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Abstract: Small autonomous unmanned aerial systems (UAS) could be used for indoor
inspection in emergency missions, such as damage assessment or the search for survivors
in dangerous environments, e.g., power plants, underground railways, mines and industrial
warehouses. Two basic functions are required to carry out these tasks, that is autonomous
GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving
target detection. State-of-the-art sensors for UAS are very sensitive to environmental
conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or
other factors that are met as nominal mission scenarios when operating indoors. This paper
is a preliminary study concerning an innovative radar sensor based on the interferometric
Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent
requirements set by indoor autonomous operation. An architectural solution based on
a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed
analysis of existing compact and lightweight SAR. A preliminary system design is obtained,
and the main imaging peculiarities of the novel sensor are discussed, demonstrating that
high-resolution, high-quality observation of an assigned control volume can be achieved.

Keywords: Synthetic Aperture Radar (SAR); interferometry; unmanned aerial
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1. Introduction

Unmanned aerial systems (UAS) are commonly defined as medium-small scale uninhabited aerial
vehicles able to attain stable flight operation thanks to a control system that can be programmed to follow
a certain flight path or can be remotely controlled from a ground station. Today, UAS are moving toward
autonomous sense and detect functions [1,2] and are performing missions with increasing levels of
autonomy and complexity, such as repetitive reconnaissance and surveillance, whereby human presence
onboard is undesirable or inadvisable. Outdoor flying unmanned vehicles have received a considerable
amount of research and industrial attention over the years. Although limitations exist concerning UAS
inclusion in air space, today, complete systems are available for military and civilian applications [3,4].

On the contrary, there is still much to be done in the area of indoor or urban autonomous operation,
both for vehicle navigation and for monitoring or exploration. The application to unknown building
interiors and very cluttered urban or natural environments is one of the most demanding issues
envisioned for UAS, since it requires the real-time capability: (i) to detect and identify very different
objects, such as buildings, walls, caves, infrastructures or underground facilities, in problematic and
unpredictable illumination conditions; (ii) to navigate through complex-shaped passageways, even
avoiding non-stationary obstacles; and (iii) to gather and relay information. Use of very compact sized
and extreme lightweight small UAS or micro aerial vehicles (MAV), different from outdoor applications,
represents an additional strong constraint when indoor flight operations must be performed. Target
mission scenarios include high risk indoor inspection, e.g., nuclear power plant failure and leakage
or tunnel roof collapse in mine, but also the search for survivors in cluttered dense urban environment
or indoors, such as underground railways or industrial warehouses. Pipeline inspection and nuclear,
biological or chemical (NBC) emergency reconnaissance represent additional dangerous applications
that could take full advantage of small UAS and MAV operations. Completely different scenarios, but
similar capabilities, are required in planetary exploration. Specifically, in past decades, rovers have
emerged as one of the most important tools for planetary exploration. Important drawbacks of rover
systems deal with the limited coverage they can achieve and uncertainty in terrain. For planetary and
planet-like bodies, when a significant atmosphere is present, the above limitations can be overcome by
aerial vehicles. In addition to Earth, several planets, such as Venus, Mars, Jupiter, Saturn, Uranus and
Neptune, but also the Saturn moon, Titan, are endowed with an adequate atmosphere. Aerial vehicles
proposed and investigated for planetary exploration include [5–7] airplanes and gliders, helicopters,
balloons and airships. The most investigated solutions are based on lighter-than-atmosphere robotic
airships combining the long-term airborne capability of balloons with the maneuverability of airplanes
or helicopters.

The introduced applications involve flight operation in GPS-denied and substantially unknown
environments with a potentially large communication latency (planetary explorations) or extended
communication blackout periods (indoor emergencies). The accomplishment of two basic functions
is required to carry out these tasks: fully autonomous navigation with obstacle detection/avoidance
capability and high resolution 3D mapping and monitoring of the target area, including moving
target detection. Unless the small UAS is provided with hovering capability, autonomous navigation
presents clearly the most stringent time requirements. Regarding obstacle avoidance, in theory,
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accurate geometric models of the operational environment combined with thematic information and the
description of all of the present objects could reduce the need for continuous and real-time sensing.
However, those data are often neither updated nor available at the required spatial resolution and
accuracy. Furthermore, unexpected obstacles, for instance consequent to an accident that requires to
investigation, can appear anytime and anywhere; hence, real-time mapping capabilities are required, too.

The set of data needed to perform these tasks cannot be provided by sensors that are potentially
adequate under conventional operating conditions, such as laser scanners and optical cameras, owing to
their physical size, weight, strong dependence on illumination conditions and possible poor visibility
caused by environmental factors. Conversely, radar sensors are able to operate in any illumination
condition, and microwave carrier frequencies allow for coherent signal detection to be performed, thus
resulting in significantly increased sensitivity and instant access to range information. In addition,
high-resolution 3D mapping can be provided by combining the Synthetic Aperture Radar (SAR)
technique with radar interferometry [8,9]. This also makes velocity information available via Doppler
processing, which is a valuable feature for sensors operating onboard moving platforms. Finally,
millimeter wave radar technology has been receiving increasing interest for application in small
UAS [10,11] thanks to the limited size and power requirements and the capability to penetrate smoke
and fire [12,13].

Table 1. Basic design guidelines of the proposed innovative SAR system.

Main Constraints

Mass < 1 kg
Size < 1500 cm3

Maximum dimension < 30 cm
Antenna maximum length < 10 cm

Power consumption < 10 W
Real-time onboard processing

Expected Performances

3D Mapping without ground truth
3D geometric resolution 10–20 cm

Field-of-view Hemispherical
Operation in the presence of smoke and fire

Possible Technical Solutions

SAR
Radar interferometry
Millimeter wave radar

The objective of this work is to assess the main features, possible architectural schemes and technical
solutions and to carry out a preliminary design of a very innovative radar sensor for novel autonomous
operations onboard small UAS. Table 1 summarizes the key driving issues in the preliminary design
that will be presented in the paper. First of all, it should be noted that for matching with the
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considered operational scenarios, the sensor must be compact, lightweight and characterized by low
power consumption. In addition, it has to guarantee very high 3D resolution and accuracy, as well
as the capability to perform real-time onboard processing in order to support autonomous navigation,
exploration and mapping in completely unknown and unstructured environments.

2. System Architecture

2.1. State-of-the-Art Analysis

In the last decade, several compact and lightweight SARs have been developed and tested for different
purposes and applications. Table 2 lists the most relevant systems together with their main features,
as available today in the open literature. All of them are devoted to outdoor operations, such as
surveillance and remote sensing applications, and work in side-looking mode with limited pointing
capability. Vision-based navigation through those radar sensors has not been implemented yet. None
of these systems satisfies all of the constraints of Table 1. Real-time onboard operation is rarely
enabled; resolutions can be insufficient; and in most cases, the mass and power requirements exceed
small platform availability. Nonetheless, a few interesting features can be highlighted. MiniSAR by
Sandia National Labs [14] and Miniaturized SAR (MISAR) by European Aeronautic Defence and Space
Company N.V. (EADS) [11]; both include a double gimbal structure, which allows mechanical steering
of the antenna to be achieved, thus making SAR interferometry along multiple directions possible. In
both cases, two separate antennas, one for transmission and one for reception, are accommodated to
implement a frequency-modulated continuous wave (FMCW) scheme. More than half of the listed
sensors exploit this architectural scheme, even though not possessing a gimbal structure. Finally, it is
important to remark that AiR-Based REmote Sensing (ARBRES) X-Band SAR [15] and MetaSensing
X-Band SAR [16] make use of three antennas, namely two receiving and one transmitting for performing
FMCW single-pass interferometry.

In the following subsections, a critical analysis of some key design solutions is presented, and then,
an adequate innovative architecture is proposed.

2.2. Why FMCW SAR

First of all, it is necessary to point out the advantages connected to the use of FMCW SAR.
FMCW radar transmits a frequency-modulated signal, which is usual in SAR, but in a continuous
wave, differently from most realizations. The received echo, which is delayed by round trip delay τ
associated with target-range distance, is mixed with the transmitted signal [17]. For a linear frequency
modulation, the output of the mixing process, namely the beat signal, has two Fourier components at
different frequencies. The first component is a signal centered at a constant frequency lower than the
carrier frequency [18]. The second component is a residual signal centered approximately at twice the
carrier frequency, which has less energy with respect to the former component [17] and is filtered out.
The process involving both the mixing of transmitted and received signals and the low-pass filtering of a
beat signal is also called deramp-on-receive.
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Table 2. The main features of existing compact lightweight SAR systems (N/A = not available).

Mass Size
Power Transmitted

Resolution
Maximum

Bandwidth
Carrier

Scheme
Onboard Real Time Single Pass

Consumption Power Range Frequency Data Processing Interferometry
(kg) (cm3) (W) (W) (m) (km) (MHz) (GHz)

Lite-weight UAV Radar
[19] 9 32,774 100 1 0.1 10 1800 35 FMCW SAR Yes No

(LUAVR)

MISAR [11,20] 4 10,000 100 1 0.5 4 300 35 FMCW SAR No No

Brigham Young University
[21,22] 2.7 2295.38 16 1 1 0.7 90 5.55 FMCW SAR No No

(BYU) MicroSAR

MiniSAR [14] 14 250 250 60 0.3 10 3000 16.8 Pulsed SAR Near-real time No

NuSAR [23,24] 8.62 N/A 160 25 0.3 0.7 500 9.75 Pulsed SAR Yes No

PicoSAR [25,26] 10 10,797 300 1 0.3 20 768 9.7 Pulsed SAR Yes No

Radar de Apertura Sintética
[27,28] 2.5 7296 N/A 1 0.07 2.97 2000 34 FMCW SAR N/A NoMiniaturizado Aéreo

(MINISARA)

BYU MicroASAR [29] 3.3 1880.71 35 1 0.75 N/A 200 5.43 FMCW SAR No No

SlimSAR [30,31] 4.54 N/A 150 4 0.23 N/A 660 9.28 FMCW SAR No No

NanoSAR [32] 0.91 1674 15 1 0.3 1 500 10.25 Pulsed SAR No No

NanoSAR B [33] 1.59 1458.49 30 1 0.3 4 N/A N/A Pulsed SAR No Yes

NanoSAR C [34] 1.18 1409.29 25 1 0.3 3 N/A N/A Pulsed SAR No Yes

Millimeterwave Radar using
[35] 2.2 4459.13 20 0.1 0.15 2 1000 94 FMCW SAR No NoAnalog and New Digital Approach

(MIRANDA)

ARBRES SAR [15] 2.5 5950 50 N/A 1.5 N/A 100 9.65 FMCW SAR N/A Yes

MetaSensing SAR [16] N/A N/A N/A N/A 0.4 N/A 450 9.65 FMCW SAR N/A Yes
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The aforementioned low, constant frequency in the beat signal, which is computed by differentiating
the phase term of the beat signal with respect to time, is labeled as the beat frequency. The beat frequency
holds strong relevance in FMCW radar, as it is directly proportional to the target range by the ratio
between the propagation velocity and the bandwidth of the transmitted signal, thus allowing the system
to compute the range by measuring the beat frequency. The theoretical value for the range resolution
is [17]:

dr =
c

2B
(1)

where c is light velocity and B is the transmitted bandwidth. Actually, Equation (1) is equivalent to the
conventional pulsed radar theoretical range resolution [8,36]. However, it is important to remark that the
FMCW range compressed signal is obtained in the frequency domain rather than in the time domain.

The FMCW scheme guarantees decisive advantages with respect to conventional pulsed SAR,
especially when compact systems have to be realized. Continuous transmission, i.e., a unity duty cycle
η = 1, involves less transmitted peak power, which makes significant simplifications in the power
generation and conditioning unit along with a strong reduction in power requirements with respect
to pulsed systems possible. In addition, deramp-on-receive relies on the sampling of the beat signal
bandwidth BB instead of the whole transmitted bandwidth B. This means that even the GHz bandwidth
can be easily handled by a MHz sampling frequency fS , because BB � B, thus allowing simpler and
cheaper hardware equipment.

The FMCW’s peculiar features in comparison to traditional pulsed technology are consequent to the
motion during continuous transmission. A better understanding of motion effects on the signal is given
by [37] in which the following equation is reported for the beat signal in the two-dimensional spatial
frequency domain:

SB (Kr, Kx) = exp (jKxvt) exp
(
jR0

√
K2

r −K2
x

)
(2)

where Kr and Kx are the spatial frequencies in the range and azimuth directions, respectively, v is the
platform velocity, R0 is the distance of the closest approach and t is the time referring to the signal
transmission/reception at velocity c. The second exponential in Equation (2) coincides with the beat
signal of conventional pulsed SAR in the two-dimensional spatial frequency domain, whereas the first
is a space invariant term that takes into account the motion during transmission. This term becomes
equal to one in conventional SAR, because of the start-stop approximation, which assumes that the
radar is stationary during the pulse transmission-reception, because v � c. Start-stop approximation
is traditionally exploited to explain raw SAR image formation [8]. As a direct consequence of
Equation (2), in general, conventional algorithms for SAR image formation would result in FMCW
SAR image degradation. More complex reference functions have to be adopted in these cases [38].

However, specific conditions exist in which start-stop approximation can be considered valid for
FMCW SAR, too. Even though continuous transmission is used, it is possible to define the concept of
the pulse repetition interval (PRI) for FMCW radar as the sweep duration, i.e., the time the transmitted
frequency takes to shift from the minimum to the maximum frequency, or equivalently, the time between
the start of two consecutive sweeps. It is clear that the last definition leads to almost a similar PRI
meaning as for pulsed SAR, although it refers to sweep instead of chirp (see Figure 1). Based on the
introduced PRI, the pulse repetition frequency can be defined as the reciprocal of the PRI.
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Figure 1. Comparison between pulse repetition interval (PRI) (a) in FMCW SAR and (b) in
conventional pulsed SAR. The lots are not to scale for clarity.

The Nyquist sampling theorem requires PRI to be small enough in order to properly sample the
azimuth Doppler history. In detail, provided that the sampling requirements are satisfied [38], each
sweep represents a sample of the Doppler history in the same way as a pulse of conventional SAR.
Hence, both fast time t and slow time tN (i.e., referring to radar motion at velocity v) can be introduced
for FMCW SAR, too. On the other hand, a longer sweep duration would produce several samples in the
azimuth Doppler history within each sweep, thus making start-stop approximation less acceptable. The
remainder of this paper focuses on the case in which start-stop approximation is valid [16,38].

As in conventional SAR, the FMCW SAR target response exhibits a Doppler bandwidth, BD,
generated by the variation of the observation angle and, therefore, by the variation of the radial velocity:

BD = 2
v

λ

[
sin

(
θsq +

θaz

2

)
− sin

(
θsq −

θaz

2

)]
(3)
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where λ is the carrier wavelength, θsq is the squint angle and θaz is the beamwidth in the azimuth
direction. Hence, provided that proper motion compensation algorithms are exploited [17,38], the
theoretical FMCW SAR azimuth resolution is:

da =
v

BD

=
laz

2
(4)

where laz is the antenna length. Equation (4) is exactly the same equation that holds for conventional
pulsed SAR.

As expected, the result of range and azimuth compression is a bi-dimensional sinc function multiplied
by two complex exponentials, the former depending on both the minimum platform to target distance
and a reference distance Rref used for the processing [39], the latter depending only on the reference
distance and system parameters. Namely:

s (fR, tN) = sinc
[
π

(
fR +

R0 −Rref

cPRI
2B

)(
PRI − 2

R0

c
− v2t2N

cR0

)]
·

sinc
[
BD

(
tN −

x0

v

)]
BD exp

[
−j 4π

λ
(R0 −Rref)

]
exp

(
−jπ B

PRI
τ 2

ref

)
(5)

where fR is the range frequency, x0 is the position of the target along the azimuth direction with respect
to the center scene and τref is the time delay of the echo at reference range Rref , which corresponds to
the range from the center scene. The first exponential resembles the exponential term of the pulsed SAR
2D-focused signal and again can be exploited to perform interferometry (see Section 2.3). Moreover,
it has to be noted that the signal of Equation (5), unlike the pulsed SAR 2D-focused signal, is better
described in the range-time domain, as range frequency fR is directly proportional to the range in FMCW
SAR. Finally, the amplitude of the resulting signal depends on the Doppler bandwidth.

The implementation advantages of FMCW SAR must be weighed against some drawbacks that this
scheme exhibits. In general, data processing is more complex with respect to pulsed SAR, because
deramp-on-receive produces an unwanted phase term, called the residual video phase (RVP), which
must be removed. In addition, moving targets can introduce ambiguities in range measurement. Indeed,
owing to longer observation time compared to a conventional system, targets can move through several
resolution cells within a sweep [38], causing the Doppler effect not to be negligible. Several solutions
have been proposed to correctly determine the range, even in the presence of moving targets, including
triangular frequency modulation [17,18] to determine the range and Doppler information within a single
time interval. Non-linearities in transmitted and received signals cause an additional erroneous phase
term in the beat signal, therefore leading to deteriorated range resolution [38]. Typical algorithms for
non-linearity correction work under the assumption that non-linearity effects depend linearly on time
delay, which is true for small distances. This is the case of indoor applications. The assumption falls for
long range observations and causes the computational load to increase. Hardware and software solutions
are known in the literature [17,38], such as voltage-controlled oscillator (VCO) and direct digital
synthesizer (DDS), or approaches based on approximations of non-linearity. Finally, the simultaneous
signal transmission and reception generate signal leakage in the reception chain. Specifically, due to the
extremely high transmitted-to-received power ratio, saturation or damage of equipment can occur if even
a small leakage of transmitted power is present [18]. Good isolation is therefore required, and typically,
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separated transmitting and receiving antennas in both bistatic and quasi-monostatic configurations are
exploited. Considering that relatively assessed solutions are today available to deal with the discussed
drawbacks and taking into account its advantages for the considered applications, the FMCW SAR
scheme is selected herein as a base for the system architecture.

2.3. Why SAR Interferometry

SAR interferometry is a technique that exploits phase information, obtained from two or more SAR
images, in order to compute target height and position in a three-dimensional environment. It can be
considered a well-assessed technology for conventional pulsed SAR [8,9]. As regards FMCW SAR, the
2D-focused SAR signal (see Equation (5)) shows that the phase of the azimuth sinc samples target range
as the multiple of the wavelength and can therefore be utilized to perform interferometry. It has to be
noted that it is necessary to remove the additional contribution to the phase given by the reference range
distance, which is typically the distance to the center of the scene illuminated by the beamwidth, and
therefore, it can be different in the two images to be correlated. SAR interferometry has been successfully
tested on data collected by FMCW SAR [16], and it is considered a key asset towards the operational
scenario considered in this work.

2.4. Selected Scheme

Based on the state-of-the-art analysis, a system architecture that is potentially able to satisfy all
requirements listed in Table 1 is shown in Figure 2. The selected scheme is an interferometric
FMCW SAR, equipped with three antennas, one transmitting and two receiving, mounted on
a double gimbal structure. Among various factors, interferometric measurement resolution and
accuracy are strongly dependent on antenna separation knowledge and control. Furthermore, the
proposed system is compact and operates on a single platform, i.e., the two antennas could be
rigidly connected and simultaneously pointed to specific targets by adequately rotating a double
gimbal to change the baseline (i.e., antenna separation with respect to the target). Hence, it is
expected to achieve adequate performance. It is worth noting that: (i) although electronic antenna
steering would be favorable for fast and accurate sweeping of all hemispherical field-of-views,
the creation of adequate baseline components to extract phase measurements is based on antenna
mechanical re-orientation; consequently, the design and development of a double gimbal has been
considered to make easier realization of both the antenna and electronics; (ii) depending on the
platform selected for the mission, for instance a quadrotor, antenna mechanical re-orientation can
be achieved by either rotation of the platform itself or the combined action of the platform and
double gimbal.

In addition, an autonomous processing unit (PU), committed to real-time onboard data processing, is
included in the scheme. Radar data are stored onboard in a mass memory unit. These data are exploited
by the PU to directly command the double gimbal pointing system. The PU also sends information to
the UAS navigation unit via a direct interface data link. Communication from the navigation unit to
the PU is also necessary to support image processing and data extraction. Finally, the PU interfaces
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with the radio frequency transmitter to send stored data to the ground station via a wireless data link,
when available.

Power supply

Processing
Unit

Mass Memory

UAV Navigation
Unit

Tx Antenna

2 Rx Antennas

Double Gimbal
Pointing System

RF Transmitter

FMCW Radar
Front-End

Signal
Generation

Figure 2. System architecture.

3. Preliminary System Design

3.1. Preliminary Design Process

The design process is outlined in Figure 3: circles represent input parameters, which have been chosen
according to the system requirements (Table 1), the system architecture (Figure 2) and the application,
whereas boxes return the sought values. The input parameters of the design process are chosen first.
Table 3 lists the input parameters that vary within a minimum and maximum value, whereas Table 4 lists
the ones that assume a constant value in the implemented design process.

Table 3. Input parameters for the system design.

Symbol Parameter Unit Minimum Value Maximum Value

dr Range resolution (cm) 10 20
da Azimuth resolution (cm) 10 20
dh Height resolution (cm) 10 20
v Platform velocity (m · s−1) 0.25 2.00
θ Off-nadir angle (◦) 15 75
θsq Squint angle (◦) −45 45
Rmax Maximum distance (m) 25.0 30.0
Rmin Minimum distance (m) 0.5 3.0

∆h
Height difference between two points
in adjacent range cells

(cm) 5 20

NBIT Number of bits 16 32
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The resolution requirements in range, azimuth and height directions are chosen according to the
expected performance, whereas boundaries on platform velocity and maximum and minimum range
distances depend on the application. In our case, it is the dynamics of the small UAS flying in an indoor
environment performing loitering maneuvers. In addition, a typical value for an indoor differential radar
cross-section has been considered. The following sub-sections report a brief explanation of peculiar
blocks, specific for the FMCW SAR design. An example of the overall system characteristics is finally
derived, accordingly.
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Table 4. Constant parameters for the system design.

Symbol Parameter Unit Value

fc Carrier frequency (GHz) 94
λ Wavelength (mm) 3.2
c Speed of light (m · s−1) 3 × 108

kB Boltzmann’s constant (J · K−1) 1.38 × 10−23

TN Temperature of system (K) 290
FN Figure of noise (dB) 15
SNR Signal-to-noise ratio (dB) 20
σ0 Differential scattering coefficient (dB) −20
η FMCW SAR duty cycle 1

3.2. Ambiguities and Antenna Width

Range ambiguity for a FMCW radar may occur owing to the continuous transmission of a frequency
modulated signal when an echo from a target arrives at receiver after the end of the sweep that generated
it. As a result, the received signal will be mixed with a different sweep and will result in the target being
closer than in reality (see Figure 4). The unambiguous range is therefore equal to the round-trip distance
covered by the wave in a single sweep, namely:

Ru =
cPRI

2
(6)

time

frequency

Figure 4. FMCW ambiguity in range: The first sweep reflection from the furthest target (red
line) is between the transmitted signal (black line) and the second sweep reflection from the
closest target (blue line), so that the furthest target is imaged closer.
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Therefore, under the hypothesis that the whole swath width is less than the unambiguous range, the
following inequalities shall be satisfied to avoid echo ambiguities and bandwidth undersampling:

c

2 (RFR −RNR)
> PRF > 2BD (7)

where the subscripts FR and NR refer to far- and near-range, respectively. The difference RFR − RNR

depends on the antenna aperture, hence on the antenna width in elevation in an inverse proportion. Since
the considered distances and the Doppler bandwidth are small, Equation (7) does not yield strict bounds
on the antenna dimensions. Hence, the antenna width d can be quite small and may be chosen according
to other requirements, e.g., the radar equation, heat dissipation and technological restrictions.

3.3. Transmitted Power

Transmitted power can be computed by the following formula derived in [40]:

PT =
SNR (4π)3R4

maxkBFNTNBN

GTGRλ2σ0drgrdaNRNA

(8)

which takes into account the range and azimuth compression gains, NR and NA, respectively. In
Equation (8), the subscripts T and R refer to transmitting and receiving antenna gains (G), BN is the
noise bandwidth and drgr is the ground range resolution.

For rectangular antennas, the gain at the boresight is expressed in [41,42] as:

G = ke
4πA

λ2
(9)

where ke is an efficiency factor, typically equal to 0.65, and A the antenna area. Under the hypothesis
of identical transmitting and receiving antennas and by expressing compression gains as in [43],
Equation (8) becomes:

PT =
SNR 4πR3

maxkBFNTNBN lazv

η ke
2A2σ0drgrdaB

(10)

Concerning the transmitted power, it is important to point out that in FMCW SAR, noise bandwidth
BN is equal to sampling frequency fS [44]. This is an additional advantage over conventional SAR, in
which the noise bandwidth is equal to the transmitted one.

3.4. Interferometry

Plane wave approximation (pwa) is a typical assumption exploited to perform interferometry and to
compute interferometric phase φ. With reference to the geometry depicted in Figure 5, this leads to:

φ1 =
2π

λ
(R2,1 −R1,1) ≈ −2π

λ
Bint sin (θ − α) (11)

where Bint is the interferometric baseline defined as the modulus of the antenna separation vector and
α is the baseline roll angle. In Equation (11) and following, φi represents the interferometric phase of
the i-th point and Rj,i the distance between the j-th antenna and the i-th point. Therefore, the differential
phase between two points in adjacent range cells, with separation in height ∆h and separation in slant
range dr = R1,2 −R1,1, is:
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∆Φpwa = φ2 − φ1 = −2π

λ
Bint [sin (∆θ + θ − α)− sin (θ − α)] (12)

where:

∆θ = cos−1

(
R1,1 cos θ −∆h

R1,1 + dr

)
− θ (13)

is the variation in the off-nadir angle related to the difference in height.

α

θ

1
2

Bint

∆θ

z

y∆y

∆h

Antenna 1
Antenna 2

dr

Figure 5. Interferometric observation geometry.

For a close-range (cr) application, as is the aim of the present work, the plane wave approximation is
not valid anymore. Hence, Equation (11) must be generalized as:

φ1 =
2π

λ
(R2,1 −R1,1) =

2π

λ

[√
R2

1,1 +B2
int −R1,1Bint sin (θ − α)−R1,1

]
(14)

thus leading to differential phase:

∆Φcr =
2π

λ

[√
R2

1,2 +B2
int −R1,2Bint sin (∆θ + θ − α)

−
√
R2

1,1 +B2
int −R1,1Bint sin (θ − α) +R1,1 −R1,2

]
(15)

The percentage error resulting from the adoption of the plane wave approximation (12) in a
close-range application can be calculated as:

ε∆Φ =
∆Φcr −∆Φpwa

2π
× 100 (16)

Figure 6 shows the percentage error function for various θ, ∆θ, Bint and R. The error increases for
larger Bint and closer targets, as the line of sight of two antennas becomes less and less parallel. Finally,
increasing the off-nadir angle θ causes a shift of the function towards larger α, although, obviously, the
periodic behavior of the function is clear.
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Figure 6. Percentage error between the true and approximated differential interferometric
phases under various operating conditions (the three curves correspond to θ = 15◦, θ = 45◦,
θ = 75◦).

3.4.1. Interferometric Baseline

A new method to design the interferometric baseline for close-range applications is required.
Equation (15) does not allow Bint to be obtained directly from the other parameters, so it is necessary to
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address an indirect solution. The one hereby proposed envisages exploiting the numerical representation
of Equation (15), given a certain geometry, as a function of a range of values for both Bint and α. One of
the requirements for the correct reconstruction of height variation is that the difference in phases between
two adjacent pixels is no greater than 2π. Therefore, all of the couples:

(Bint, α) : ∆Φcr (Bint, α) > 2π (17)

are discarded, whereas all of the other values could represent a good choice, depending on the
application. The value of the maximum allowable interferometric baseline:

Bint : ∆Φcr (Bint) = 2π (18)

referred to as the critical baseline [9], is shown in Figures 7 and 8 for various operating conditions.
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Figure 7. Critical baseline for various operating conditions. For each plot, dr = 10 cm and
∆h = 10 cm have been considered.

As expected, Figure 7 shows that when the range increases, the critical baseline increases, as well.
This means that, depending on the size of the antennas, a minimum interferometric baseline is achievable,
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thus imposing a bound on the smallest distance at which it is possible to perform interferometry. Based
on this consideration, minimum values for Rmin listed in Table 3 have to be updated accordingly.
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However, it has to be pointed out that this minimum distance is also strongly related to the height
variation between points in adjacent range cells. Namely, if ∆h is smaller than expected, then
interferometry can be performed at even a smaller range distance (see Figure 8).

3.5. System Parameters

In Section 3.1, input parameters, due to both requirements and the envisaged missions, for the design
of an innovative FMCW SAR system have been shown (see Table 3). In the remainder of this section,
attention will be paid to further assumptions, which have been made to achieve a combination of working
parameters (see Table 5) by exploiting the design block diagram depicted in Figure 3 and by accounting
for the radar and interferometry constraints previously discussed.

Table 5. Selected working parameters.

Symbol Parameter Unit Value

dr Range resolution (cm) 10
da Azimuth resolution (cm) 10
v Platform velocity (m · s−1) 0.50
θ Off-nadir angle (◦) 60
Rmax Maximum range (m) 30
Rmin Minimum range (m) 1.5
NBIT Number of bits 16
dh Height resolution (cm) 10
B Transmitted bandwidth (GHz) 1.50
fS Sampling frequency (kHz) 68.327
PRF Pulse repetition frequency (Hz) 125
d antenna width (m) 0.01
θr antenna beamwidth in the range direction (◦) 18
laz antenna length (m) 0.02
θaz antenna beamwidth in the azimuth direction (◦) 9
PT Transmitted Power (mW) <1
α Baseline roll angle (◦) 40
Bint Interferometric baseline (cm) 3
∆φ Phase resolution at the interferometer (◦) 11

∆h
Height difference between two points
in adjacent range cells

(cm) 10

In order to propose an advanced configuration, the most stringent input values from Table 3 have
been chosen for theoretical three-dimensional resolution. Furthermore, the mission profile contributed
to the choice of both platform velocity v, small enough to move in unknown environments, and the
expected difference in height ∆h, set equal to the height resolution. Finally, the off-nadir angle θ,
which influences both transmitted power PT and interferometric performance, has been chosen to achieve
an adequate baseline. It is worth noting that, being that the radar is designed to operate indoors, at
close range, the transmitted power is much lower than the values of the existing, compact, lightweight
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systems listed in Table 2. Nonetheless, the parameters reported in Table 5 must be considered as nominal
ones. From the practical point of view, the system must be able to collect useful data under extremely
different operating conditions depending on the observation geometries, the synthetic aperture formation
and the effective baseline. The next section will focus on these problems, which are critical for the
proposed system.

4. Assessment of Three-Dimensional Mapping Capabilities

A typical operational scenario for the proposed system is well represented by a parallelepiped, whose
dimensions are depicted in Figure 9. Specifically, concerning indoor exploration, this parallelepiped can
represent an example of a warehouse in which the sensor is requested to operate. The same scenario is
valid also for planetary exploration, where the parallelepiped can be conceived of as a relatively small
control volume that encloses scatterers, which vary depending on the application.
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Figure 9. Platform and sensor moving in a simplified operational scenario. The platform
and target position vectors, the line of sight unit vector, the velocity vector and the target
distance to the antennas are depicted, too (not to scale, for clarity).

The design values proposed in the previous section (see Table 5) allow both acceptable values of
SNR for the whole range of distances to be obtained and the start-stop approximation to be exploited.
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Concerning geometric resolution, it is worth highlighting that a practically rectangular resolution element
is achieved when a conventional side-looking monostatic SAR is considered. Specifically, this is possible
because the azimuth or the along-track directions and ranges or the across-track direction are orthogonal
and the sampling frequency and pulse repetition frequency (PRF) are tuned correspondingly, accounting
for multilook processing, too [45]. On the contrary, the proposed system is designed to look in general
along directions not perpendicular to the motion of the platform. As a result, image pixels no longer
cover rectangular, but differently-skewed areas. Hence, in order to get satisfactory resolutions, it is of
primary importance both to introduce a set of figures of merit to decide whether an image is acceptable
or not and to evaluate the system performance in the control volume.

4.1. Geometric Model

The target position in three-dimensional space is determined by the intersection of three surfaces:

R = ‖P−T‖ (19a)

fD = 2
v · l
λ

(19b)

φ =
2π

λ
(R2 −R1) (19c)

namely the range sphere, Doppler cone and phase hyperboloid [9].
Given a Cartesian coordinate system, whose origin is in the vertex O and axes along the edges of

parallelepiped OD, OA and OC in Figure 9, P and T represent the antenna and target positions in
Equations (19), whereas l represents the line of sight vector. It is worth noting that, if plane wave
approximation is valid [9], the phase hyperboloid Equation (19c) degenerates into a cone.

4.1.1. Range Sphere-Doppler Cone Intersection

The gradient method can be exploited to assess the effects of pixel shape in the presence of the squint
angle within the whole three-dimensional environment. The application of the gradient method requires
the introduction of more general definitions of range and Doppler or azimuth directions as the direction
of fast time gradient

−→
∇t and Doppler frequency gradient

−−→
∇fD, respectively [46]. In addition, a further

hypothesis of motion at constant velocity within the integration time is assumed. It is worth noting that
the gradient method, traditionally applied considering terrain, can be extended to each wall in the case
of indoor navigation to get a three-dimensional awareness.

The characteristics of range and Doppler isolines, caused by the intersection of both the range sphere
and Doppler cone with walls, are analyzed herein. In detail, the unambiguous area is defined in the plane
of each wall as the geometric locus that simultaneously satisfies the following three criteria:

• the angle Ω of intersection between the iso-range and iso-Doppler contour lines falls within the
interval [Ωmin,Ωmax],
• the spatial resolutions computed along the range and Doppler directions are not lower than required

in Table 1,
• the area of an illuminated pixel (i.e., the area bounded by two adjacent iso-range and iso-Doppler

lines) is smaller than a threshold Apixel related to the required cell resolution.
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Consequently, the ambiguous area is the complement of the unambiguous one. The aforementioned
criteria physically mean that within the ambiguous area, the shape of the resolution cell does not allow
the target position on the wall plane to be established with the desired accuracy, owing to the size of the
resolution cell and the geometry of both the isolines and the pixel. Furthermore, it is worth noting that a
phase value can be assigned to a point observable in both the range and Doppler domain, that is a point
that lies in the unambiguous area, thus making interferometry possible.

The imaging performance is estimated considering the parameters listed in Table 6. The azimuth
or Doppler resolution depends on the integration time or synthetic aperture duration. The integration
time should be defined as the time span for which a given target is illuminated by the main lobe of the
transmitting antenna and remains within the main lobe of the receiving one. For the considered system
and environment, the integration time is a function of the distance and of the relative geometry between
the sensor and the target. Hence, it varies from point to point within the control volume. However, since
this actual integration time is, in general, not known, the performance analysis is addressed in this section
by supposing a constant integration time. This means that the integration time must be interpreted herein
as the time span used for SAR focusing, which is assumed constant for all of the imaged targets. The
value for integration time reported in Table 6 is also compliant with the possible platform dynamics
and antenna apertures assumed in the simulation. As a consequence, a range of distances at which the
theoretical azimuth resolution (Equation (4)) can be achieved will exist. Farther points may suffer from
worse resolution owing to the increasing distance between either two close iso-range or iso-Doppler
curves, which results in a larger imaging pixel. Nonetheless, as shown in the following, the degraded
pixel is still complaint with the minimum required resolution and pixel area threshold (Table 6) over
sufficiently large areas within the test environment.

Table 6. Additional parameters for observation.

Symbol Parameter Unit Value

Tint Integration time (s) 1
Ωmin Lower bound on intersection angle (◦) 45
Ωmax Upper bound on intersection angle (◦) 135
Apixel Pixel area threshold (m2) 0.04
kres Minimum required resolution (m) 0.20

Quantitatively, a preliminary analysis of the mapping capability is carried out with the platform at
a specific location. The antenna is located at position P with a velocity v (see Table 7) at half the
integration time. The selected velocity and integration time give the theoretical azimuth resolution at
a distance of about 3 m (and synthetic aperture equal to 0.5 m), but acceptable values are obtained
even at longer distances, as shown in Figures 10 and 11. In more detail, Figure 10 shows the
three terms that contribute to the ambiguous area (shaded) and the shape of the resolution element
within the unambiguous area. The total unambiguous area is about 47% of the total area, and the
walls having observable areas are depicted in Figure 11. It should be noted that points lying within
areas, whose size depends on the distance (i.e., the farther the wall, the larger the size), around the
projection of the velocity direction on walls are not observable, owing to forward-looking ambiguities.
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In addition, points inside a circle, whose radius depends on the distance, around projections of the
platform on the walls, are not observable, owing to the poor ground range resolution. Front and
rear walls are not observable, as the vector normal to their surfaces is parallel to the velocity vector,
thus resulting in parallel range and Doppler isolines. Furthermore, most of the wall ABFE is not
observable. It is worth noting that even though the azimuth resolution satisfies the requirements of
Table 6, the effects of both the ground range resolution and intersection angle Ω due to the distance
strongly affect the observation capability.

Table 7. Position and velocity of the antenna halfway through the integration time.

Px Py Pz vx vy vz

(m) (m) (m) (m · s−1) (m · s−1) (m · s−1)

15 2 2 0.5 0 0

Figure 10. Plane OAED. Ambiguous area (shaded) and contributions: intersection angle
(green contour), resolution (blue contour) and pixel size (red contour). For clarity, the
distance between two close isolines does not represent the true system resolution.

The presented results suggest that the whole control volume can be mapped by exploiting the platform
agility to move and the point the beam.
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(a) Plane OAED (b) Plane CBFG (c) Plane OCGD (d) Plane ABFE

Figure 11. Total unambiguous area (in red, about 47% of the control volume surface) for the
position and velocity reported in Table 7. Note that the observable walls are not depicted in
the figure.

4.2. Layover

Layover is a well-known geometric distortion of SAR images affecting targets that have the same
range and velocity relative to the platform in three-dimensional space [40,45]. Layover does not affect
the capability to image an area of interest, but can cause the inversion of the position of scatterers
and geometric distortion, resulting in interpretation problems. With reference to the considered control
volume, the most critical zones interested in layover are edges and angles generated by the intersection
of two or three walls, which have at least two layover points [45]. However, this is not a specific problem
of the proposed system, since it affects any radar observation, and SAR data processing algorithms
do not typically remove layover areas. In addition, the exploitation of multi-aspect InSAR data has
demonstrated good capabilities in terms of the recognition and removal of layover areas [47]. Even
though these techniques have been tested on different scenarios, i.e., layover generated by small and
large buildings in urban areas, they are expected to be useful for the proposed system. Indeed, since
it is expected that the required multi-aspect interferometric acquisitions will constitute the system
operating mode in order to increase the percentage of the covered area within the control volume
(see Section 4.1.1), the proposed and the successfully experienced techniques to cope with layover will
be certainly exploited.

5. Conclusions

In this paper, the first steps towards the overall feasibility study and design of an innovative radar
sensor for autonomous operations in GPS-denied indoor environments by flying small UAS have been
taken. The work can be summarized as follows:
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• After the state-of-the-art analysis of existing small SAR sensors, FMCW has been individuated
as a suitable scheme to be exploited in combination with InSAR technology for applications
requiring both high-resolution performance and compact and lightweight systems. Millimeter
wavelengths have been selected thanks to their atmospheric penetration characteristics, even in
environments with smoke and flames, and to limit antenna dimensions. The peculiar features of
the FMCW scheme have been thus discussed, also giving a comparison with well-assessed pulsed
SAR technology.
• Based on the FMCW features, a system design procedure has been achieved, outlining

guidelines to trade-off the design choices based on the specific mission requirements and
operative environments.
• Imaging peculiarities have been discussed in terms of the resolution.

The presented results demonstrate that high-resolution, high-quality observation of an assigned
control volume is possible, provided that an adequate flight trajectory is selected. The advantage of
FMCW with respect to the pulse architecture in terms of sampling frequency and real-time data handling
suggests that the transmission of both raw data and processed images to the ground station could be
easily achieved. It is clear that for autonomous navigation, onboard real-time data processing operations
are required, such as interferogram formation, simultaneous localization and mapping procedures and
structured data handling and storage, all of which are very demanding on the system processor. In
addition, very long missions could produce an extremely large amount of data to be stored onboard.
Nevertheless, it can be expected that future enhancements in miniaturization and customization of both
processors and data storage devices will make the aforementioned problems affordable.
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