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Abstract: Leaf area index (LAI) is one of the key biophysical variables required for  

crop modeling. Direct LAI measurements are time consuming and difficult to obtain for 

experimental and commercial fruit orchards. Devices used to estimate LAI have shown 

considerable errors when compared to ground-truth or destructive measurements, requiring 

tedious site-specific calibrations. The objective of this study was to test the performance of a 

modified digital cover photography method to estimate LAI in apple trees using conventional 

digital photography and instantaneous measurements of incident radiation (Io) and transmitted 

radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively 

to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed 

digital photography method (LAIM). Results showed that the LAIM was able to estimate 

LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, 

when k was estimated using an exponential function based on the fraction of foliage cover 

(ff) derived from images, the error was reduced to 18%. Furthermore, when measurements 

of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented 

an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, 

OPEN ACCESS



Sensors 2015, 15 2861 

 

 

helped to increase accuracy of LAI estimates using digital cover images for apple trees with 

different canopy sizes and under field conditions. 
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1. Introduction 

Accurate modeling of energy balance, gas exchange processes and light distribution occurring within 

the canopy of fruit orchards requires the characterization and assessment of canopy vigor and structure. 

Leaf area index (LAI) is one of the most important variables to assess canopy structure [1]. Moreover, LAI 

is a key variable used by a variety of physiological and functional plant models [2] and by remote sensing 

models at large scales [3–5]. 

Direct measurements of LAI in field conditions are extremely difficult to obtain for experimental and 

commercial fruit orchards. The usual technique to determine LAI is based on the analysis of destructive 

samples by collecting leaves and the subsequent measurement of their area using leaf area meters (e.g., 

Li-3100C; Li-Cor, Lincoln, NE, USA), or by digitally acquiring leaf scans and image processing. These 

methods are destructive, labor intensive, and can be significantly expensive when applied to large  

trees [6]. In general, these methods have been used to develop empirical allometric equations based on 

measurements of total leaf area relative to shoot length or plant area related to trunk diameter. Allometric 

equations are widely used to estimate LAI for different crops and to validate other indirect LAI estimation 

methods [7]. However, these equations are site-specific and may vary with changes in canopy size and 

climatic conditions [8,9]. 

Alternatively, indirect optical methods have been developed based on measurements of direct or diffuse 

light penetration through the canopy [10–13]. Different devices have been developed to estimate LAI using 

light transmittance measurements, such as: (I) the plant canopy analyzer (PCA) LAI-2000 (or 2200)  

(Licor Inc., Lincoln, NE, USA), which uses a fisheye light sensor that measures diffuse radiation 

simultaneously in five distinct angles [6,10,14]; (II) the DEMON (Centre for Environmental Mechanics, 

Canberra, Australia), which is based on measurements of direct radiation to estimate LAI [10,13];  

(III) SunScan (Delta-T devices Ltd. Cambridge, UK) and AccuPAR (Decagon Devices, Pullman, WA, 

USA), which measures photosynthetic active radiation (PAR) with wavelengths between 400–700 nm [10]; 

(IV) hemispherical and fisheye photography to assess canopy structure through image analysis. The 

problem with the latter imagery techniques is that they require a complex image analysis procedure and 

specific software [2,10,15,16]. The optical methods to assess LAI have been successfully tested for different 

crops. However, the direct application of these techniques requires the use of destructive measurements to 

calibrate the instruments for each specific condition, species and location since they usually underestimate 

LAI compared to direct measurements [10,16–18]. 

Due to the practical constraints of current methodologies available to estimate LAI, the development of 

a simple, accurate and practical method is required to assess the necessary parameters to estimate LAI, 

particularly under field conditions for experimental purposes. Recently, accurate and rapid estimations 

of LAI have been made possible through the development of a simple method that uses cover digital 

photography and gap fraction analysis [2,16–18]. The main objective of this study was to analyze the 
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performance of a modified automated procedure, proposed by Fuentes et al. [2,19]. This new procedure 

was developed to estimate LAI in apple orchards using a proxy light extinction coefficient (k) obtained 

from digital photography and instantaneous measurements of incident (Io) and transmitted radiation below 

the canopy (I) [20]. 

2. Materials and Methods 

2.1. Experimental Sites Description 

The study was conducted in the 2009–2010 agricultural season in two commercial apple orchards. The 

first trial (Trial 1) was carried out in an orchard planted in 2007 with apple trees cv. Cripp’s Pink/M-7, 

located in the Maule Region, Pelarco, Chile (35°25′L.S; 71°23′L.W., 189 m.a.s.l.). The planting distance 

was 3 m (between rows) × 1.5 m (between plants) (2,222 trees·ha−1) in East-West oriented rows with a 

Solaxe training system. The experimental plot had 10 trees with heights ranging from 2.5 to 3.0 m. The 

second trial (Trial 2) was carried out with apple trees cv. Ultra Red Gala/MM 111, planted in 2003 and 

located in the Maule Region, San Clemente (35°30′L.S; 71°28′L.W., 83 m.a.s.l.). The planting distance 

was 4 m (between rows) × 2 m (between plants) (1250 trees·ha−1) in East-West oriented rows with the 

Solaxe training system [21]. In Trial 2 the experimental plot had 12 trees with heights ranging from 3.8 

to 4.0 m (cv. Ultra Red Gala1) and 18 trees with heights ranging from 2.5 to 3.0 m (cv. Ultra Red Gala2). 

For both experimental sites, the topping was performed just above a lateral productive branch. The 

climate in both orchards is a Mediterranean type with a mean maximum temperature of 30 °C in the 

warmest month (January) and a mean minimum temperature of 3.5 °C in the coldest month (July). The 

mean annual rainfall is 700 mm, with a dry period of six months (November to April). In this study 

digital cover photography acquisition and canopy light interception measurements were carried out in 

February and April for apple trees cv. Ultra Red Gala and cv. Cripp’s Pink, respectively. 

2.2. Destructive Estimation of Leaf Area Index (LAI) 

Leaf area (LA) per plant was assessed for the 40 trees used in this study (10 trees cv. Cripp’s Pink,  

18 trees cv. Ultra Red Gala1 (3.8–4.0 m tall) and 12 trees cv. Ultra Red Gala2 (2.5–3.0 m tall)). After 

taking digital images and light measurements from tree canopies, plants were completely defoliated. 

Leaves were stored in cooler containers and immediately taken to the laboratory for analysis.  

A sub-sample of 200 g of fresh leaves per tree was taken and their areas were measured with a leaf area 

meter (LI-3100 Area meter, Li-Cor Biosciences, Lincoln, NE, USA.). This procedure allowed 

measurement of the specific leaf area (SLA) expressed in cm2·g−1. Total tree leaf area was obtained by 

multiplying the total leaf mass from the whole tree by the SLA obtained. Then, destructive leaf area 

index (LAID) was calculated by dividing total tree leaf area by the space assigned per tree (distance 

between rows multiplied by distance between plants, assuming equal size trees). The size of the  

sub-sample used in this study was validated in a previous study of apple trees in the same orchards 

through comparison between LAID estimated by the subsample and LAID obtained by measurements of 

total leaves of trees [22]. Furthermore, since fruits and branches also contribute to the light extinction 

through the canopy, digital image acquisition and light canopy interception measurements were carried 

out in the presence of fruits on the trees for comparative purposes between trials. 
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2.3. Digital Cover Photography Acquisition 

A conventional digital camera (Digimax A503, Samsung, Korea) with focal length of 36 mm and angles 

of view of 53.13° horizontal, 36.87° vertical and 62° diagonal (field of view (FOV) at 1 m distance equal 

to 0.964 m wide × 0.643 m high) was mounted on a tripod with a bubble level to ensure the camera was in 

the horizontal position for each image. Digital images were acquired with a resolution of 2048 × 1536 pixels 

in the Joint Photographic Experts Group (JPEG) format at the zenith angle from all plants as described by 

Fuentes et al. [2]. Digital images were collected with automatic exposure at 0.3 m from the ground 4 h 

before noon to avoid direct sunlight shinning into the lens of the camera. Apple trees were divided into 

four quadrants and four images were obtained per tree (Figure 1), resulting in a total of 160 digital images 

(40 trees). 

 

Figure 1. Example of typical upward looking digital images for an apple tree, considering 

the four quadrants defined with an image sub-division of 7 (49 sub-samples per each image). 

2.4. Canopy Light Interception Measurements 

Incident radiation (Io) and the radiation transmitted below canopy (I) were measured using a commercial 

Ceptometer (AccuPAR LP-80, Decagon Devices Inc., Pullman, WA, USA), by taking one measurement 

above the canopy and five measurements distributed below the canopy parallel to tree rows. The 

measurements were regularly spaced between two rows every 0.3 m for the Trial 1 and 0.4 m for the Trial 

2 on both sides of the tree trunks. Ceptometer measurements were taken in parallel to digital images  

(8 February 8th in cv. Ultra Red Gala and 25 April 25 in cv. Cripp’s Pink). The below canopy readings 

were averaged to calculate the light intercepted by the canopy (Ic) as follows: Ic = 1 − I/Io (dimensionless). 

2.5. Leaf Area Index Estimated by the Digital Photography Method (LAIM) 
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The analysis script developed by Fuentes et al. [2] performs a cloud filtering process and automatic 

gap analysis of upward-looking digital images. The cloud filtering process is applied by analyzing image 

color and brightness. The blue band (450–495 nm) is used to filter clouds, since they provide the best 

contrast between foliage cover and sky plus clouds [2]. The blue band of each image was extracted as a 

histogram and explored to identify a suitable threshold between foliage and sky. The code developed 

allows the automation of this process by identifying the minima value automatically between the peaks 

from sky and foliage. 

The automatic gap analysis is performed by dividing each binary image into a number of sub-images 

defined by the user. For this study, we used 4 images per tree with an image sub-division of 7  

(49 sub-images per digital image, 196 sub-images per tree) as standard parameters (Figure 1). From each 

sub-image, the program counts the total of pixels corresponding to sky (S) and leaves (L). A large gap is 

considered when the ratio S/L in each sub-image is larger than a user-specified value. In this study, a large 

gap threshold equal to 0.75 was used. This value was proposed by Fuentes et al. [6] for evergreen 

Eucalyptus woodland. In addition, in the same study, it was shown that changes in the threshold presented 

a low contribution in the final LAI estimation assessed through sensitivity analysis. When this threshold 

criterion is met per sub-image, the pixel count for S is added to the big gap count for that particular full 

image. If the ratio observed is smaller than the user-specified value for a specific sub-image, the pixel 

count contribution to the total big gap count of that particular sub-image is equal to zero. On the other 

hand, the light extinction coefficient (k) can be incorporated as a fixed value or as a variable value per 

image. The fractions of foliage cover (ff) and crown cover (fc) are calculated from Mcfarlane et al. [16] 

using the following equations: 

ff = 1- 
gT

TP
 (1)

fc = 1- 
gL

TP
 (2)

where gT is the total number of gap pixels; gL is the total number of large gap pixels and TP is the total 

number of pixels. Using the ff and fc calculated values, the crown porosity (Φ) can be calculated as follows: 

Φ = 1- 
ff

fc
 (3)

The clumping index at the zenith (Ω(0)) and the effective leaf area index (LAIM) are calculated from 

Beer’s Law as follows [2,16,23]: 

Ω (0) = 
(1- Ф)∙ln(1- ff)

ln(Ф)∙ff
 (4)

LAIM = -fc ∙ ൬ln(Ф)k ൰  ·Ω (0) (5)

Finally, the measured light extinction coefficient (kM) was calculated by inverting Equation (5) using 

the measured value of LAI (LAID) as follows: 

kM = -fc ∙ ൬ln(Ф)LAIୈ ൰ · Ω (0) (6)
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2.6. Performance Evaluation of the Digital Photography Method (LAIM) 

The evaluation of the performance of LAIM included a linear regression between LAID and LAIM, the 

calculation of root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE) and 

index of agreement (d) [24–26]. Additionally, a sensitivity analysis was carried out to evaluate the effect 

of variations (of ±30%) in k in the estimation of LAIM. Furthermore, the relationships between kM versus 

fc and kM versus Ic were evaluated by linear and exponential models. 

3. Results 

The averaged values obtained for LAID, kM, ff, fc, Φ and Ω(0), for the cv. Cripp’s Pink (Trial 1) and 

cv. Ultra Red Gala1 and cv. Ultra Red Gala2 (Trial 2) are summarized in Table 1. When comparing both 

experimental sites, the cv. Cripp’s Pink presented the lowest values of LAID and SLA with average 

values of 1.84 and 29.9 (cm2·g−1), respectively. Similar results were observed considering the rest of the 

parameters analyzed, with the exception of crown porosity (Φ), which was the highest. The cv. Ultra 

Red Gala2 presented the highest LAID = 2.96 and correspondingly lowest Φ = 0.14. Tallest trees (cv. 

Ultra Red Gala1, 3.8–4.0 m tall) presented the highest kM with an average value of 0.79. Additionally, 

the cv. Ultra Red Gala1&2 presented Ω(0) values closest to 1. The variability within trees was not 

significant, as presented by the standard deviation values (SD) for the different parameters. The 

sensitivity analysis of kM (used to estimate LAIM) showed that LAIM was significantly affected by ±30% 

variation of kM. The relative LAIM changes generated by variations of kM + 30% and kM − 30% were in 

the order of −23.1% and 42.9%, respectively. 

Table 1. Average and standard deviation values obtained for destructive leaf area index 

(LAID), specific leaf area (SLA), light intercepted by the canopy (Ic), measured extinction 

coefficient (kM), fraction of foliage cover (ff), crown cover (fc), crown porosity (Φ) and 

clumping index at the zenith angle (Ω(0)) for the both trial sites. 

Trial  LAID SLA Ic kM ff fc Φ Ω(0) 

cv. Cripp’s Pink  
(n = 10, Trial 1) 

* Avg. 1.84 28.0 0.551 0.553 0.66 0.76 0.17 0.75 
** S.D. 0.49 2.92 0.165 0.179 0.11 0.09 0.04 0.07 

cv. Ultra Red Gala1  
(n = 18, Trail 2) 

* Avg. 2.46 28.2 0.795 0.793 0.86 0.98 0.12 0.97 
** S.D. 0.34 1.25 0.083 0.087 0.03 0.01 0.02 0.02 

cv. Ultra Red Gala2  
(n = 12, Trail 2) 

* Avg. 2.96 34.1 0.632 0.625 0.83 0.97 0.14 0.96 
** S.D. 0.38 1.16 0.067 0.084 0.05 0.03 0.04 0.04 

Total (n = 40) 
* Avg. 2.46 29.9 0.683 0.680 0.80 0.92 0.14 0.91 
** S.D. 0.57 3.54 0.145 0.152 0.11 0.11 0.04 0.10 

* Avg. is the average value; ** S.D. is the standard deviation; SLA expressed in cm2·g−1. 

3.1. Estimation of Light Extinction Coefficient 

An exponential relationship was found when comparing the light extinction coefficient estimated by 

the fractions of foliage cover (ff) versus the kM obtained by inverting Equation (5). Considering the whole 

dataset the r2 found for the exponential model was 0.67. A similar fit was obtained using a linear model 

with an r2 equal to 0.62. (Table 2). Figure 2 shows that the exponential relationships obtained are site 
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and cultivar specific. In the case of cv. Cripp’s Pink, the exponential model showed an r2 equal to 0.93, 

while for cv. Ultra Red Gala1&2 the r2 value for the exponential model was equal to 0.46  

(Table 2). 

Table 2. Models for light extinction coefficient as a function of the fractions of foliage cover 

(ff) for the both trial sites. 

Trial Model Type Equation r2 

Trial 1 (cv. Cripp’s Pink) 
Exponential kM = 0.031·exp (4.44·ff) 0.93 

Linear kM = 2.02·ff − 0.73 0.87 

Trial 2 (cv. Ultra Red Gala1&2) 
Exponential kM = 0.096·exp (2.37·ff). 0.46 

Linear kM = 1.63·ff − 0.65 0.42 

Whole dataset 
Exponential kM = 0.136·exp (1.99·ff). 0.67 

Linear kM = 1.08·ff − 0.17 0.62 

r2 is the coefficient of determination (dimensionless). 

 

Figure 2. Exponential relationship between measured light extinction coefficient (kM) and 

fraction of foliage cover (ff). Dashed line represents the exponential model for the whole 

dataset, the continuous line represents the exponential model for the Trial 1 (cv. Cripp’s Pink) 

and dotted line represents the exponential model for the Trial 2 (cv. Ultra Red Gala1 and cv. 

Ultra Red Gala2). 

Furthermore, we tested the use of instantaneous canopy light interception measurements as a proxy 

for kM (Figure 3). When the whole dataset was considered (n = 40), the instantaneous fraction of light 

intercepted by the canopy (Ic) showed a linear relationship with kM. The linear regression analysis (forced 

to pass through the origin) between kM and Ic was highly significant (p < 0.01) with an r2 value of 0.90 and 

slope b = 0.99. Figure 3 shows that the data cloud was closely distributed to the 1:1 line with a range of 

variability of kM vs. Ic from a minimum of 0.25 to a maximum of 0.95. 
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Figure 3. Relationship between measured light extinction coefficient (kM) and the fraction 

of light intercepted by the canopy (Ic = 1 − I/Io) for both trials. 

3.2. Determination of LAIM 

The LAIM was calculated using three approaches: (I) using parameters derived from the image 

analysis and a constant light extinction coefficient (k = 0.68) (LAIM1); (II) using parameters derived 

from the image analysis with kM estimated by an exponential function of ff (LAIM2) and (III) using fc, ff, 

Φ and Ω(0) derived from the image analysis and the instantaneous values of the fraction of incident 

radiation absorbed by the canopy (LAIM3). 

The comparison between LAID vs. LAIM1, LAIM2 and LAIM3 is presented in Table 3. This table shows 

that LAIM1 had RMSE of 0.61, equivalent to 25% of error. In this case the method was tested using a 

common extinction value, k = 0.68, for all images (n = 160), and resulted in a poor correlation between 

the LAID and LAIM1 (r2 = 0.3). LAIM2 had a RMSE of 0.44 (18% of error) and r2 = 0.40. Finally, the 

LAIM3 displayed a much better agreement with LAID, with a d value of 0.96. Furthermore, the values of 

RMSE and MAE were 0.22 (9% of error) and 0.17 (7% of error), respectively. 

Linear regression analysis between LAID and LAIM3 for the whole dataset (40 apple trees) was highly 

significant with an r2 value of 0.85 (Figure 4). The t-tests for the null hypothesis of intercept = 0 and 

slope = 1.0 at the 95.0% confidence level were accepted with p-values of 0.55 and 0.58, respectively. 

Figure 4 shows the linear relationship between LAID and LAIM3 for the three measurement sites. The 

same figure shows a data point that escaped from the main data cloud, corresponding to a tree from the 

cv. Cripp’s Pink variety that presented LAID values of around 1.0. The range of LAID obtained from the 

data varied from 1.0 to a maximum of 3.75. 
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Table 3. Statistical analysis of leaf area index estimated by the LAIM method using a 

constant k value (LAIM1), a k derived from ff (LAIM2) and using the instantaneous fraction 

of incident radiation absorbed by the canopy as a proxy value for k (LAIM3). 

Approach RMSE MAE MBE r2 d 

LAIM1 0.61 (25%) 0.46 (19%) 0.07 (3%) 0.30 0.70 
LAIM2 0.44 (18%) 0.36 (15%) −0.06 (−2.4%) 0.40 0.71 
LAIM3 0.22 (9%) 0.17(7%) 0.01 (0.2%) 0.85 0.96 

RMSE is the root mean square error (mm·day−1); MBE is the mean bias error (mm·day−1); MAE is the  

mean absolute error (mm·day−1); r2 is the coefficient of determination (dimensionless); d is the index of 

agreement (dimensionless).  

 

Figure 4. Comparison between leaf area index estimated by cover digital images considering 

instantaneous fraction of incident radiation absorbed by the canopy (LAIM3) vs. leaf area index 

obtained by defoliated method (LAID). Data shown considers all varieties and study fields. 

4. Discussions 

In this study, measurements of canopy light interception and digital cover images were taken four 

hours before midday with the objective of avoiding direct sunlight within the pictures. This consideration 

for timing consistency in imaging is very important as in fruit tree orchards radiation transmittance varies 

greatly throughout the day [27–30]. Additionally, Zhao et al. [30] showed that there is significant influence 

of daytime on the pixel count between vegetation and background in vertical upward-oriented digital 

images. Their main recommendation was to avoid images taken under direct light conditions in order to 

ensure that the sensed radiation does not include any reflected or transmitted radiation by leaves. 

Previous studies have proposed the use of an automated procedure using cover photography with a 

single averaged k per tree species. Specifically for eucalyptus, a k = 0.5 has been recommended [2,16]. 

In the case of grapevines, a calculated k = 0.7 has also been reported [31] and used as a constant k [32]. 
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However, in the present study, it was demonstrated that the cover photography method (LAIM) is sensitive 

to k values required to obtain accurate LAI from isolated apple trees. Therefore the accuracy of the method 

depends on a good estimator of k for individual images. According to results presented here, using a 

constant k for apples (k = 0.68 average value obtained from Table 1) will result in an overestimation of 

the averaged k for Cripp’s Pink of 20% and an underestimation for the averaged k for Ultra Red Gala1 

of 16% and 7.4% for Ultra Red Gala2. Furthermore, it was shown that an over and underestimation of 

30% from kM resulted in overestimations and underestimations of LAID by 43% and 23%, respectively, 

which are significant differences from real values. The differences in k obtained per apple cultivar and per 

trial site highlight how crucial local calibration for any LAI methodology can be. This can be considered 

the main constraint for indirect measurement methods that deal with light transmission through the canopy. 

Another constraint in using other common LAI measurement methodologies is that local calibrations are 

generally useful only for those same conditions of canopy vigor and site. Therefore, local calibrations 

cannot be used in other cultivars or same cultivars with different canopy structure (Table 3). Differences 

between both experimental sites could be related mainly to the age of the orchards. In Trial 2 the three-year 

old plants had not reached their productive potential and had yet not occupied the total assigned ground 

area. Therefore a higher proportion of leaf area growth will be more vertically elongated towards areas with 

large gaps and areas with low porosity than in more balanced trees (Trial 1), where growth is characterized 

by a more uniform leaf area distribution. 

The automated methodology presented in this paper can incorporate an independent k value per image 

analyzed. This can be obtained either using a parameter measured from the same image, such as ff or 

parallel measurements of the fraction of light intercepted by the canopy (Ic). Macfarlane et al. [17] 

showed that ff was highly correlated with LAI obtained using allometry and the plant canopy analyzer 

(LI-2000) in E. globulus stands (r2 values of 0.78 and 0.82, respectively). In this study by using a proxy 

k, obtained from ff (LAIM2), the model explained only 40% of the LAID variability with an associated 

RMSE of 18%. A positive aspect of this method is that it is completely automated, since the analysis 

code is able to calculate k using the equation found in LAIM1. The downside of the model is that it 

requires the calibration of ff against kM to obtain the algorithm for other cultivars and species, since the 

relationship between ff and kM depends on the characteristic of the orchard, specifically the plant density. 

Results in Figure 2 show that the relationship between ff and kM is site and cultivar specific. When a 

specific model is used for Trial 1 and 2 the RMSE in the LAIM2 method is reduced to 15%. 

Most significantly, by using a proxy k value obtained by the relationship between kM and Ic = 1 − I/Io, 

which explained 85% of the variability of kM, the LAIM3 estimation improved significantly with an 

associated RMSE of only 9%, This could be attributed to the inclusion of fruits and non-leaf material, such 

as branches in the images. The positive aspect of this method is that the Ic factor can be a direct input in 

the estimation of k value required per image to calculate LAIM. This relationship was also consistent for 

both cultivars unlike the relation found with ff. The downside of this latter method is that it requires the 

measurement of I and Io per image using another instrument. To aid in this process a light sensor is 

currently under development for smartphone and tablet platform use, allowing easy assessment of light 

interception above and below the canopy [32]. Furthermore, the Ic factor takes into consideration the 

specific canopy architecture and vigor of trees. Therefore, this procedure can be considered as an easy 

auto-calibration procedure per image, which offers more accurate estimations of LAI per image while 

considering site specificity effectively. 
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5. Conclusions 

The demonstrated, automated methodology, for estimating LAI from apple trees using digital cover 

photography and variable light extinction coefficient has been shown to be an accurate and inexpensive 

technique to estimate LAI and other architectural parameters. Results have shown that the LAIM method 

was able to estimate LAID with an error of 18% when the light extinction coefficient (k) was simulated as a 

function of fraction of foliage cover (ff) derived from digital images. However, when variable measurements 

of light intercepted by the canopy (Ic) were used as a proxy for k, light extinction, digital photography 

method presented an RMSE of only 9%. These results have demonstrated that by using a variable k, 

estimated by Ic, the accuracy of LAI estimates for apple trees with variable canopy sizes and under field 

conditions increased significantly. This method can be used for experimental and practical applications. 

The latter could allow growers to identify spatial differences in vigor that could be correlated to unseen 

factors, such as soil differences. Plant functional models and remote sensing techniques could benefit from 

the proposed methodology as a consequence of simplifying the acquisition and analysis of accurate LAI. 
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