. They estimate the wellness of a person based on detecting abnormalities in 

the normal duration of the tasks. 

• Another approach to home monitoring uses the electrical power line to perform the activity 

recognition [16]. Based on the idea that daily activities are strongly associated with rooms and 

electrical activities detected in them. It is important to assign weights to each electrical device 

based on the context. For instance, turning on the electric hob is more indicative of the activity 

of cooking dinner than turning on the kitchen light. 
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2.2.3. Integration 

The solutions in the field of AAL involve a heterogeneous set of devices. The integration of these 

devices is an important problem to be addressed. The interoperability of the systems facilitates the 

integration of the components by making possible the information exchange. 

For the house environment, knowing the importance of the interoperability, the Ambient Assisted 

Living Joint Programme supported the action called “Support Action Aimed at Promoting Standards 

and Interoperability in the Field of AAL” [17]. Several projects (openHAB [18], universalAAL [19]) 

and initiatives (Home Electronic System [20], Open Service Gateway Initiative (OSGi) [21]) have 

focused in this area. They provide support to a set of devices from different manufacturers. However, 

there is still the needed of supporting a wide range of sensors, specially support for OEM sensors. In 

the healthcare field, there are also relevant organizations working towards the interoperability of 

mHeatlh products, such as Continua Alliance [22]. 

As shown there are many projects and initiatives that work on the standardization of different levels 

and fields, but some publications emphasize a lack of standardized interfaces for heterogeneous sensor 

networks, for AAL or other applications, as stated at [11,14,23,24]. The lack of standardization of the 

sensor interfaces decreases the interoperability as it increases the efforts of data exchange due the need 

of implementing proprietary interfaces. The prototype presented in this paper proposes a solution to 

promote traditional sensors, with a non-standardized interface to a smart status, by providing a 

standardized interface and access to a user network.  

3. Standards for WSN in AAL Systems 

The main point of the use of standards is to provide a standardized interface for sensors and 

actuators to encourage the integration of several AAL solutions by making easy the interoperability 

among them. In the literature, one finds two main standards that provide this interoperability for 

WSNs: IEEE 11073 defined for medical devices and, the one used in this paper, IEEE 21451 defined 

for transducer networks and which is not limited to the medical field. 

3.1. IEEE 11073 

The ISO/IEEE 11073 standards enable communication between medical, health care and wellness 

devices and with external computer systems. They provide automatic and detailed electronic data 

capture of client-related and vital signs information, and device operational data. This standard has 

been used by some authors [25,26] and was dismissed at [27] because it is too burdensome for systems 

with low memory requirements and low consumption and requires high amounts of available RAM, 

large packet length and it does not provide plug-and-play support. This standard was updated in 2010 

with a new profile added to deal with these specific needs. ISO/IEEE 11073—part 20601 [28] resolves 

all the previously mentioned issues. 

3.2. IEEE 21451 

The IEEE 21451 [29] standard has been designed to standardize the definition of Transducer 

Electronic Data Sheets (TEDS) for each transducer and the data sending and reception and transducers 
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description in instrumentation systems and control/field networks such as WSNs; it is not restricted to 

a single transmission technology and can operate with the most popular ones (ZigBee, Bluetooth, etc.). 

This standard covers the standardization needs in Body Area Networks (BANs). It defines a 

standard interface for sensors and actuators providing flexibility and plug-and-play support when 

connecting different types of transducers within a network. The eight sections in which the standard is 

divided give us an idea of capabilities and the wide range of technologies covered in its definition: 

• 21451.0, defines the basic functions required to control and manage smart transducers, common 

communications protocols, and media-independent TEDS formats. 

• 21451.1, defines a network-neutral application model that will reduce the effort in interfacing 

smart sensors and actuators to a network.  

• 21451.2, defines a digital interface for connecting transducers to microprocessors. 

• 21451.3, defines a digital interface for connecting multiple physically separated transducers that 

allows multidrop, hot swapping, self-identification and configuration. 

• 21451.4, defines the protocol and interface that allows analogue transducers to communicate 

digital information with an IEEE 21451 object. 

• 21451.5, defines a standard for wireless communication methods and data format for transducers. 

• 21451.7, defines data formats to facilitate communications between radio frequency identification 

(RFID) systems and smart RFID tags with integral transducers. 

The wide range of available technologies and functionality makes this standard suitable for many 

different situations. As it is more general than IEEE 11073, in this work, IEEE 21451 has been used 

for the design and implementation of the prototype, which is presented in the following sections. 

4. Basic Structure of the IEEE 21451 Standard 

Let’s think about the implementation of a system that triggers an alarm on your laptop when the 

temperature provided by an external sensor goes over a set threshold. In a traditional system the sensor 

must be connected to another computer or embedded system (points 1, 2 and 3 of the Figure 2). The 

sensor interface is proprietary of the manufacturer and it is different for each manufacturer. This means 

that the embedded system or personal computer must implement this specific interface (points 3, 4 and 

5 of the Figure 2). This intermediate system must also implement the methods for polling data from the 

sensor and sends it to the user’s laptop. Again we require a new interface for this communication. The 

data has to be sent to the user’s laptop, but to perform this action the commands to access the data and its 

structure must be specified. Finally, a user’s application is required to read the data from the network and 

trigger the alarm. The aim of the use of 21451 is to standardize the whole process making the 

integration between sensors and applications much easier. 

As shown earlier (Section 3), IEEE 21451 is used more widely than the IEEE 11073 standard. This 

standard aims to promote transducers to a smart status by defining a smart transducer interface. For the 

implementation of the prototype we have considered just the implementation of sensors, not actuators, 

that is why from now on all the descriptions will refer to sensors, even the standard contemplates also 

the interface for transducers (sensors and actuators). The standard considers that a sensor is smart 

when it has the following three features: 
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• It is described by TEDS. TEDS are fundamental in the standard as they define the sensor behaviour. 

• Data and control are digital. 

• Triggering, status and control are provided, this means that it must be possible to control them 

when reading data, checking the current status and adjusting the settings of the sensor. 

 

Figure 2. Gathering the data from the temperature sensor (5) requires the programming of an 

embedded system or personal computer (3), an application at the user’s laptop (1) and two 

interfaces, one (2) for the communication between the user’s laptop and the embedded 

system and other to access the sensor (4). 

To achieve this goal the standard defines two modules, which provide a standardized interface and 

network capabilities for the sensor (Figure 3). These modules are the Transducer Interface Module 

(TIM) and the Network-Capable Application Processor (NCAP). 

 

Figure 3. Smart sensor structure, as defined by IEEE 21451.0. The structure consists of 

three elements: a traditional sensor, a standardized interface and user network access to 

provide network connectivity. 

Making an analogy with the temperature sensor example, the smart sensor covers points 2, 3, and 5 in 

Figure 2. To trigger the alarm, using the standard, the implementation is reduced to the implementation 

of the user’s application on the computer laptop, which has to implement the application interface  

(points 1, 2 in Figure 2). 

4.1. Transducer Interface Module  

This contains the interface, signal conditioning, data conversion and, sometimes, the transducer. 

The TIM provides the sensor with the capabilities to be integrated into a system without needing 

drivers. To achieve this requisite the TIM uses the TEDS and a command set. TEDS describe how to 

access the TIM and its behaviour. The command set allows the acquisition of the data and TEDS read 

and writing. For example, one service is to periodically send data to the NCAP and there is a specific 

command to establish this kind of operation. 
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Basically, all the TIMs can implement a group of services defined by the standards. For example, it is 

obvious that there has to be a way to access the data provided by the TIM. Every manufacturer defines 

a set of commands to access this data, but these commands are different between manufactures. This 

standard defines a service to access the data and also a set of commands to read data from the sensor, 

in other words, to access the service. A TIM’s structure is presented in Figure 4 and it implements the 

following functions: 

• Communications: this communication module refers to the communication between the NCAP 

and the TIM. Basically, it is an interface that receives the NCAP commands that request a 

specific service and returns a reply once the service is executed. 

• Services: providing services to the NCAP such as polling, calibration, description, etc. 

• Signal conditioning and data conversion: conditioning the signal provided by the sensor and 

conversion from analogue-to-digital and from digital-to-analogue. 

 

Figure 4. TIMs’ general functional structure. TIM communications provides connectivity 

between the TIM and the NCAP. TIM services implement services to the NCAP to control 

or get/send data to the transducers. Several transducers can be connected to one TIM. 

The TIM is able to support more than one sensor, in this case a common interface for each sensor is 

provided. In the example used to illustrate the standard components when a command, coming from 

the NCAP, requesting data from the sensor arrives at the communication module, the corresponding 

service reads the data of the temperature sensor that is connected to the analogue-to-digital converter. 

The TIM solves points 5, 4 and part of point 3 in Figure 2. The TIMs implement the manufacturer’s 

interface to acquire the data from the temperature sensor (point 4). This includes part of point 3 

because it implements the standard services to acquire the data from the sensor, but it does not provide 

access to the user’s network, so basically it acts as a bridge that connects the standardized services to 

access the data from the temperature sensor to the one provided by the manufacturer. Once the data is 

read it is sent back to the NCAP. 

4.2. Network Capable Application Process 

The NCAP mediates between the TIMs and the user network. It provides a network interface 

providing the communications and services to communicate the sensors with services in the user 

network. The TIM by itself does not have the capability of being accessed by a user network, it just 

provides an interface to access the implemented services. The NCAP is in charge of this capability; its 
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aim is to provide an access to the sensor through a user network. For example, if a user wants to read 

the temperature value provided by a sensor the NCAP can transmit that information using the WIFI 

network. Then an application can present the data in the user’s computer. The NCAP structure is 

presented in Figure 5 and it implements the following functionality: 

• Communications: this communication module also refers to the communication between the 

NCAP and the TIM. It is analogous to the communication module at the TIMs.  

• Services: provides services to the NCAP application such polling, calibration, description, etc. 

Basically this module receives the application’s requests and transmits the request to the TIMs. 

For instance, the NCAP has an application that requires reading the data from a contact sensor. 

The application requests the data to the NCAP services module and the service module requests 

the data from the TIMs. 

• NCAP Application: provides services to the user network. 

 

Figure 5. NCAPs’ general functional structure. NCAP communications provide connectivity 

between the TIM and the NCAP, the NCAP services are used to control and get/send data 

from/to the TIM and NCAP application provides services to the user. 

The behaviour of the NCAP is easier to understand using the example given at the beginning of this 

section. The NCAP application is defined to send data from the temperature sensor via the user 

network, this means that it is able to send data through the user’s WIFI network, but first it needs to 

read the data from the temperature sensor. To do so it accesses the corresponding service (defined by 

IEEE 21451). The service requests the data to the sensor by sending the command to the TIM via the 

communication module. The same module that receives the reply and the service sends the data to the 

NCAP application. Back to Figure 2, it implements the part of point 3 that is not covered by the TIMs, 

in other words, the access to the user network (point 2 and part of point 3 of Figure 2). 

4.3. Transducer Electronic Data Sheet 

Finally it is important to reiterate that the standards use TEDS. TEDS are electronic data sheets that 

provide descriptions and access to a TIM and the transducers associated with a TIM. They store the 

transducer identification, data range, measurement units, calibration, correction data, manufacture-related 

information, etc. The design and implementation based on the previously presented AAL structure and 

the TIM and NCAP scheme are described in the following sections. 
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Let us go back to the example given at the beginning of this section. The different elements needed 

for the implementation of the system are covered by the structure of this standard. The process goes 

through the following steps (the detection and identification of the sensor is omitted as it is illustrated 

in detail in Section 7): 

(1) The laptop application requests the data from the sensor. This means that the application 

communicates with the NCAP application module, via WIFI and using a standard command, to 

request data from the temperature sensor. 

(2) The NCAP applications request the data from the NCAP service in charge of this specific function.  

(3) The NCAP service requests the data from the pertinent TIM by sending the command defined by 

the standard through the communication module. This command specifies the TIM and the 

sensor in the TIM. 

(4) The TIMs read the data from the sensor and the data goes all the way back. 

(5) The application reads the data and triggers the alarm if it is over the threshold. 

This process is transparent to the application that just requests a service from the NCAP. The 

application just needs to implement the application interface (point 2 of Figure 2) and the smart sensor 

will be in charge of requesting the data to send the requested temperature data. Any module of the 

system could be replaced by a new one and, as long as it is compliant with the standard, no change is 

needed in the application. 

5. Standard Based Prototype Design 

This section describes the design followed to implement the prototype. The design is split into two 

phases. The first phase describes the mapping of the IEEE 21451 standard with the structure of the 

AAL systems described in Section 2.1. The second phase presents the design of the two main 

components, TIM and NCAP (Section 4), of the standard IEEE 21451 and the physical components. 

Finally it describes the transmission technology used between the TIM and NCAP and an http server 

that provides access to the NCAP through the user network. 

5.1. IEEE 21451 Mapping 

Figure 1 presented the three-layer networking approach to enable communication. The connectivity 

between devices and services in the area of AAL and their components have already been described 

(Section 2.1). This structure has been used in order to design the prototype; the idea is to cover all the 

three layers with the standard IEEE 21452. To achieve this goal the following mapping has  

been done: 

• Sense and act: This layer of the roadmap is implemented by the TIMs, as Personal Area 

Network (PAN) and Local Area Network (LAN) devices. IEEE 21451 upgrades a sensor 

providing it with plug-and-play features. Using this feature there is no need to differentiate 

between LAN and PAN sensors. i.e., as soon as a person is close (inside the network area 

coverage) to an environmental sensor (LAN sensors) the sensor can be incorporated dynamically 

to the Application Hosting Device. This means that the subject does not need to do anything, just 
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get close enough to the sensor and the Application Hosting Device will start to receive data from 

it. Sensors in this layer are mapped as TIMs in the standard.  

• Local aggregation, reasoning and interaction: The Application Hosting Device is implemented 

by the Network Capable Application Process (NCAP). The data from the TIMs (sense and act 

layer) are aggregated at the NCAP. The NCAP should be capable of processing the data to 

perform the reasoning required by this layer. 

To aggregate the data a set of services and the communication between layers has to be established. 

We consider the use the IEEE 21452.0 section to define the services and the IEEE 21451.5 section for 

the communication. The services provided to the remote aggregation and reasoning layer are covered 

by the same section of the IEEE 21451.0 standard. The communication is done via HTTP protocol. 

• Remote aggregation and reasoning: Consisting of WAN Services that are implemented by the  

user application. 

There are two interfaces that provide communication among the three layers: 

• PAN and LAN interface, the services interface is provided by the TIM specification. The 

communication interface is defined in IEEE 21451.5. 

• WAN Interface, this interface is an implementation of the Hypertext Transfer Protocol (HTTP) 

Application Programming Interface (API) defined in IEEE 21451.0. 

5.2. Components Mapping 

This section describes the steps to design the prototype: the system structure, choosing the 

components and mapping the functionality of the standard. The prototype has been designed by taking 

into account, what has been previously described in Section 4 and following the structure defined by 

the IEEE 21451 standard (Figure 6). 

 

Figure 6. General structure of the IEEE 21451 prototype. It illustrates the mapping 

between the components that implement the prototype and the modules and sections 

defined by the standard. 5.2.1. Transducer Interface Module 
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As previously stated (Section 4.1) the TIM provides the sensor with a common interface based on 

the TEDS and a command set. The design and implementation of the TIM has been done using a 

CM5000 Advanticsys mote [30], which uses TinyOS as the operating system and is programmed using 

nesC and two sensors. 

• Mote: the CM5000 mote is an IEEE 802.15.4-compliant wireless sensor node based on the 

original open-source TelosB/Tmote Sky platform. This mote uses TinyOS [31], which is a free and 

open source operating system; it is component-based and designed for wireless sensor networks.  

• Sensors: two different sensors are included in the prototype, a temperature sensor and an 

accelerometer sensor. The temperature sensor is built in the mote and the accelerometer sensor is 

connected via the Analog-to-Digital Converter of the mote. 

TinyOS [32], as previously mentioned, is an open source, flexible and application specific operating 

system. It includes a library of components for accessing the sensors, network communication 

protocols, etc. These components can be assembled based on the requirements of the specific 

application to be developed. TinyOS motes have been used in several research lines. There are many 

important companies involved in the development, Crossbow Technology Inc. since 1995, Advanticsys 

that operates worldwide, etc. The TinyOS community is growing, and with it, the support includes 

thousands of developers and users in dozens of countries, plus hundreds of companies, universities, 

and government institutions. Another important aspect of TinyOS is that it is more efficient in terms of 

power consumption than other popular operating systems, such as MOS and Contiki [33]. 

These components have been mapped with the standard IEEE 21451 as follows: 

• Communication module. Two protocols are used for the implementation: IEEE 802.15.4, 

implemented by the RF chip of the mote, and 6LoWPAN implemented, in nesC code, at the 

flash memory in the mote. 

• TIM services. They have been implemented, in nesC code, at the flash memory in the mote.  

• Signal conditioning and data conversion. It is performed by the ADC integrated in the mote. 

• Sensors: 

o Temperature sensor, this sensor is integrated in the mote. It is connected to an internal 

ADC. This means that the access to this sensor is done in the same way that an external 

sensor. The sensor model is a Sensirion @SHT11. 

o Accelerometer sensor, the accelerometer model is ADXL335 [34] from Analogue Devices. 

It is a small, thin, low power and three-axis accelerometer with signal conditioned voltage 

outputs. The accelerometer is composed of three sensors as it provides measurement for 

three axes (x, y, z). The sensor is connected to a different ADC using the EX1000  

extension board. 

5.2.2. Network Capable Application Process 

The NCAP mediates among the TIMs and the user network. The implementation of the NCAP has 

been done by using the CM5000 mote and a standard personal computer. The mote acts as a bridge for 

data reception and transmission while the rest of the tasks take place in the computer. 
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• Mote: The CM5000 is the same mote model as the one used in the TIM. 

• Computer: A standard personal computer with a Linux distribution, Ubuntu 10.04 Long Term 

Support (LTS) and programmed in JAVA. 

Its functionality is more complex than the one performed by a TIM. Using a computer as the NCAP 

reduces the mobility of the system but increases the available memory and processing capabilities, 

which improves the performance and complexity that the NCAP requires. Implementing this 

functionality in a mote is hard due to the memory and power limitations. The computer also provides a 

gateway to the user network. The NCAP has been mapped in a similar way to the way it was done with 

the TIM. The components’ functions for the NCAP are: 

• Communication module. It is similar to the TIM design. 

• NCAP services. These services have been implemented, using JAVA, at the computer. 

• NCAP application. It depends on a specific implemented application. As this papers presents a 

general prototype that is not used for a specific scenario this application module is not covered. 

5.2.3. Transmission Technology 

The 21451.5 section of the standard describes the different wireless transmission technologies that 

can be used to communicate the NCAP and the TIM. For our prototype, 6LoWAN was chosen. IP is 

used as it provides many advantages, as described in RFC 4919 [35]. The pervasive nature of IP 

networks allows the use of existing infrastructure, IP-based technologies already exist, are well-known, 

and proven to be working, tools for diagnostics, management, and commissioning of existing IP 

networks and IP-based devices can be connected readily to other IP-based networks, without the need for 

intermediate entities such as translation gateways or proxies. 

In order to get all these advantages into WSN, with the challenge of reducing power consumption 

and the size of the devices, the Internet Engineering Task Force (IETF) group working on 6LoWPAN 

has emerged. The aim of this group is to develop a model that conforms IPv6 to the 6LoWPANs over  

the IEEE 802.15.4 standard. 6LoWPAN implementations have been used successfully in several  

WSNs [36,37]. 

There are some implementations of 6LoWPAN that use the specifications of the IETF working 

group. The three main implementations are analysed in [38]. Of these three implementations BLIP and 

Sicslowpan are the ones that have better performance and both are good choices for building the 

prototype. We have chosen BLIP [39] as it runs on TinyOS and has been implemented by the same 

developers of the IOS, University of California Berkeley. 

5.2.4. HTTP Server 

The HTTP server implements the API defined by the standard. The aim of the API is to provide 

access to the NCAP to get the TEDS and data provided by the transducers. The data provided is 

formatted as XML in the prototype. 
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6. Evaluating the Prototype 

This section describes the tests that have been done to analyse and study the behaviour and 

performance of the designed and implemented prototype. Three different types of tests have been made 

over the implementation: 

• Compliance test, to analyze the correct behavior of the prototype. 

• Performance test, to evaluate the efficiency of the prototype 

• Autonomy test, to estimate the maximum autonomy of the system. 

6.1. Compliance Tests 

The aim of these tests is to analyse the implementation of the prototype by comparing the traffic 

generated with the theoretical one described in the documents that define the standard. That traffic has 

been used to determine the correct behaviour of the protocol based on the IEEE specification. The 

traffic has been captured by a protocol analyser (Wireshark [40]) and compared at byte level with the 

standard definitions.  

For example, for the standard “command read TEDS segment” the data captured with Wireshark 

can be analysed and compared with the standard specification, Figure 7. On the right hand side of this 

figure the table shows the theoretical values for the fields that make up a typical “read TEDS segment” 

command as specified by the standard. The left part presents the array of bits captured by Wireshark 

grouped by the same fields that are included in the mentioned table. As one can see, these fields share the 

same values. 

 

Figure 7. Compliance of the Read TEDS Segment command. The table provides the 

theoretical values defined in the IEEE standard. The data on the left presents and interprets 

the data captured during a real transmission. 

6.2. Autonomy Tests 

It is important to determine the autonomy of the system, that is, how long the prototype can be 

acquiring and transmitting data without needing to recharge the batteries. The autonomy of the system 

is determined by the TIMs and these are powered with two AA batteries. 

To carry out the tests a NCAP has been connected to a TIM. At the beginning of the test the NCAP 

requests to the TIM the corresponding TEDS. The tests were run three times for two configurations: 

without connecting a sensor, and connecting an accelerometer to the TIM. 
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After this initial process the NCAP requests the TIM to periodically send data. The data that is sent 

by the TIM is the data acquired for the battery sensor. As data arrives to the NCAP the time of arrival 

is recorded in epoch format. The epoch format measures the time in milliseconds since 1 January 1970. 

Subsequently continuous data samplings are sent from the TIM at regular intervals. This data 

contains the battery status at the time of mailing. For each message received in the NCAP the battery 

status and the time of receipt of the message is logged. The test ends when the TIM receives no messages. 

The results of this test are shown in Table 1. The number of hours between the initial time and the 

end time is provided in the following formula: 

(1367987 s − 1367908 s)/3600 s = 21.97 h 

The time difference between the start and end of the test is 21.97 h. The tests made with and without 

the accelerometer sensors provided the same results. The accelerometer had no impact on the total 

autonomy of the system. The autonomy is basically determined by the power consumption by the radio 

chip that is always active, as BLIP implementation keeps the mote at the awaken state. 

Table 1. TIMs autonomy. Initial and end time of the tests and the voltage of the battery. 

Initial Time End Time Initial Battery End Battery 

1,367,908 s 1,367,987 s 3 V 1.5 V 

6.3. Performance Tests 

We conducted tests to study the performance of the implementation based on the number of nodes 

that make up the network and the sampling frequencies of each node. Because of the small number of 

motes, i.e., TIMs available at the laboratory, a TOSSIM simulation was built to study the performance 

of the standardized prototype. The performance analysis was done using the following methodology: 

(1) The protocol behavior was simulated and validated. TOSSIM does not implement BLIP, this is 

why the protocol behavior had to be simulated.  

(2) Simulations of the communication between the NCAP and TIMS. These simulations were 

performed by TOSSIM using the validated simulation code of the first step. One simulation 

was conducted for the different values that the variables could take, for frequency: 30 ms, 60 

ms and 90 ms and the numbers of TIMs were increased from 1 to 14. The top TIMs value was 

selected during the tests based on the low performance of the network when the number of 

TIMs was high. Instead of running many simulations with low message exchanges for each 

simulation, each TIM exchanged 2001 messages with the NCAP. The number of messages 

exchanged was set high to have a relevant number of transmissions to make the results given by 

TOSSIM simulator more accurate. 

(3) Statistics of the number of packets lost in the transmission were gathered. The statistics results 

are based on the simulation made by TOSSIM. 

TOSSIM is a simulation tool, which can make simulations using the TinyOS code. The main 

advantage is that the same code that runs in the mote is used in the simulation, but there is a problem 

when using TOSSIM for evaluating the performance of the protocol. TOSSIM cannot simulate BLIP 

implementation. To make the performance study, BLIP traffic was analysed, and simulated in 
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TOSSIM. The results of the simulation have been compared with the results of real tests (prototype 

test) to validate them. The table in Figure 8 presents the time (in ms) for the message exchange to get a 

TEDS by the NCAP. Different tests have been made by modifying the size of the messages. The time 

taken to complete these tests, in the simulation and the prototype, is presented in the table and graph of 

Figure 8. One can see that the results of the simulation and the prototype are similar. 

 

Figure 8. Protocol performance: implementation vs. simulation. The scenario presents  

two TIMS transmitting messages with different sizes. The table presents the delay due to 

the message composition and transmission for the implementation and simulation. The 

graph represents the same values to visualize them. 

Once we had tested that the BLIP simulation in TOSSIM behaved like the prototype, we conducted 

several tests in TOSSIM by modifying the number of motes (TIM) and sampling frequency. The 

results of these simulations are presented at Table 2 and Figure 9.  

Figure 9 presents the number of messages lost, these per cent is calculated as an average of the  

2001 messages exchanged by every TIM and the NCAP at the simulation. They provide the  

following information: 

• For sampling values below 30 ms, the number of lost messages is greatly reduced when the 

network has no more than three TIMs. However for a higher number of TIMs the loss of 

messages is excessive, reaching up to 50% with only five TIMs. 

• For sampling values of 60 ms for less than six TIMs the percentage of lost messages is reduced. 

Above seven messages the loss is quite high. 

• For sampling values of 90 ms, message loss is low for a number of TIMs up to 10 TIMs. This 

sampling value provides 10 data values per second, which may be more than adequate for a 

large number of applications. As presented in [1] a typical application does not include more 

than three sensors. Increasing the number of TIMs over this value increased of additional loss by 

10% for each new TIM. 
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Table 2. Results for the TOSSIM simulation with two variables: number of TIMs in the 

network and transmission frequency for each TIM. Results present the average messages 

received at the NCAP per each TIM.  

TIMs 30 ms 60 ms 90 ms 

1 2001 2001 2001 
2 2000 2001 2001 
3 1934 2001 2001 
4 1603 2000 2001 
5 1205 1968 2000 
6 929 1897 2000 
7 739 1801 1980 
8 588 1573 1951 
9 544 1307 1879 

10 401 1090 1817 
11 332 922 1749 
12 275 775 1568 
13 234 657 1382 
14 199 567 1206 

 

Figure 9. Lost messages due to the TIMs number. Data is provided for three sampling 

frequencies, 30, 60 and 90 ms. The percentage of messages lost due to collisions are 

showed on the Y axis while the number of TIMs is on the X axis. 

7. Use Case Application 

The use case presents a study where a sensor compliant with the IEEE 21451 standard was 

integrated into a previously implemented system. This was done by using the designed prototype. The 

aim of the use case was to show the advantages and disadvantages of the use of the prototype. This use 

case is based in a serious game developed at the same Department of Electronic Technology of the 

Universidad de Sevilla, as a master project. Serious games are an emerging research area and they are 

used for several purposes such as rehabilitation [41], education and health [42], etc. The game used in 

this use case is a serious game called “Aquaventure” (Figure 10) designed for people with reduced 
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mobility. The aim of the game is to stimulate eye-hand reflexes and increase awareness of the 

surroundings. This game was designed to be controlled with a keyboard or a push button to make the 

character jumps. 

 

Figure 10. Aquaventure game screenshot. This screen shows a capture of the serious game 

Aquiaventure used as a use case.  

This section presents the integration of the serious game with the prototype. The main idea is to use 

an accelerometer as a controller for the game. The typical solution is to implement a driver that 

provides the interface between the game and the accelerometer. By using the prototype, the game can 

detect the new sensor and incorporate it in the game without any setup or configuration. The 

accelerometer only has to turn on. 

7.1. Integration 

The system implementation and the integration with the game are done by following the system 

structure described in this paper (Figure 11). The reference model described in [29] is a reference for 

the design of the prototype. Based on this model the prototype implements the PAN and LAN devices 

and the application hosting device. The Aquaventure game and the NCAP interface application 

implement the WAN services. 

The integration with the Aquaventure game has been done using an intermediate application (NCAP 

interface application), which connects this game with the WSN. This is done using the HTTP API 

defined by the 21451.0 standard. The NCAP interface application is in charge of communicating with 

the HTTP server integrated in the NCAP to discover new TIMs and transducers. The other purpose of 

the NCAP interface application is to acquire the data from the accelerometer and transform this 

reading into events to interact with the Aquaventure game. 
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Figure 11. Aquaventure reference model based AAL reference model presented in Figure 1, 

including all the components described and defined in Section 5. 

7.2. Game Test 

The purpose of the test is to use an accelerometer as a controller of the game. By using the 

prototype the game can detect that an accelerometer is connected and start acquiring the data provided 

by the sensor. Based on this data a jump action can be triggered to interact with the game. The TIM 

and the accelerometer sensor are located in the user’s hand. The NCAP, NCAP interface application 

(Figure 12) and Aquaventure game are running on a PC. 

 

Figure 12. NCAP connect application. The application connects with the prototype  

(IP 150.214.141.205:5000), acquires the information and data from the sensors connected in 

the prototype and presents it in the front-end (vector group, data model, sensor data, etc.). 

The right side of the figure presents an example of the XML defined for a transducerChannel 

TEDS acquired by the NCAP connect application during a transmission. 
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When the game starts the sensor is shut down, so there is no active controller. The NCAP 

application is running in the background and checks periodically for an accelerometer using the 

discovery process. Once the accelerometer is connected the discovery process performs all the steps. 

The accelerometer is detected, Figure 12 shows an example of the TransducerChannel TEDS acquisition 

log, and at this moment the acquisition of data begins. The data is acquired by the NCAP interface 

application and triggers an event when the x-axis measure exceeds a defined threshold. For this 

scenario the threshold has been set manually without any criteria as this is outside the field of the 

study. The events are sent to the game that performs a jump.  

8. Conclusions 

This paper presents a prototype that provides an open source interface which is easily adaptable to 

assisted environments. Given the advantages provided by WSNs: ease of use, reduced risk of failure, 

greater comfort, improved mobility, etc. the use of a standard provides a standardized interface that 

facilitates the integration of different kind of sensors and solutions.  

The prototype presented has been designed using the IEEE 21451 standard, TinyOS motes and 

6LoWPAN. IEEE 21451 provides a standardized interface; TinyOS motes is a free and open source 

operating system and hardware; and 6LoWPAN is a transmission protocol that includes the advantages 

of IP. This prototype includes two sensors, an accelerometer and a temperature sensor. An 

accelerometer is normally used as a body sensor, and a temperature sensor can be used as 

environmental sensor. This prototype can be used as part of the solutions for AAL systems by 

providing a standard interface and reducing the need for knowledge of proprietary interfaces to control 

and acquire data from sensors. As we mentioned in our discussion of the state of art (Section 2.2), some 

solutions [14] have had to implement their own common interfaces to access the sensors of the system. 

The use of the prototype also contributes as a path towards the integration of the solution with other 

systems. There have been some studies to integrate IEEE 21451 with other standards, as HL7 and 

IEEE 11073 [43,44]. Three different types of tests have been made over the implementation: 

• Compliance: The traffic generated by the implementation has been used to determine the correct 

behaviour of the protocol based on the IEEE specification.  

• Autonomy: Power consumption tests have established the autonomy of the system at around  

22 h. The autonomy is determined by the power consumption of the radio chip that is always 

active, as BLIP implementation keeps the mote in the awaken state. 

The consumption of the radio chip implies that the sensors used are not an important factor due to 

the autonomy of the system. While experiments were also conducted with and without the 

accelerometer, the autonomy remains similar for all the tests, and the impact of the sensor is 

imperceptible. The 22 h of autonomy allow the subject to carry the sensors for one day without having 

to recharge the sensors that she or he is carrying. Static sensors deployed in the house or the 

environment could use an external power source. 

• Performance: To study implementation performance, tests have been made based on the TIMs that 

make up the network and the sampling frequencies of each one. The system has been shown to 

be efficient in environments that have a high number of nodes (up to ten) and with high 
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sampling frequencies (up to 90 ms). This is a high number of sensors (TIMs) for these systems. 

As shown in [1], the use of WSN applications usually involves two or three sensors. 

It is a fact that the efficiency of the system and the number of TIMs for good performance is limited 

by the application. For example, if the data source is a temperature sensor located in a room, the 

impact of losing some data is not very serious as the temperature is unlikely to vary in a short period of 

time. In contrast, the data returned by a proximity sensor may vary in a short period of time, in that 

case the number of TIMs will have to be reduced to guarantee the minimum data loss to have a  

reliable system. 

As TOSSIM cannot simulate BLIP, to do the performance study, BLIP traffic has been analysed 

and simulated in TOSSIM. The results of the simulation have been compared with the results of real 

tests to validate them. Finally, the prototype has been integrated in a serious game. Aquaventure is a 

game that was not developed to be used with the IEEE 21451 standard. As has been demonstrated, the 

integration with the prototype allows the game to detect when an accelerometer sensor enters the 

system and is able to acquire the data provided by this sensor to control the game. The game does not 

need to know the specific interface that the manufacturer has implemented in the sensor. Typically, 

without the use of the standard, the programmer has to use a specific driver and adjust the code of the 

application with the driver API to be able to acquire the data from the sensor. The proprietary interface 

is transparent from the implementation point of view. The developer just needs to know the interface 

defined by IEEE 21451 to access the sensor information as well as the data.  

However, the use of the prototype does not just use a standardized interface without knowing the 

proprietary interface of the sensor. Using the prototype the system is more versatile. The different parts 

that compose the system can be replaced by other ones as long as they are compliant with the standard. 

For instance, one can change the accelerometer used in the study case for another accelerometer which 

is compliant with the standard.  

The integration of the prototype with the game reduces the work of the implementation to the  

extent that knowledge of the manufacturer interface is not required; this feature is applicable to  

AAL solutions.  

As described in the study case (Section 7) the sensor is added as a controller interface to the system 

as soon as it is turned on and within the network area coverage. This feature raises several interesting 

possibilities. Combining heterogeneous environmental sensors creates a more versatile solution [45] and 

this prototype does not just allow us to adding personal sensors, it also permits integration with 

environmental sensors. These sensors can be automatically incorporated into the system as soon as they 

are in the range area of the network (WSN).  
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