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Abstract: In this paper, an accurate range sensor for the three-dimensional reconstruction 

of environments is designed and developed. Following the principles of laser profilometry, 

the device exploits a set of optical transmitters able to project a laser line on the 

environment. A high-resolution and high-frame-rate camera assisted by a telecentric lens 

collects the laser light reflected by a parabolic mirror, whose shape is designed ad hoc to 

achieve a maximum measurement error of 10 mm when the target is placed 3 m away from 

the laser source. Measurements are derived by means of an analytical model, whose 

parameters are estimated during a preliminary calibration phase. Geometrical parameters, 

analytical modeling and image processing steps are validated through several experiments, 

which indicate the capability of the proposed device to recover the shape of a target with 

high accuracy. Experimental measurements show Gaussian statistics, having standard 

deviation of 1.74 mm within the measurable range. Results prove that the presented range 

sensor is a good candidate for environmental inspections and measurements. 

Keywords: three-dimensional reconstruction; environmental monitoring; laser profilometry; 

range sensor; catadioptrics 
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1. Introduction 

The recent technological developments have opened new ways of inspecting the world in every 

detail. If a picture is worth a thousand words, a three-dimensional (3D) image addresses much more 

information about a specific target, or, more generally, the environment. 

The first need of 3D data comes from the field of robotics, where exhaustive maps of a robot’s 

surroundings are mandatory for its self-localization and to perform collision avoidance [1–4]. At the 

same time 3D images, also known as range images, have attracted increasing interest by companies in 

the field of quality control since the detailed and unsupervised inspection of manufactured goods can 

speed up industrial processes, especially in those fields, viz. automotive and aeronautics, where 

industrial standardization is mandatory [5–7]. Starting from these problem-driven applications, the use 

of 3D data has been extended to several additional fields [8,9], spanning from medicine [10,11], 

geology [12–15] and biology [16], to archaeology [17–19] and reverse engineering [20,21]. 

In the last decade, many range sensors have been developed and later commercialized for the 3D 

mapping of indoor and outdoor scenes. Among them, the most used exploit stereo imaging, time of 

flight principles, structured light, and laser triangulation. Table 1 lists some examples of available 

systems, displaying the main features, such as the acquisition rate, resolution, accuracy and precision. 

Table 1. List of available devices for 3D reconstruction of environments. 

Model Name 
Accurange 

AR4000 [22] 

RIEGL  

VQ-250 [23] 

RIEGL  

VZ-400 [23] 

Optech  

ILRIS [24] 

Bumblebee 

BB2-08S2 [25] 

Kinect  

v2 [26] 

Type Laser Scanner Laser Scanner 
Terrestrial 

Scanner 

Terrestrial 

Scanner 
Depth camera 

Depth 

camera 

Acquisition rate 50 kHz 50 kHz 122 kHz 10 kHz 
1032 × 776 @ 

20 Hz 

512 × 424 @ 

30 Hz 

Maximum 

distance 
2 m 180 m 350 m 400 m 10 m 4.5 m 

Resolution 5 mm Not reported Not reported Not reported Not reported 2 mm 

Accuracy 5 mm @ 9 m 10 mm 5 mm 
4 to 7 mm @ 

100 m 
Not reported 1 mm 

Precision Not reported 5 mm 3 mm Not reported Not reported Not reported 

(I)n/(O)utdoor I/O I/O O O I/O I 

Applications 

3D 

Environment 

reconstruction 

Mobile 

mapping from 

moving 

platforms 

Large 

environments 

reconstruction 

end inspection 

Large 

environments 

reconstruction 

end inspection 

3D 

Environment 

modeling 

3D 

Environment 

modeling 

Stereo imaging [27] takes advantage of more views of the same target to compute its depth. Several 

sensors have been proposed (e.g., [25,28,29]), but unfortunately the need of point correspondence 

among the acquired images and the complexity of the mathematical models required to triangulate 

these points limit their applicability in actual context of measurement. As a consequence, stereo vision 

is often used for qualitative real-time analysis of dynamic scenes, such as in [30,31]. 

Time of flight (ToF) range finders compute the target distance in terms of the time elapsed between 

an issued laser beam and its reflected spot. Many devices (e.g., [32–34]), also known as lidar, generate 
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a single laser beam which is then deflected by moving mirrors in order to scan wide areas. As an 

example, the AccuRange AR4000 [22] implements a rotating mirror which reflects light on the 

environment, describing circular profiles. As a drawback, the use of mechanical components limits the 

applicability of these sensors since the sample rates decrease. Although a single spot can be acquired at 

a maximum rate of 50 kHz, actually, this value is limited by the rotating mirror to 1000 samples per 

second, corresponding to few tens of profiles per second. At the same time (ToF) cameras try to 

overcome this aspect by adding system redundancy, i.e., increasing the number of detectors (see the 

commercial products in [35,36]). In this case, the emitting lasers shed light over wider areas, whereas 

the matrix of detectors compute the phase difference between the sent signals and the returned ones.  

A depth image having the size of the matrix of detectors is thus computed in a single shot. Increasing 

the number of camera pixel, the corresponding equivalent sample rate can surge of orders of 

magnitude. On the contrary, the achievable field of view is implicitly bounded, so that multiple 

acquisitions are necessary to get a full mapping of the surroundings, with problems residing in the 

registration of the different unknown views. Moreover the cost of such systems is still impressive 

because of the number of laser sources illuminating the environment. Further commercial sensors, 

devoted to the home entertainment (Microsoft Kinect v2 [26]), employ diffused modulated light to 

illuminate the scene, thus downing the overall costs at expanses of the final measurement resolution. 

Terrestrial Laser Scanners (TLSs) are devices used for the modelling of complex targets under 

outdoor conditions, with maximum ranges of hundreds of meters [23]. Such systems are based on the 

principles of time-of-flight or of phase difference and typically return range data as a function of the 

angular position of the emitted laser line. Their typical applications fall in the monitoring of extended 

areas for the detection of landslides and terrestrial deformations, or in the field of 3D reconstruction of 

cultural heritage sites [37,38]. However, the main drawbacks reside in the huge cost of TLSs, their 

dimensions and weights and the limited field-of-view (FoV) which makes them suitable mostly for 

long range measurements, and often not adaptable for several applications which require environmental 

scans of complex scenes. 

Structured light patterns are often used to compute the 3D shapes of objects, since they are 

deformed in accordance with the profile of the surface under investigation. Light patterns can be made 

of stripes (as in [39,40]) or points (see [41]), whose distribution in the camera image is preliminary 

determined with reference to a calibration plane. Each alteration of the target surface with reference to 

this plane returns a shift of the detected pattern, depending on the change of depth. The main limit of 

this technique resides in the mere indoor use, where fringes and spots are highly distinguishable. 

Outdoor application requires the use of coherent light, such as laser beams. 

Laser profilometers follow the same principles of structured light, for which a laser line impinging a 

target is accordingly deformed. Knowing the relative position of laser and camera, triangulation laws 

can derive the position of the line in an absolute reference system [42]. As for the ToF range camera, 

the weakness of this technique is related to the bounded field of view of the sensor, which does not 

permit the full mapping of the sensor surroundings. For this reason mirrors can be added to collect a 

wider sight of the environment in a single frame. These complex systems belong to the category of 

sensors baser on catadioptrics [43–45]. 

The main idea of the proposed setup has been already presented by the authors in [46–48], where an 

omnidirectional sensor for high-resolution 3D mapping has been proposed. Here a laser profilometer 
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assisted by a parabolic mirror is designed to reconstruct spaces when a mobile robot flows through 

them. The achievable resolutions (10 mm at 5 m of distance from the laser source) have demonstrated 

the capability of the previous approach to precisely model both indoor and outdoor scenes, going 

beyond the mere 3D mapping devoted to robot navigation and obstacle avoidance. Previous results 

have enabled novel applications, such as the detection of wall cracks or the prevention of geological 

hazards, as landslides and rockfalls, just to mention a few. 

A step forward in the sensor development consists of reducing the size of the whole experimental 

setup, without altering the final accuracy. In fact, downsizing the setup enables the possibility of using 

it in further applications, including pipe inspection and monitoring of dangerous and confined spaces. 

For this reason the prototype has been completely redesigned with state-of-art devices (lasers and 

camera) able to further increase the acquisition rate. Furthermore, the calibration phase has been 

lightened by means of a novel numerical approach for the exact computation of the actual parameters 

involved in the measurements. In this way, precise mechanical alignment of the optical components 

which constitute the system is no longer required. 

The paper is organized as follows: Section 2 describes the working principles of the proposed 

sensor, showing its geometry, the analytical model that permits the 3D mapping and the evaluation of 

the design parameters that meet the initial specification. Section 3 first reports the description of the 

experimental setup and then collects the discussion of experiments, including a detailed explanation of 

the calibration phase. Conclusion and remarks are given in Section 4. 

2. Sensor’s Working Principles 

This Section aims to describe the working principles of the presented setup, showing how the 

components cooperate to sense the surroundings. Starting with the description of the setup 

components, this Section flows through the investigation of the mathematical formulations that lead to 

the design of the sensor prototype. 

2.1. Geometry Description 

The proposed sensor is designed to map environments with high resolutions and high frame rates, 

exploiting the principles of laser triangulation. Although profilometry is a rather simple way to retrieve 

the 3D shape of objects, or more generally of any surrounding, its fundamental limit resides in the 

short available FoV. In the simplest case of a laser generating a line over the target and a receiving 

camera, which directly looks at the illuminated surface, the FoV is limited by the sensor width times 

the lens magnification. Since short-focal lenses are not suitable for measuring because of the huge 

distortions, the magnification is not enough small to increase the FoV to a full representation of the 

environment. To achieve this result exploiting the advantages of laser profilometry, it is mandatory to 

increase the component redundancy or combine one or more mirrors with one or more cameras. These 

systems are referred as catadioptric systems. 

In general, catadioptric systems are made of a standard camera, with perspective or orthographic 

projection models, pointing upward a convex mirror (parabolic, hyperbolic, conic, etc.). As a 

consequence the FoV of the camera is opened to the surrounding regions beyond the limit imposed by 

the camera lens. On the other hand, such systems introduce deformations of the acquired images. As a 
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consequence, image distortions have to be compensated to produce effective measurements, taking 

advantage of the knowledge of the mirror equation. 

Following the approach described in [48], the proposed sensor falls in the category of the 

catadioptric laser profilometers, since it is made of a laser source, a parabolic mirror and an optical 

receiver. With reference to Figure 1, three laser sources are used to emit light, forming a plane with an 

overall fan angle of 270° (90° each laser). When the light strikes a target of the surrounding 

environment, a complete line is displayed on the surfaces. Each point of the line describes a 

measurement sample where the scene will be mapped in the global reference system. The parabolic 

mirror deflects light on the camera plane, throughout the lens. Since a parabolic mirror reflects light 

always following directions parallel to its axis of symmetry, a telecentric lens is the best candidate for 

the image formation. The resulting image has information about the position only of the illuminated 

targets. It is worth noticing that the sensor must be aided by an encoded movement to perform a 

complete scan of the whole environment. For this reason a mobile vehicle is used to carry the sensor 

through the scene, sense its spatial pose via standard odometry and send this information to the  

data collector. 

 

Figure 1. Sketch of the presented laser profilometer. Note the parabolic mirror is mounted 

onto micrometric rototranslational stages, whereas the camera is fastened on the metallic 

stand. Lasers are placed across from the parabolic mirror, behind the camera. 

Once the fundamental active devices are chosen and arranged in the setup, it is mandatory to derive 

the triangulation laws that govern the process of image formation on the camera. This aspect will be 

topic of the next section. 
  

Rototraslational stages 

Parabolic mirror 

Telecentric lens

Camera

Cooling fan

Laser 
sources

Laser 
lens

Emitted 
line
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2.2. Triangulation Equations 

The aim of the proposed range sensor is the measurement of distances starting from the inspection 

of where the laser line is displayed in the image. The next steps are derived following the notation 

reported in Figure 2, where the setup scheme is proposed. Here the reference system (x, y, z) is 

centered in the vertex of the parabolic mirror, having symmetry axis along the z-direction and focus at 

coordinates (0, 0, F). It follows that the parabolic mirror has equation:  

( )2 21

4
z x y

F
= +  (1)

The laser plane intercepts the z-axis at b (baseline), whereas the camera plane intercepts the z-axis 

in WD (working distance). For the sake of simplicity, Cartesian (x, y, z) and polar (ρ, θ, z) coordinates 

are both used within the next lines to refer the points in the world absolute system. Finally, the camera 

plane has a proper 2D reference system (x’, y’), assisted by the corresponding polar coordinates (r, ϕ). 

 

Figure 2. Schematic view of the proposed setup. The final goal of the analytical model is 

the translation of the known coordinates (rC, ϕC), recovered on the camera plane, in world 

coordinates (ρT, θT, zT), having origin in the mirror vertex. 

When the laser plane strikes a target, a line emerges. Each point PT belonging to the line has 

coordinates (ρT, θT, zT) and is detected on the camera plane in PC, having coordinates (rC, ϕC) in the 

reference system of the camera (x’, y’). In summary, the problem can be formulated in deriving the 

world coordinates (ρT, θT, zT) knowing the terms (rC, ϕC). The following steps start from two 

fundamental initial hypotheses:  
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1. Both the laser and camera planes suffer from negligible alterations of their normal vectors with 

respect to the z-axis. This implies that the laser line is always across from the focus of the 

paraboloid, behind the camera. Equivalently each point of the line can be detected on the 

camera plane whenever its sight is not occluded by other objects; 

2. The z-axis crosses the image plane in its center, or equivalently the vertex of the mirror is 

displayed in the center of the image plane. This condition will lead to a simplification of the 

model, as the image projection can be referred in both absolute and camera reference systems. 

In other words, the point PM is projected in PC keeping the transversal coordinates 

( ) ( ) ( )
( )

' '

, , ', '
, ,C C C Cx y z x y

x y x y= . The last condition is valid when the magnification M of the lens 

does not scale the metric coordinates. Otherwise, the term M has to be added to the formulation 

as a multiplicative factor. 

It is easy to understand that the calibration phase has to be run to ensure the meeting of the initial 

hypotheses. As an example, the mirror has to be placed properly in order to achieve its centering in the 

image plane. These procedures will be further described in Section 3. 

Any generic point PT of the laser line produces a reflection on the parabolic mirror at coordinates 

defined by the point PM. Because of the properties of a parabolic mirror, the projection of the laser spot 

onto the mirror is equal to the intersection of the ray that connects the spot itself with the focus of the 

paraboloid. This ray has equations:  

( )

( )

ρ cosθ

ρ sinθ

T T

T T

F z
x

F b
F z

y
F b

−
= +


− = +

 (2)

The corresponding analytical system, result of the ray incidence on the mirror, admits two solutions 

of PM:  

( )( )
( )( )

( )( )

( )( )
( )( )

( )( )

2 22 2

2 22 2
,1 ,2

2 2
2 22 2

2 2

2 cosθ 2 cosθ
ρ ρ

ρ ρ

2 sinθ 2 sinθ
ρ , ρ

ρ ρ

ρ ρ
ρ ρ

T T
T T

T T

T
M T M T

T T

T T
T T

F F
F b F b F b F b

F F
P F b F b P F b F b

F F
F b F b F b F b

   
− + + + + − + − + +   
   
   

= − + + + + = − + − + +   
   
   
   + + + + + − + +   
   

 (3)

Both solutions are valid in the set of real numbers, but only one of them is physically possible.  

In particular, the geometry of the system imposes a strict constrain: only that point that hits the mirror 

at the lowest z-coordinate is solution of the analytical system. It follows that PM,2 (from now on PM) 

solves the specific problem. Consequently, the coordinates of PC on the camera plane are:  
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( ) ( )( )
( ) ( )( )

22

22

2 cosθ
ρ

2 sin θ
ρ

T
T

T

C T
T

F
M F b F b

F
P M F b F b

WD

ρ

ρ

 + + − + 
 
 

= + + − + 
 
 −
 
 

 (4)

being WD the nominal working distance of the lens-camera set. The transversal coordinates can be also 

expressed in polar coordinates, thus giving the couple (rC, ϕC) equal to:  

( ) ( )( )222
ρ

ρ

f θ

C T
T

C T

F
r M F b F b = + + − +

 =

 (5)

Since the final goal of the presented framework is the estimation of (ρT, θT, zT) knowing the terms  

(rC, ϕC), the relationships in Equation (5) have to be inverted, thus obtaining: 

( )
2 2 2 2 2

4 1 4
ρ

4 1 4

θ

T C
C

T C

MF F b ab
r r

M F r a r

φ

+ += = − −
 =

 (6)

where a is the curvature of the parabolic mirror, equal to 
1

4F
. 

The results in Equation (6) are thus able to transfer the points belonging to the laser line detected on 

the camera plane in an absolute reference system. 

2.3. Design Strategy 

Starting from the deep knowledge of the triangulation laws in Equation (6), a prototype can be 

designed in terms of selection of active devices, namely camera and laser sources, and passive 

components, i.e., telecentric lens and parabolic mirror. The geometrical and physical parameters 

involved in the actual design of the experimental setup are reported in Table 2. 

Table 2. List of geometrical and physical parameters involved in the range measurements. 

Components Parameter Name Description 

Passive
Mirror a Curvature of the mirror [m−1] 
Lens M Magnification of the lens 

Active 
Camera 

W × H Resolution of the camera 
p Pixel size [m] 
f Frame rate [s−1] 

Laser b Baseline [m] 

The choice of the model parameters in Table 2 is linked to a set of initial specifications:  

• the maximum measurable range dMAX; 

• the maximum acceptable uncertainty in range estimation ΔρT,MAX obtained at ρT = dMAX; 
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• the number of profiles per second that are returned by the sensor (herein Profile Acquisition  

Rate, PAR). 

The estimation of the device parameters starts with the analysis of the specified PAR. In particular, 

this requirement defines a first and unavoidable constrain on the choice of the camera, which is the 

only one device responsible for the measurement rate. On the other hand, the requirements on the 

measurement quality have effects on the choice of the mirror equation, in terms of its curvature a, and 

of the baseline b between mirror and lasers. Also the lens magnification M has to be defined properly  

in order to adapt the properties of the camera (pixel size and resolution) to the specific problem  

under analysis. 

In this context, errors are ascribable to the quantization induced by the matrix of pixels on the 

camera plane. Figure 3 shows a sketch of the quantization and the corresponding effects on the 

determination of the beam coordinates. In particular, for any point PC, projection of the laser line 

within the pixel area, the resulting actual coordinates (rC, ϕC) are always confused with the coordinates of 

the center of the illuminated pixel (rC0, ϕC0). The error contribution can be described by the vector ε, which 

has origin in the center of the pixel PC0 and ends in PC, corresponding to the actual range measurement. 

 

Figure 3. Error components related to the quantization of the image plane due to the finite 

area of pixels. Each pixel of the plane is square and has side equal to the pixel pitch p. 

The pixel area determines a region of uncertainty. This region can be shifted in the absolute 

reference system, thus defining an ambiguous spatial region where differences in (ρT, θT) cannot be 

resolved. In this case, the measurement is: 

0

0

ρ ρ ρ

θ θ θ
T T T

T T T

= + Δ
 = + Δ

 (7)

where ΔρT and ΔθT refer to the range and angular uncertainties. 

The following formulations aim to detect the worst condition for the measurement, or equivalently 

the highest contribution of the error vector ε to the couple of coordinates (rC, ϕC). It is easy to 

understand that the vector ε has maximum modulus when the point PC exactly lies on the corners of the 

pixel area. In this case the modulus is equal to half the diagonal of a pixel, i.e.,:  
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,

,

2

2T T MAX

T T MAX

p

M
ρ ρ
θ θ

Δ =Δ
Δ =Δ

=ε  (8)

It is mandatory to observe that the pitch term p in Equation (8) has been divided by M before being 

reported in the world reference system. In the following lines, the ratio p/M will be named as effective 

pixel size p’. 

In a similar manner, when PC lies on the corners of the pixel area, the uncertainty in the 

determination of θT experiences its lowest or highest values. Also in this case, the peak of uncertainty 

is reached along the pixel diagonal, which represents the maximum range of angles that can be 

spanned within the pixel itself. 

In summary, given the extension of the pixel diagonal and the analytical model derived before, the 

maximum error can be directly estimated at a specific region of the mirror, or, equivalently, at each 

distance from the laser sources. 

Following Equation (6), the generic pixel of coordinates (rC0, ϕC0) corresponds to a target placed  

at position:  

0 02 2
0

0 0

1 4
ρ

1 4

θ

T C
C

T C

ab
r

a r

φ

+ = −
 =

 (9)

As effect of the image quantization, the returned measurement is affected by the two contribution of 

uncertainty, ΔρT and ΔθT. Given the hypothesis in Equation (8), the expression of ΔρT can be easily 

derived as:  

( )
0

02
2

0

2 ' 21 4
ρ ρ

2 1 2 ' 2

C
T T

C

r pab

a r p

++Δ = −
− +

 (10)

which leads to:  

( )
( )

2
0 0

22 2
2

0
0

1 2 2 ' 2' 2 1 4
ρ

2 1 4 1 2 ' 2

C C

T
C

C

a r p rp ab

a r a r p

+ ++Δ =
− − +

 (11)

Equation (11) can be further manipulated to derive the expression of ΔρT as a function of the 

measurement ρT0. This result can be easily obtained inverting the first equation of Equation (9):  

( ) ( )2 2 2
0

0 2
0

1 4 16 ρ 1 4

8 ρ
T

C
T

ab a ab
r

a

+ + − +
=  (12)

At the same time, the maximum angular uncertainty in target measurements can be derived knowing 

the coordinates of the point PC and PC0 in the x’y’-plane and how they are related to the pixel size.  

For instance, if PC lies on the north-west corner of the pixel depicted in Figure 3, it is possible to 

derive ΔθT as follows:  
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0 0
0

0 0

2 sinθ
θ arctan θ

2 cosθ
C T

T T
C T

r p

r p

 +Δ = − − 
 (13)

which can be further developed as a function of the range measurement, by replacing the expression  

in Equation (12). 

Equations (11)–(13) are necessary but not sufficient to achieve the complete design of the sensor, 

which requires the last constrain: the mirror has to be in the FoV of the selected camera. When the 

mirror is acquired by the camera, its edges define a circle of diameter DM. It is easy to understand that 

this area has to be included within the camera plane in order to be captured, and, consequently, the 

mirror diameter has to be at least equal to the smallest size of the camera sensor. Specifically, being W 

and H the number of pixels along the horizontal and vertical directions (H ≤ W), DM has to be equal to 

h = H·p’. 

Since the sensor has to return measurements at a maximum distance dMAX from the laser sources, 

Equation (12) can be rewritten imposing that a laser beam, impinging on a target at distance dMAX,  

is detected on the most external regions of the mirror. Mathematically, this condition leads to impose 

that 0 2
M

C

D
r =  when ρT0 = dMAX. This can be exploited to define the unknown baseline b as a function 

of the mirror curvature a:  

( )2 22 1

4
MAXa h d h

b
ah

− −
=  (14)

As a consequence, the design can be shifted to the evaluation of the unknown a, which is the only 

term that has to be dimensioned to match the specification on the maximum error. Equation (11) can 

be developed considering 
0

0 ρ 2 2T MAX

M
C d

D h
r

=
= = , together with the expressions Equations (8) and (12),  

thus obtaining:  

( ) ( )( )
,

, ,

ρ ' 2

' 2 ρ ' 2 ρ

T MAX MAX

T MAX MAX T MAX

h p d
a

h h p h p d

Δ −
=

+ Δ + + Δ
 (15)

Note that only the positive solution of a has been considered, accordingly with the sketch in  

Figure 2, where a concave up paraboloid is presented. 

In summary, the first specifications on the maximum measurement range and the maximum 

acceptable error define univocally the geometrical parameters that determine the shape of the parabolic 

mirror, in terms of its curvature a in Equation (15), and the position of the laser sources along z, 

assessed by the baseline b in Equation (14). 

3. Experimental Analysis 

3.1. Prototype Description 

As described in details, the proposed range sensor is based on the principle of laser triangulation. 

Following the early idea given in [46–48], the triangulation process is assisted by a parabolic mirror in 

order to achieve a wide FoV of 270°. 
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The aim of this investigation is a further improvement of the previous setup in terms of the 

reduction of the sensor size and the increase of the measurement rate. Specifically, the first prototype 

implements a parabolic mirror whose radius is equal to 60 mm. The corresponding telecentric lens, 

chosen to capture the whole mirror area, has the same radius of the reflector, and a length of about 600 mm. 

At the same time the distance between the vertex of the mirror and the laser plane, from now on 

baseline b, has been dimensioned equal to 1.5 m to acquire measurements with a maximum relative 

error of 0.1% at a distance of 3 m from the emitters. Finally the PAR, which determines the number of 

slices per seconds that maps the environment, is equal to 5. 

The novel design fixes new initial specifications. As a first step the setup has to be reduced in size 

to a maximum total length of 1 m, keeping the measurement resolution ΔρT,MAX to 10 mm at a 

maximum distance dMAX of 3 m. At the same time the PAR has to be improved reaching 25 profiles per 

second. These aspects imply the use of state-of-art devices, together with the redefinition of the design 

parameters, to fit the new requirements. 

With reference to Figure 4, where a first prototype is presented, the sensor exploits fiber optic 

lasers, namely CUBE Laser by Coherent [49], with a built-in thermal management. Furthermore, the 

use of fiber tails assisted by cylindrical lenses enables the reduction of the space required for its 

mechanical assembling. At the same time, the initial specification of high measurement rate is ensured 

by the use of the CL-400 Bonito camera by Allied Vision Technology [50], which exploits the double 

and full Cameralink protocol with frame rates f up to 386 frames per second. The main features camera 

are reported in Table 3. 

 

Figure 4. Picture of the actual prototype: (a) Overall setup; (b) Optical receiver made of 

the parabolic mirror and the lens-camera set; (c) Laser sources and lenses and data logger 

connected to the camera. 
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Table 3. Specifications of the implemented camera (AVT CL-400 Bonito [50]). 

Parameter Description Value 

Interface 2 × 10-tap CL Full+
Image resolution (W × H) 2320 × 1728 

Sensor size 4/3” 
Pixel size (p) 7 μm 

Max frame rate at full resolution 386 fps 

Once the camera has been selected, the unknowns a, b and M have to be dimensioned to match the 

initial specifications on the measurement error and sensor size. As stated previously, the error analysis 

leads to Equations (14) and (15) which can be easily exploited to derive the mirror curvature and the 

baseline, as a function of the magnification of the telecentric lens, implicitly held in p’. Typical values 

of the magnification M are 0.75, 1 and 2 (e.g., see [51]). These numbers have been tested, producing 

the results in Figure 5, where the maximum error ΔρT,MAX is reported as a function of the mirror 

curvature and the laser-mirror distance. The presented plots are computed for realistic values of a and 

b. Specifically, the mirror curvature spans describing a maximum mirror depth of about 13 mm, 

corresponding to a = 100 m−1 with M = 0.75. It is important to notice that high-curvature mirrors are 

not suitable for the specific application, since their depths are much over the limit imposed by the depth 

of field of the lens, typically close to few millimeters. In this case, the telecentric lens is not able to focus 

the mirror over its entire depth, or equivalently over its whole area. At the same time, the trial values of 

the baseline are limited to 1.3 m, anyway higher than the desired maximum length of the sensor. 

Before going through the inspection of Figure 5, it is worth observing that, within the considered 

boundaries of a and b, a magnification M equal to 2 does not produce visible reflections on the mirror, 

i.e., in the camera FoV, when the target is 3 m far from the laser sources. This value defines the 

maximum range of the proposed device, which makes it most suitable for indoor applications. At the 

same time, those outdoor applications where the main interest is focused on the closest targets (see 

railway monitoring) can be faced, taking advantage of the coherent nature of the laser line, which is 

highly recognizable against the ambient light. Nevertheless, also higher maximum ranges can be 

reached by changing properly the optical components involved in the presented setup. 

The insight of Figure 5 demonstrates that when the magnification is equal to 0.75, the lower values 

of a and b that allows ΔρT,MAX = 10 mm are 48.22 m−1 and 756.9 mm, respectively. On the other, the 

same specification is matched for a = 64.29 m−1 and b = 758.2 mm, when M = 1. Although baselines 

are almost equal, the mirror curvatures change considerably. As stated previously, a conscious design 

would prefer lower curvatures, since the corresponding mirrors have shorter depths. In this way, the 

telecentric lens can extend its working distance over increasing areas of mirror, keeping the laser line 

focused. Hence, the telecentric lens VS-LTC075-70-35/FS by VS-Technology [51], having 

magnification equal to 0.75, has been chosen for the presented prototype. 

The final design parameters that allow the specification compliance are thus summarized in Table 4. 

Once the design parameters have been selected, the maximum error in the computation of the 

angular component of PT can be estimated. With reference to Equation (11), this error contribution 

depends on the exact angular component of the point PC0. Figure 6(a) shows the dynamics of the error 

term ΔθT,MAX as a function of the angle θT0, equal to ϕC0. 
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Figure 5. Maximum errors ΔρT,MAX at dMAX = 3 m as a function of the mirror curvature and 

the baseline, computed for magnification equal to: (a) 0.75; (b) 1. Regions where the laser 

incidence is out of the camera FoV are displayed in white. 

Table 4. List of design parameters that allow maximum error of 10 mm at a distance of 3 m. 

Parameter Value 

A 48.22 m−1 
B 756.9 mm 
M 0.75 

 

Figure 6. (a) Angular component of the maximum measurement error at dMAX = 3 m as a 

function of the estimated angle θT0; (b) Maximum estimated shift, due to the presence of 

angular uncertainty ΔθT,MAX, in the computation of the y-coordinate of the point PC at  

dMAX equal to 3 m. 

The analysis of Figure 6 demonstrates that the angular component of the maximum error due to 

image quantization is always below 3.5 × 10−2 degrees. As a consequence, the estimation of the target 

(a) (b)

M = 0.75 M = 1



Sensors 2015, 15 2297 

 

 

position in the (x, y, z) system of coordinates is altered as results of the application of sine and cosine 

functions to the term θT0 + ΔθT,MAX. Quantitatively the maximum error due to ΔθT,MAX in determining 

the x and y coordinates of the point PC is at most equal to l.6 mm at a distance of 3 m (see Figure 6b), 

i.e., about one order of magnitude lower than the specified ΔρT,MAX. 

3.2. Setup Calibration 

However precise and mechanically stable the experimental setup can be, the actual geometrical 

parameters differ from the nominal ones. As a consequence, the setup calibration has to compensate  

for this, estimating the unknown parameters F (or equivalently a) and b that govern the triangulation 

process. This task is mandatory within a calibration phase, which is driven by the inspection of a 

completely-known target. 

Before going through the estimation, it is important to mention the preliminary assumption of the 

model, regarding the relative position of the mirror and the image plane. Specifically, the camera plane 

has to intercept the axis of symmetry of the mirror in its center. Since the camera has greater sizes than 

the mirror, it is more convenient to change the position of the latter, keeping the camera fixed at a 

distance from the mirror close to WD. Consequently, the mirror has been bracketed on mechanical 

handles, taking advantages of micrometric shifts in the xy-plane and rotations around the x- and y-axis. 

Once the mirror has been equipped with micrometric rototranslational stages, a processing pipeline 

is needed to estimate its position within the image plane. The algorithm of mirror identification has 

been developed in the MVTech Halcon 11 [52] environment. In this case, the position of the mirror 

vertex can be estimated by searching for the mirror circular boundary in a set of sample frames 

captured by the camera. Figure 7 shows an example of image returned by the camera, where a  

self-reflection of the telecentric lens can be observed in the image center, whereas the mirror boundary 

can be easily recognized on the outer regions. 

 

Figure 7. Example of frame captured by the camera for the estimation of the mirror 

position in the image plane. 

With reference to Figure 8, where the contour extraction is presented step by step, the implemented 

algorithm processes the returned frames (e.g., Figure 7) to estimate the mirror position through the 

following steps:  
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(1) A process of image threshold highlights the pixels of intensity higher than 20, returning the 

green area in Figure 8a; 

(2) Given the areas of high intensity, the method extracts the region contours in Figure 8b; 

(3) The longest boundary is selected and fitted on a two-dimensional ellipse in the least squares 

sense, producing the green curve in Figure 8c; 

(4) The center coordinates are consequently derived (red cross in Figure 8d), whereas the 

eccentricity of the estimated ellipse is evaluated to measure the alteration of the normal vector 

of the image plane with respect to the z-axis. 

The presented algorithm controls the mirror position in real time, thus enabling the direct use of the 

micrometric stages for its exact placement. In this way, the initial hypothesis that leads to the model in 

Equation (6) is verified. 

 

Figure 8. Image processing steps for the determination of the mirror position in the camera 

plane. (a) Threshold image; (b) Boundaries extracted from the threshold regions of high 

intensity; (c) Start image and corresponding fitting ellipse (in green); (d) Final results with 

the estimation of the center coordinates (red cross). 

The calibration phase can thus proceed with the estimation of the unknown model parameters. For 

this purpose, a wood structure made of 45-mm-thick strips has been realized and scanned by the 

proposed sensor in order to frame couples of laser points belonging to the strip corners. The Euclidean 

distance computed in the image plane between corresponding corner points is then compared to the 

actual corner distance, implicitly equal to the thickness of the laths. Figure 9 reports an example of an 

acquired frame used for the setup calibration, whereas the inset shows the corresponding couple of 

points named as the structure edges. 
  

(a) (b)

(c) (d)
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Figure 9. Example of a frame captured by the camera during the setup calibration. The 

laser line illuminates a target of completely known geometry. The inset highlights the 

extracted points belonging to the structure edges, whose distance corresponds to the 

thickness of the wood strips. 

The experimental calibration is treated as an optimization problem. As a first step the couples of 

edges are extracted, passing through the following steps:  

(1) The image is cropped in order to eliminate secondary reflections due to the presence of external 

light sources, returning the region enclosing the sample target (see the inset of Figure 9); 

(2) The ROI is treated by a threshold process to highlight the laser points. This step generates a 

binary image where white pixels are candidate laser points; 

(3) A region growing approach is applied, after a morphological dilation filter, to detect continuous 

region that resamples the laser line; 

(4) The resulting regions are individually fitted on an ellipse. The limits of the major axis 

determine the edges of the laser line impinging on the sample target. These points are derived 

with subpixel resolution. 

Once the edges are extracted, these are transformed in world coordinates, using trial parameters.  

An objective cost function is thus defined as the square error between the computed edge distances and 

their nominal counterparts. The problem is thus solved in the non-linear least squares sense. 

An overdetermined system is built exploiting more than 100 frames and solved in the model 

parameters, thus obtaining the resulting values in Table 5, with a corresponding residual of the cost 

function of 3.205 × 10−4. 

Table 5. Results of the calibration process. 

Parameter Calibration Results 

F 5.166 mm 
B 702.12 mm 
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The actual values of the model parameters determine a drift of the measurement obtained under 

ideal conditions. From a quantitative point of view, compensating for the presence of setup alterations 

allows the deletion of additional systematic errors. With more details, considering the nominal 

parameters instead of the calibrated ones generates a peak error of 144.19 mm at the maximum range 

of 3 m, i.e., one order of magnitude higher than the required range resolution (10 mm). 

3.3. Experiments and Discussions 

The experimental validation of the sensor setup can be performed in two different ways:  

(1) Inspecting the movement of a target, which is mechanically controlled via encoded slits and 

rotational stages. This technique requires the perfect understanding of the mathematical 

relationships between the world reference system, where the target shift is defined, and the 

mirror reference system, where actual results are determined; 

(2) Scanning the shape of a known object, placed at increasing distances from the laser sources. 

This method returns relative measurements, which are characteristics of the target itself. It 

follows that the knowledge of the object pose in the mirror system of coordinates is no longer 

required. The comparison is self-consistent, given the shape of the target. 

For these reasons, several acquisitions have been performed with the aim of determining the size of 

a square board, placed at increasing distances. Moreover, experiments have been run changing the 

direction of the radial shifts in order to cover many spatial regions. This results will be of interest since 

the goal of the proposed system is the inspection of surroundings, wrapped around the range sensor.  

In this case, it is mandatory to ensure that the measurements are always reliable, regardless the  

target position. 

 

Figure 10. Example of frame acquired by the camera for testing the sensor accuracy.  

The rectangle encloses the laser line impinging on the board. 

Figure 10 reports an example of frame, acquired when the laser line impinges on a square 

paperboard having side equal to 310 mm. The base of the board has been perfectly aligned to the 

ground, in order to ensure that the line crosses it parallel to its vertical sides. The edges of the laser line 

have been extracted by means of the same algorithm used in the calibration phase for the corner 
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extraction from the known target. In summary, a ROI including the laser line is extracted and a binary 

image is built by means of a threshold process; after the application of a dilation filter, a region 

growing approach is used to determine the actual laser line, which is fitted on an ellipse. The edges of 

the laser line on the board sample are equal to the limits of the major axis of the fitting ellipse. The 

result of the proposed algorithm, applied to the frame of Figure 10, are shown in Figure 11. 

 

Figure 11. Results of the edge extraction algorithm used for the detection of the board 

sizes. The inset shows a magnified view of the extracted points; the green line identifies 

the fitting ellipse. 

Once the edges of the laser line are extracted from the image, they can be reported in the (x, y, z) 

reference system, thus obtaining their positions in space. It is evident that the spatial distance between 

the edges is implicitly equal to the side of the panel. Figure 12 points out the estimated dimension of  

the board as a function of the target distance. Plots are obtained spanning the target movement around 

the sensor for discrete angles α, which defines the direction of the target shifts with reference to the 

ground (assumed parallel to xz-plane). 

Results clearly show the good agreement of results in computing the dimension of the board side, 

regardless the target position, which qualitatively does not alter the measurement error. In particular 

the average values of the estimated dimensions of the board are reported in Table 6. 

Table 6. Average values of the measured size of the square paperboard under analysis.  

The target has a nominal dimension of 310 mm. 

α Paperboard Size 

25.96° 309.77 mm 
15.92° 310.62 mm 
6.98° 310.23 mm 
−5.44° 309.39 mm 

Moreover, range samples have been collected in equally spaced bins in order to derive information 

about the noise statistics, leading to Figure 13. At this stage, quantization errors are compensated by 

the process of point extraction, which computes the position of the panel borders with subpixel 
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precision. Here, the main contributions to the measurement errors are related to a superposition of two 

mechanisms of degradation. First the laser line is defocused on the camera plane as effect of the finite 

depth of field of the camera and the divergence of the laser light. Then, the image processing 

introduces implicit approximations, since curve lines corresponding to straight segments are actually 

fitted by ellipses. Nevertheless, the data collection in Figure 13 follows a Gaussian-shaped function 

centered on the expected measurement, thus proving the good accuracy of the proposed sensor. 

Measurements are altered by noise contribution with standard deviation of 1.74 mm and a consequent 

~99% confidence interval of about 10.44 mm. 

 

Figure 12. Estimation of the size of the sample board as a function of the distance of the 

target from the light sources. Measurements have been performed changing the direction of 

the radial shifts, accordingly with the axis defined by the angle α, referred to the ground 

plane: (a) α = 25.96°; (b) α = 15.92°; (c) α = 6.98°; (d) α = −5.44°. 

Furthermore, the presented error estimation is uncorrelated with respect to the camera frame rate,  

till the limit fixed by the inverse of the exposure time used in the presented experiments (30 ms). When 

the frame rate is higher than 33 fps, the exposure time has to be reduced properly, thus downing the 

intensity amplitude of the detected laser line. As a consequence, the decreasing signal-to-noise ratio 

(a)

(b)

(c)

(d)

α = −5.44° 

α = 6.98° 

α = 15.92° 

α = 25.96° 
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can produce effects on the measurement quality. Nevertheless, the initial requirement of fast 

acquisitions (25 fps) can be matched within the limit of precision discussed before. 

 

Figure 13. Collection of samples returned by the analysis of the board side. 

The presented results can be compared with those returned by the AccuRange AR4000 rangefinder, 

whose range measurements are affected by a statistical white noise with standard deviation of 2.5 mm 

when the target is placed 1 m far from the emitter [53]. Although noise contributions seem 

comparable, the frame rate of the AR4000 rangefinder imposed for these experiments is equal to  

1 kHz. On the other hand, the presented sensor produces about 5 × 104 samples per second at the current 

frame rate of 25 fps. This behavior is due to the camera resolution which allows the proper 

decomposition of the detected laser line of a single frame in more than 2000 samples, without any 

degradation of the measurements. 

3.4. 3D Reconstruction 

As a proof of the actual capabilities of the presented range sensor in 3D reconstruction, an example 

of acquisition is briefly reported in this Section. The sensor is fastened on a mobile robot, which flows 

through an indoor environment (in this example a corridor) following straight trajectories at a constant 

speed of 400 mm/s. The camera is trigged by a TTL signal generated by the robot encoders. Given the 

resolution of the encoders and the robot speed, the camera sends a frame to the data receiver every  

5 mm, exploiting the full camera link protocol. This data is a raw matrix with 1728 × 2320, full of 

unsigned char representing the image intensities. Frames are then processed to extract the position of 

the laser line in the image plane. At this stage, the image is sectioned following 2048 radial directions, 

starting from the image center. Each section can include at most one laser peak, whose position can be 

easily computed applying the standard center of mass approach [54]. Knowing the exact position of the 

laser line with subpixel accuracy and the robot pose returned by odometry, it is possible to derive the 

corresponding coordinates in three-dimensions. These samples are finally ordered in a Wavefront .obj 

file, filled by the vertex of the dataset. The reconstruction has produced a point cloud having size equal 

to 2.4 × 106. This outcome is shown in Figure 14. 
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Figure 14. (a) Acquired corridor and (b) corresponding 3D reconstruction; (c) picture of  

a particular object with maximum size of 10 cm and (d) corresponding 3D model. 

4. Conclusions 

In this paper, an omnidirectional range sensor for the inspection of surrounding spaces had been 

developed. Following the principles of laser profilometry, the range sensor estimates the distance of 

targets by looking at the displacements of a laser line projected onto the environment. When the vision 

system is assisted by a parabolic mirror, high FoV can be reached in a single scan, i.e., a camera frame, 

thus increasing the number of profiles, up to the limit fixed by the camera electronics. The 

experimental setup had been designed following analytical expressions to meet initial specification on 

its overall size and the measurement resolution at a distance of 3 m from the emitters. A novel 

calibration phase devoted to the alignment of the optical component involved in the acquisition had 

been described, together with the estimation of the actual geometrical parameters that lead to the range 

measurements. Several experiments had been run in order to establish whether the proposed system 

can inspect accurately the surface of known calibrated targets, using effective image processing 

techniques. Measurements returned by the sensor for the estimation of the size of the known target had 

been compared with nominal values. Experimental results had demonstrated that the noise contribution 

follows a Gaussian shape with standard deviation of 1.74 mm and negligible systematic error  

(mean value close to 0.31 mm), regardless the target distance from the sensor. All noise sources are 

ascribable to the defocusing effect induced by the finite depths of field of both emitting lasers and 

receiving system. Keeping the same exposure of the camera, the profile acquisition rate can reach  

33 profiles per second, as required by the specifications, without increasing the maximum error.  

In conclusion, the presented device constitutes one of the best options for applications, such as 
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inspection of pipes or monitoring of confined spaces, where reliable range measurements with high 

acquisition rates, high resolution and accuracy are mandatory. 
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