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Abstract: In-depth analysis and performance evaluation of sensor fusion-based estimators may
be critical when performed using real-world sensor data. For this reason, simulation is widely
recognized as one of the most powerful tools for algorithm benchmarking. In this paper, we
present a simulation framework suitable for assessing the performance of sensor fusion-based
pose estimators. The systems used for implementing the framework were magnetic/inertial
measurement units (MIMUs) and a camera, although the addition of further sensing modalities
is straightforward. Typical nuisance factors were also included for each sensor. The proposed
simulation environment was validated using real-life sensor data employed for motion tracking.
The higher mismatch between real and simulated sensors was about 5% of the measured quantity
(for the camera simulation), whereas a lower correlation was found for an axis of the gyroscope
(0.90). In addition, a real benchmarking example of an extended Kalman filter for pose estimation
from MIMU and camera data is presented.

Keywords: simulation; sensor modeling; sensor fusion; performance evaluation

1. Introduction

Synthetic ground-truth data are widely used for algorithm validation in several applications,
including pose (orientation and position) estimation methods [1–5]. The workflow of algorithm
validation typically involves the following steps: the design of the algorithm, the assessment of
its performance on simulated data and, finally, experimental validation. Although experimental
validation is essential to legitimate the conclusions of any scientific investigation, it is well known
that several undesired and sometimes uncontrollable factors may affect the experimental results.
These factors are related to either the sensors, including those generating ground-truth data (intrinsic
factors), or the external environment (extrinsic factors). On the other hand, simulation environments
offer the opportunity to control both intrinsic and extrinsic factors, generate accurate ground-truth
data and perform replications and statistical analyses.

The work carried out on sensor simulations in a pose estimation context is analyzed below.
An inertial measurement unit (IMU) signal simulator was presented in [6]. The adopted

object-oriented language approach based on the C++ language allowed the project to be extensible
and modular. Realistic motion trajectories were generated starting from synthetic instances of
angular velocity and acceleration signals. These signals were then modified to account for several
error sources affecting sensor outputs, e.g., sensitivity and cross-axis sensitivity, bias, misalignments
between reference frames, measurement (white) noise and quantization noise. The simulation
framework was validated by comparing the generated signals with those from a real IMU.

An IMU signal generator was developed in [7] to gain insight into the operation and performance
of pedestrian dead reckoning (PDR) algorithms. In particular, the authors aimed at generating simple
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and realistic foot motion trajectories in three-dimensional (3D) space, without accounting specifically
for any error source apart from the white measurement noise. Thanks to the use of the IMU signal
generator, some critical points were discovered in the PDR algorithm, leading to a new design with
better performances.

An object-oriented language approach was also adopted to implement IMUSim, a Python-based
magnetic-inertial measurement unit (MIMU) simulator proposed specifically for applications in the field of
human motion analysis [8]. The ground-truth pose was obtained using stereophotogrammetric
reference data from an optical motion capture system. The filtered motion trajectories were processed
through the rigid body kinematic equations to obtain the angular velocity and the linear acceleration
of the simulated IMU. Models of the measurement noises and biases that affect magneto/inertial
sensors were implemented. Additional interesting aspects of IMUSim were the introduction of
models describing the Earth’s magnetic field distribution and the simulation of wireless sensor
network operation.

In [9], another MIMU simulator was implemented, which modeled the sensor frequency
response with a first-order dynamics. In addition, a more complex model for the sensor biases was
introduced. Finally, the Earth’s fixed frame, which rotates together with the Earth, was distinguished
from the inertial reference frame, which does not rotate with the Earth.

As for the simulation of vision-based systems for, e.g., navigation and ego-motion estimation,
the visual measurements of interest typically consist of two-dimensional (2D) discriminative features
that can be present in an image, such as corners or lines [10,11]. These features, resolved in a 2D
reference frame attached to the image plane, are typically extracted from grayscale images using
ad hoc algorithms called feature trackers [10,12]. Therefore, from the algorithm designer’s point of
view, the expected outputs from a camera simulator are the synthetic 2D points (or lines) returned
from a virtual feature tracker. The standard procedure to simulate a vision system involves the
creation of ground-truth three-dimensional (3D) points associated with their projection onto the
image plane [1,2,13]. Such a projective transformation requires a camera model (e.g., pinhole, fisheye)
and the ground-truth camera pose and orientation with respect to the reference frame in which the
features are defined. Correspondence between the same features in consecutive images is usually
what is needed for camera pose estimation. In real conditions, noise, time-varying lighting conditions,
fast movements and occlusions contribute to producing feature mismatches, which represent a major
problem in vision-based ego-motion estimation [14]. It would be desirable for a camera simulator to
account for this kind of disturbance.

The aim of this work is to present the simulation environment that we developed for six DOF
pose estimator benchmarking. The code is attached to this paper as Supplementary Material. This
paper therefore represents a useful reference for possible users of the framework here presented.
Unlike the works analyzed above, the simulation of different kinds of sensors is supported
simultaneously. The suite of sensors includes magnetic/inertial sensors and monocular cameras;
however, new sensing modalities can be easily added by inheritance. Several sensors may be
instantiated and integrated during a simulation session in order to obtain a sensing pool whose
output data can be used to feed a pose estimation algorithm. In this paper, we first describe the
simulation environment and the steps taken for its validation against real-life sensor data. Then, we
report how IMU and camera data from a real experiment were replicated in a simulation to show the
correctness of the synthetic sensor outputs. In addition, an actual benchmarking example concerning
a sensor fusion-based extended Kalman filter (EKF) for orientation estimation is presented to show
the usefulness of the proposed simulator. Finally, an example of magnetic disturbance simulation is
shown, since it represents a useful functionality for replicating a realistic magnetic environment.
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2. Methods

2.1. Simulation Framework

The modularity and extensibility inherent in an object-oriented programming approach are
valuable features when developing a simulation environment [6]. The simulation environment
presented in this paper was developed in MATLAB (the MATLAB code is attached as Supplementary
Material), exploiting its object-oriented programming features. The Unified Modeling Language
(UML) diagram underlying the simulator project is shown in Figure 1. The nodal point of the
UML class diagram is represented by the sensor class, which contains all the relevant information
needed to describe the rigid body motion. Starting from the specification of the body pose, linear
acceleration and angular velocity are computed and stored within the sensor class. For this purpose,
two reference frames are introduced: the Earth-fixed navigation frame tnu and the sensor body frame
tbu. Following the notation of this paper, bn is the position of tbu in tnu, whereas qbn

k and Rbn
k

denote, respectively, the quaternion and the orientation matrix encoding the rotation from tnu to tbu
(the subscript k denotes the k-th time sample of the simulation).
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Figure 1. Unified Modeling Language (UML) diagram of the proposed simulation framework. 
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motion information. 

The measurement models may require the specification of some external quantities, e.g., the 
Earth’s magnetic field (for the magnetic sensors embedded in an MIMU), the gravity vector field  
(for the accelerometers embedded in an MIMU) and the three-dimensional (3D) scene features (for 
visual camera systems). Therefore, an environment class was created to capture and collect all 
information of this sort. Each sensor gains access to all of the contextual information through the 
same environment instance, as described in Section 2.1.2. All classes were implemented and 
debugged using the test-driven development (TDD) approach by using the MATLAB unit testing 
framework presented in [15]. 

2.1.1. Rotation Classes 

A class hierarchy was implemented to represent 3D rotations and handle all of the related 
operations more easily. Three parameterizations of orientation were included: rotation matrix 
(rotMatrix class), quaternion (quaternion class) and Euler angles (EA class). These classes derive from 
the rotation interface class. The quaternion class adopts the conventions proposed in [16]. 
  

Figure 1. Unified Modeling Language (UML) diagram of the proposed simulation framework.

The classes named IMU and camera inherit from the sensor class. Each class implements a
different measurement model so as to calculate the simulated sensor output from the inherited
motion information.

The measurement models may require the specification of some external quantities, e.g., the
Earth’s magnetic field (for the magnetic sensors embedded in an MIMU), the gravity vector field (for
the accelerometers embedded in an MIMU) and the three-dimensional (3D) scene features (for visual
camera systems). Therefore, an environment class was created to capture and collect all information of
this sort. Each sensor gains access to all of the contextual information through the same environment
instance, as described in Section 2.1.2. All classes were implemented and debugged using the test-driven
development (TDD) approach by using the MATLAB unit testing framework presented in [15].

2.1.1. Rotation Classes

A class hierarchy was implemented to represent 3D rotations and handle all of the related
operations more easily. Three parameterizations of orientation were included: rotation matrix
(rotMatrix class), quaternion (quaternion class) and Euler angles (EA class). These classes derive from
the rotation interface class. The quaternion class adopts the conventions proposed in [16].
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2.1.2. Environment Class

‚ The environment class collects the contextual information of interest to the classes named IMU
and camera. Specifically, the contextual information concerns:

‚ The expression of the Earth’s magnetic and gravity vector fields resolved in tnu ;
‚ The scene, namely the coordinates of the 3D points in tnu that have to be projected onto the

image plane tiu (see Section 2.1.6);
‚ The reference to an array of dipole instances (see Section 2.1.3) that are intended to model local

magnetic disturbances.

Since the environment is common to all sensors involved in the same simulation/experiment,
a singleton pattern [17] was used to model the environment class. The user is required to create
the environment object at the beginning of the simulation and to specify all contextual information.
The singleton pattern prevents creating copies of the instance by mistake, which helps keep the
information about the environment consistent.

2.1.3. Dipole Class

Magnetic disturbances due to nearby hard-iron objects or magnetic sources add to the Earth’s
magnetic field. The dipole class models the spatial distribution of the field generated by a magnetic
source according to the dipole equations presented in [18]. Referring to Figure 2a, tdu is the reference
frame attached to the dipole. The magnetic field Bd “ pBd

x, Bd
y , Bd

z q generated at the point pd “ px, y, zq
can be written as follows:

Bd
x “

3µ0Mrh

4πpr2 ` h2q

5
2

sinΦ

Bd
y “

3µ0Mrh

4πpr2 ` h2q

5
2

cosΦ

Bd
z “

µ0M

4πpr2 ` h2q

5
2

p2r2 ´ h2q

(1)

where M is the dipole magnetization (A¨m2), µ0 is the magnetic permeability of the air (N/A2) and
pr, h, Φq are the cylindrical coordinates of pd. In addition to the value of the dipole magnetization, the
position and orientation of tdu relative to tnu (i.e., dn and qdnq may be set by the user when creating
a new dipole instance. In Figure 2b, a typical magnetic field distribution generated with Equation (1)
is depicted.

Sensors 2016, 15, page–page 

4 

2.1.2. Environment Class 

 The environment class collects the contextual information of interest to the classes named IMU 
and camera. Specifically, the contextual information concerns: 

 The expression of the Earth’s magnetic and gravity vector fields resolved in { };n  
 The scene, namely the coordinates of the 3D points in { }n  that have to be projected onto the 

image plane { }i  (see Section 2.1.6); 
 The reference to an array of dipole instances (see Section 2.1.3) that are intended to model local 

magnetic disturbances. 

Since the environment is common to all sensors involved in the same simulation/experiment, a 
singleton pattern [17] was used to model the environment class. The user is required to create the 
environment object at the beginning of the simulation and to specify all contextual information.  
The singleton pattern prevents creating copies of the instance by mistake, which helps keep the 
information about the environment consistent. 

2.1.3. Dipole Class 

Magnetic disturbances due to nearby hard-iron objects or magnetic sources add to the Earth’s 
magnetic field. The dipole class models the spatial distribution of the field generated by a magnetic 
source according to the dipole equations presented in [18]. Referring to Figure 2a, { }d  is the 
reference frame attached to the dipole. The magnetic field ( , , )d d d d

x y zB B BB  generated at the point 

( , , )d x y zp  can be written as follows: 

0
52 2 2

0
52 2 2

2 20
52 2 2

3
sin

4 ( )
3

cos
4 ( )

(2 )
4 ( )

d
x

d
y

d
z

Mrh
B

r h

Mrh
B

r h

M
B r h

r h


 

 


 

 


 

 

 (1) 

where M  is the dipole magnetization (A·m2), 0  is the magnetic permeability of the air (N/A2) and 
( , , )r h   are the cylindrical coordinates of .dp  In addition to the value of the dipole magnetization, 
the position and orientation of { }d  relative to { }n  (i.e., nd  and )dnq  may be set by the user when 
creating a new dipole instance. In Figure 2b, a typical magnetic field distribution generated with 
Equation (1) is depicted. 

 
(a) (b) 

Figure 2. Dipole class modeling: (a) Dipole reference frame; (b) typical spatial distribution of the 
dipole magnetic field computed by means of Equation (1). 

Figure 2. Dipole class modeling: (a) Dipole reference frame; (b) typical spatial distribution of the
dipole magnetic field computed by means of Equation (1).
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Suppose that an arbitrary number of dipoles is attached to the environment singleton; the
magnetic field in a 3D point, resolved in tnu , is the sum of the Earth’s magnetic field (stored in
the environment) and the contributions from all of the dipole instances in that point.

2.1.4. Sensor Class

A generic sensor was modeled as an entity whose output may depend on the body pose and its
time derivatives. The sensor class models the discrete-time kinematics of the rigid body; moreover,
it contains a reference to the environment object. Therefore, all of the derived classes (i.e., IMU and
camera) are allowed access to the environmental information required for implementing the respective
measurement models.

In addition to the reference to the environment object, qon
k , on

k and bo are required for constructing
a sensor instance, where tou is an ancillary reference frame aligned with tnu (i.e., qbn

k “ qon
k q, with a

constant lever arm bo with respect to tbu (Figure 3). The sensor position at the k-th time instant is
calculated as:

bn
k “ on

k `Rno
k bo

k (2)

The body angular velocityωb
k may be computed as suggested in [16]:

ωb
k “ 2

.
qbn

k b qnb
k (3)

The linear velocity
.
b

n
k and acceleration

..
b

n
k are estimated by numerical differentiation. The

rationale of expressing bn relative to on is that the user is allowed to attach the simulated sensor to any
point onto the rigid body. For example, suppose that on and qbn

k are known from an optoelectronic
motion capture system as in [8]. If no lever arm bo is specified during the sensor instance construction,
tbu and tou are assumed to be coincident pbo “ r0 0 0sTq. Conversely, by changing the value of the
lever arm, the user can move the simulated sensor from on to any desired point onto the rigid body.
The components of centripetal acceleration can be thus taken into account when the second order
derivative of bn is computed.
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2.1.5. IMU Class

The IMU class contains three simulated sensors: a tri-axial gyroscope, a tri-axial accelerometer
and a tri-axial magnetic sensor. The IMU outputs are calculated based on the kinematics inherited
from the sensor class. Error sources that are typical of magneto/inertial sensors can be user selected.
Following the models of [19], the gyroscope and accelerometer measurement models are:
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ω̂b
k “

gSωb
k `

g b`g vk

âb
k “

aS Rbn
k p

..
b

n
k ´ gnq `a b`a vk

(4)

where ω̂b
k and âb

k are the simulated measurements of, respectively, the angular velocity and the
linear acceleration, gn is the gravity vector in tnu, gS, aS are the sensitivity matrices, gb, ab
are the biases and gvk, avk are the zero-mean white noises of the simulated gyroscope and the
accelerometer, respectively.

For the simulation of the magnetic sensor, we followed the model presented in [20]:

m̂b
k “

mSRbn
k ph

n ` dhnq ` mb` mvk (5)

where m̂b
k is the simulated magnetometer output, hn is the Earth’s magnetic field, dhn accounts for

all magnetic perturbations, mS is the sensitivity matrix, mb is the bias and mvk is the zero-mean
white noise of the magnetic sensor. The user is allowed to specify the parameters of the measurement
models, including the noise covariance matrices. Scale factor errors, misalignments and cross-axis
sensitivities may also be set through the sensitivity matrices. The default value of all sensitivity
matrices is the identity matrix. dhn represents the contribution of the dipole instances stored within
the environment sensed by the simulated magnetometer.

As proposed in [9,21], the bias terms in Equations (4) and (5) were simulated as the sum of a
constant value, a random walk process and a Gauss–Markov process.

2.1.6. Camera Class

Vision-based motion tracking relies on three main steps: (1) image acquisition; (2) two-dimensional
(2D) image feature detection and matching; (3) pose estimation. The camera class simulates the first
two steps by returning the typical output of a feature tracker, namely the 2D correspondences in two
consecutive images [12,14].

The camera class implements the projective transformation producing the 2D feature positions in
tiu . A standard pinhole camera [14] is simulated for undistorted image features :

upi
k “

»

—

–

fx α ccx

0 fy ccy

0 0 1

fi

ffi

fl

Pb “ KPb “ KRbn
k pP

n ´ bn
k q (6)

where Pn and Pb yield, respectively, the coordinates of the 3D points in the navigation and camera
frame, respectively, whereas K is the camera calibration matrix [22]. Intrinsic parameters, i.e., the
camera focal fx and fy, skew coefficient α, principal point coordinates ccx and ccy and the resolution,
are represented in the camera instance and can be set as required by the user. The extrinsic camera
parameters, i.e., the camera position and orientation with respect to the reference frame in which
the 3D features are defined, are inherited from the sensor class. Non-linear lens distortion may be
simulated by specifying the five distortion coefficients relative to the model proposed in [23]. The 3D
points of the scene are available from the environment.

At each time-step, the ideal camera measurements consist of the 2D coordinates of all visible
image features

 

pi
k
(

and their correspondences with their counterparts
!

pi
k´1

)

in the previous image
frame. Note, however, that since new (old) features may appear (disappear), the number of visible
features in two consecutive frames is variable. Therefore, the number of correspondences is less than
(or equal to) the size of the smaller feature set.

Each of the ideal 2D coordinates pi
k are then corrupted with zero-mean white noise cvk :

p̂i
k “ pi

k `
cvk (7)
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Feature mismatching is one of the typical problems with feature trackers [14]. To simulate
this phenomenon, the user is asked to provide two numbers between 0 and 1, which correspond
to the percentage of frames in which mismatching takes place and the percentage of wrong
correspondences. These numbers are interpreted as the probabilities of mismatch events, which are
randomly generated accordingly.

2.2. Case Study

To show the usefulness of the proposed simulation framework, a case study is reported in
this work. Simulated data from camera and IMU instances were used to test the consistency of a
simple quaternion-based EKF that fuses visual and inertial measurements. The consistency of a state
estimator is defined as its capability to converge, asymptotically, towards the true state [24]. The most
important consistency check implies that the estimation errors are zero mean with a covariance, which
is in accord with the uncertainty estimated by the filter. This check is feasible only when simulated
data are considered [24]. The plausibility of the estimated covariance is of primary importance for a
Kalman filter, since it involves the calculation of the optimal Kalman gain. If the covariance estimation
is wrong, then the Kalman gain is not optimal.

The vector state xk is represented by qbn
k :

xk “ qbn
k (8)

In the prediction step, the state is projected by means of gyroscope measurements ω̂b
k´1. If

the angular velocity is assumed to be constant during the sampling period Ts, the predicted state
quaternion x̃´

k can be calculated as follows [25]:

x̃´
k “ exp

¨

˝

»

–

”

ω̂b
k´1ˆ

ı

ω̂b
k´1

p´ω̂b
k´1q

T
0

fi

fl Ts

˛

‚x̃`
k´1 (9)

where ruˆs is the skew-symmetric matrix operator [25] and x̃`
k´1 is the updated state at the previous

time instant.
If the magnetometer and accelerometer are corrupted only by the white measurement noise, the

two following nonlinear measurement equations may be used for correcting the prediction error:

m̂b
k “ qbn

k b hn b qnb
k `

âb
k “ qbn

k b´gn b qnb
k `

(10)

As described in [26], Equation (10) must be linearized to be exploited in the EKF framework.

mb
k «

Bpqbn
k b hn b qnb

k q

Bqbn
k

ˇ

ˇ

ˇ

ˇ

ˇ

qbn
k “ ´q̂bn

k

qbn
k “ mHkqbn

k

ab
k «

Bpqbn
k b´gn b qnb

k q

Bqbn
k

ˇ

ˇ

ˇ

ˇ

ˇ

qbn
k “ ´q̂bn

k

qbn
k “ aHkqbn

k

(11)

As for the visual block, if at least four 2D-3D correspondences relative to non-collinear points
are known, the camera pose may be inferred using the direct linear method (DLT), [14]. Therefore,
the DLT-based orientation estimate can be used as an additional measurement channel for the EKF:

DLTq̂bn
k “ qbn

k ` DLTvk (12)

where DLTq̂bn
k is the quaternion estimated by the DLT method and DLTvk is the DLT measurement noise.
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When designing a visual-inertial-based sensor fusion method, a multi-rate strategy must be
adopted to cope with the different sampling periods of the two sensors. In this filter, the EKF
measurement model is switched between Equations (11) and (12) according to the kind of current data
sample. The prediction step does not change, since the angular velocity is supposed to be constant
within the IMU sampling period. Note that in the proposed simulation framework each sensor
instance has its own sampling period, which was set at 100 Hz for the IMU and 30 Hz for the camera.

2.3. Experimental Validation

The validation approach for the IMU and camera classes consisted in acquiring electrically-synchronized
motion signals from a real IMU, a real camera and a stereophotogrammetric system (Vicon 460)
equipped with six infrared (IR) cameras running at 100 Hz. Four IR reflective markers were rigidly
attached to the plastic box shown in Figure 4. An off-the-shelf Microsoft Webcam (VGA resolution,
30 Hz) and an Xsens Mtx unit (100-Hz sampling rate) equipped with a tri-axial gyroscope, a tri-axial
accelerometer and a tri-axial magnetic sensor were mounted on the same plastic support. The
housing holes on the plastic support hosting the markers and the IMU were milled with a computer
numerical control (CNC) machine. The IMU and marker reference frame may be thus assumed to
be aligned, and a good estimate of the IMU position in the marker reference frame was available.
The 6 DOF rigid transformation between the camera and the IMU frames was estimated as proposed
in [27]. Finally, the camera was calibrated using the MATLAB Camera Toolbox [22], and the estimated
intrinsic parameters are reported in Table 1.
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Figure 4. Experimental setup: the camera (yellow), IMU (blue), local Vicon (green) and global
reference frames are shown. Light blue circles highlight the nine corners tracked throughout the
acquired video.

Table 1. Estimated intrinsic camera calibration parameters.

fx (pixel) fy (pixel) α (˝) ccx (pixel) ccy (pixel)

670.24 665.54 0.00 332.95 237.40

During the experiment, the plastic box was moved by hand for about two minutes in front of
a chessboard. The chessboard pattern (printed over an A3 paper sheet, with 2-cm squares) was
a convenient choice to provide a set of corner points with known 3D coordinates in the global
frame. As depicted in Figure 4, the global frame was placed on the chessboard with the y-z plane
containing the grid pattern. Therefore, all 3D features had an x coordinate equal to zero, whereas
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the y and z coordinates were calculated by knowing the square size of the chessboard pattern. The
nine chessboard corners highlighted in Figure 4 were tracked along the entire video sequence with
the pyramidal implementation of the Lucas–Kanade tracker (KLT) proposed in [28].

2.3.1. Simulation Environment Validation

IMU and camera instances were created to simulate the experiment described above. Ground-truth
positions and orientations from the stereo-photogrammetric system were used as input signals for
the simulated instances. The known 3D chessboard corners coordinates in tnu were assigned to the
environment instance to create a visual scene to be projected by the camera object. The Earth’s magnetic
and gravitational fields were measured by the IMU itself at the beginning of the experiment. The
obtained values were properly rotated in tnu and used for defining the reference vector fields in the
environment. The parameters reported in Table 1 were used to construct the virtual camera instance.

The root mean square error (RMSE) and the correlation (R value) between real and simulated
sensor signals were used to assess the capability of accurately reproducing real sensor output when
no disturbances were applied.

2.3.2. Case Study: EKF Consistency

The EKF described in Section 2.2 was tested in both the simulated and the measured scenarios.
In each case, the filter output was compared to the ground-truth orientation from the Vicon system.
The obtained errors were then compared to the respective estimated covariances returned by the filter
to check the convergence and consistency of the EKF.

2.3.3. Simulated Distribution of Magnetic Disturbances

The spatial distribution of the magnetic disturbances may be simulated by means of the dipole
class. In order to provide the user with a typical example, 500 dipole instances were randomly
distributed within a simulated indoor environment (an 8 ˆ 10 m room) with a random orientation
and a magnetization equal to 5 A¨m2.

3. Results

3.1. Simulation Results

To validate the IMU and camera classes, the sensor outputs simulated in ideal conditions
(i.e., without calibration errors, magnetic disturbances, etc.) were compared to real measurements.
Typical white measurement noises were considered for each sensor to prepare the simulated data
for the EKF. In Figure 5, simulated and real signals acquired during the experiment described in
Section 2.3 are shown.

For the sake of conciseness, only the y-axis data are reported. Scatter plots of all data are also
presented, whereas RMSE and R correlation coefficients are reported in Table 2.

Table 2. RMSE and R between real and simulated IMU signals.

Gyroscope
x y z

RMSE (rad/s) 0.03 0.02 0.02
R 0.97 0.90 0.97

Magnetic Sensor
RMSE (µT) 1.74 2.00 1.10

R 0.98 0.99 0.99
Accelerometer

RMSE (m/s2) 0.15 0.15 0.15
R 0.98 0.99 0.99
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The smaller R value (0.90) was observed for the gyroscope about the y-axis (reported in Figure 5).
The features simulated by the ideal camera were compared to their counterparts measured by

the KLT. For clarity, the trajectories and the scatter plots shown in Figure 6 refer to only one of the
nine tracked features.
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Figure 6. Comparison between simulated and measured camera output for one tracked feature:
(a) x-axis comparison; (b) scatter plot for the x-axis feature data; (c) y-axis comparison; (d) scatter
plot for-axis feature data.

The RMSE and R values were calculated for each of the nine features. The mean and standard
deviations are reported in Table 3.
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Table 3. Mean and standard deviations of RMSE and R values obtained comparing real and simulated
2D image features.

x y

RMSE (pixel) 7.62 (0.70) 9.27 (0.99)
R 0.99 (0.00) 0.98 (0.00)

3.2. EKF Results: Orientation Estimation and Filter Consistency

In Table 4, the RMSEs obtained in both the simulated and the real scenarios are reported for the
three DOFs (yaw, pitch and roll angles).

Table 4. RMSE obtained in both the simulated and real scenario for the three estimated Euler angles.

RMSE Yaw (˝) RMSE Pitch (˝) RMSE Roll (˝)

Simulation 0.11 0.10 0.12
Real data 0.53 0.63 0.96

As expected, when the EKF was provided with simulated data, considerably smaller errors were
produced with respect to the real data case. In addition, the trends of the estimation errors relative
to the four quaternion components and the relative estimated uncertainty are shown in Figure 7, for
both scenarios.
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500 dipoles is depicted in Figure 8. The three components of the magnetic field are reported as a 
function of the x and y spatial directions, whereas the height (z direction) is kept constant. 

Figure 7. Estimation error trends (in blue) obtained for the four quaternion components in the
simulated (right) and measured (left) scenarios; in black, the 99% confidence intervals.

3.3. Indoor Magnetic Disturbance Simulation

The spatial distribution of the magnetic disturbances obtained from the simulation with
500 dipoles is depicted in Figure 8. The three components of the magnetic field are reported as a
function of the x and y spatial directions, whereas the height (z direction) is kept constant.
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4. Discussions 
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signal. In particular, the results about the magnetometer are surprisingly good, because they were 
obtained without attempting any magnetic compensation. However, either enlarging the volume 
explored during the experiment or approaching a ferromagnetic object would have certainly 
degraded the correspondence between the simulated and real magnetometer data. In fact, as 
demonstrated in [20], uncompensated magnetic distortions can severely affect the results of the 
magnetic sensor simulation simply because the sensed magnetic field is not the Earth’s pure 
magnetic field. The camera instance also replicated the actual measurements accurately. The positive 
results prove the overall correctness of both the simulation environment implementation and the 
experimental design. In fact, R values were very close to one, and the RMSEs collected in about 140 s 
were lower than 10 pixel. Therefore, the proposed simulation framework proved to be a suitable tool 
for reproducing a real multi-sensor experiment. 

To show one of the typical applications of the presented data simulator, we performed a 
consistency test on an EKF-based orientation estimator relying on both IMU and vision data. 
Referring to Table 4, the estimator proved to be accurate, returning errors of about 0.1° (on each 
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4. Discussions

On the whole, the results shown in Section 3.1 demonstrated an overall agreement between the
simulated and real sensor measurements. The RMSE values were about one tenth of the respective
peak-to-peak magnitude measured both for the IMU and the camera classes. High correlations were
achieved, as well, with a minimum value of 0.90 for the y-axis of the gyroscope. On that channel,
the measurement noise of the real sensor was not negligible with respect to the strength of the
measured signal. In particular, the results about the magnetometer are surprisingly good, because
they were obtained without attempting any magnetic compensation. However, either enlarging
the volume explored during the experiment or approaching a ferromagnetic object would have
certainly degraded the correspondence between the simulated and real magnetometer data. In
fact, as demonstrated in [20], uncompensated magnetic distortions can severely affect the results
of the magnetic sensor simulation simply because the sensed magnetic field is not the Earth’s pure
magnetic field. The camera instance also replicated the actual measurements accurately. The positive
results prove the overall correctness of both the simulation environment implementation and the
experimental design. In fact, R values were very close to one, and the RMSEs collected in about 140 s
were lower than 10 pixel. Therefore, the proposed simulation framework proved to be a suitable tool
for reproducing a real multi-sensor experiment.

To show one of the typical applications of the presented data simulator, we performed a
consistency test on an EKF-based orientation estimator relying on both IMU and vision data.
Referring to Table 4, the estimator proved to be accurate, returning errors of about 0.1˝ (on each
Euler angle) in simulation and less than 1˝ with real data. However, we were interested in comparing
the behavior of the EKF in the two scenarios, rather than the mere errors. In fact, the usefulness
of the simulated study came out from the trends shown in Figure 7. The plot reported in Figure 7,
for example, shows us that if we had not performed a simulated test, we could not have received
any assurance about filter consistency. The real errors, i.e., the errors computed with respect to
the Vicon ground-truth data, are in fact considerably larger than the estimated covariances. This
condition is usually interpreted as a sign of filter malfunctioning. However, by performing the same
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test with simulated data (from the same real experiment), we obtained the expected behavior, as
shown in Figure 7. The errors remained within the estimated uncertainty during the entire trial,
which means that the uncertainty was reliably estimated. Therefore, in a real case scenario, the
inconsistency between the estimated covariances and the estimation errors (which are relatively large
if compared to those obtained with simulated data) should be attributed to the slight imperfections
of the experimental setup (misalignments, imperfect calibrations, etc.), rather than to filter instability.
In fact, it should be noted that, for our setup, we estimated that the stereophotogrammetric errors
propagated to the angles of interest in this study, causing a maximal inaccuracy of 0.5˝. The EKF code
therefore can be considered reasonably reliable, as the overall filter structure.

Finally, the proposed simulator allows the simulation of spatial magnetic disturbance
distributions as the ones shown in Figure 8. This functionality has several practical applications,
e.g., evaluating the orientation estimator robustness with respect to the magnetic disturbances or
benchmarking the localization methods based on spatial magnetic anomalies [29,30].

5. Conclusions

In this paper, a data simulator for sensor fusion pose estimator benchmarking was presented.
The plausibility of the simulated outputs was numerically assessed through comparisons with real
sensors. In addition, an example of quaternion-based EKF benchmarking was shown in order to
demonstrate the usefulness of the proposed simulation framework. The code relative to the proposed
simulator is attached to the present paper as Supplementary Material.
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