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Abstract: Wide-area registration in outdoor environments on mobile phones is a challenging task in
mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality
system for recognition and tracking on mobile phones. GPS and gravity information is used to
improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which
is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering
vision-based registration algorithms are too fragile and tend to drift, data coming from inertial
sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable
improvements in tracking stability and robustness. Experimental results show that our method
greatly enhances the recognition rate and eliminates the tracking jitters.
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1. Introduction

With the development of mobile devices, mobile phones equipped with high-resolution cameras
and multiple sensors are more suitable for augmented reality (AR) applications. Like the traditional
augmented reality on PCs, mobile augmented reality (MAR) superimposes registered 3D graphics
over users’ view of the real world, allowing users to share the computer’s perception of the
environment. In recent years, the entertainment field has been one of the most successful fields
at utilizing mobile augmented reality technologies and so far there are a lot of related works [1–4]
which bring users a new experience. For example, ARPP [1] is an AR game built on the Android
platform, which can provide a more interesting and convenient way for people to play ping-pong
games on their smartphones. CorfuAR [4], a mobile augmented reality travel guide, can help
users to find nearby services, such as restaurants and hotels. In those mobile augmented reality
systems, one of the challenging existing technical issues is the registration method. Marker-based
registration algorithms and later markerless tracking algorithms are utilized to realize robust and
highly accurate tracking. However, many research works mainly focus on single target tracking on
a small workspace, for example an object on the table or a statue on the square [5]. With the use of
small and lightweight mobile devices, mobile AR allows for more unrestricted user movement. Thus,
the requirement for wide area tracking capability is becoming increasingly urgent for mobile AR in
outdoor environments.

Due to the memory and computation limitations of mobile devices, how to ensure real-time
performance in wide-area environments on mobile phones is a challenge. Visual Simultaneous
Localization and Mapping (SLAM) is a promising real-time structure and motion approach, which
can build a global 3D map covering the whole observed scene to realize registration in wide-area

Sensors 2015, 15, 31092–31107; doi:10.3390/s151229847 www.mdpi.com/journal/sensors



Sensors 2015, 15, 31092–31107

environments [6–8]. In particular, a parallel SLAM-based tracker that can build the model of the
environment on the fly on mobile phones has been proposed [8]. It can work in small workspaces.
However, due to the complexity of natural scenes and the expansion of the system’s workspace, it is
difficult to achieve real-time performance on mobile devices. Meanwhile for wide and unconstrained
environments pose estimation may be infeasible due to the difficulties of efficiently matching a given
image with the whole database of the complete environment. Subsequent attempts [9,10] advanced
the methodology further towards a highly robust detection and tracking framework. Modified
SIFT and ferns approaches are designed for fast and efficient feature matching on mobile phones.
However, investigations of the contribution of global information, for example the GPS and gravity
data obtained directly from mobile phones, to the performance of the vision service have not been
considered yet. In addition, it is inconvenient to fulfill time-consuming wide-area localization steps
on these low-end mobile devices.

Although vision-based recognition and tracking methods can provide higher accuracy, they
usually rely on a model of the environment which is sensitive to illumination, occlusion and
viewpoint selection. Fusing vision with non-visual sensor data, on the other hand, can provide us
more robust performance under fast motion and tracking failures and provide a spatial context for
the improvement of the keyframe recognition component. However, little research on sensor-aware
recognition and tracking on mobile phones has been done to date.

In view of the problems above, we have made the following contributions in this paper to
the design of a real-time sensor-aware scene recognition and tracking method on mobile phones
applicable to large-scale outdoor environments. First, we divide the whole wide-area workspace,
such as a whole city, into small sub-areas according to their geographic locations by using a
density-based clustering method. The use of sub-areas instead of a global environment lets us reduce
considerably the computational complexity of reconstructing the whole scenes, and also made our
system more suitable for online implementation, especially with large-scale workspaces. Second, we
propose a novel keyframe recognition method which combines gravity orientation clues for visual
vocabulary generation to improve the recognition accuracy without a time-consuming geometry
verification procedure. Third, data coming from accelerometers, gyroscopes and vision are fused
together by an extended Kalman filter (EKF) to achieve dramatic improvements in tracking stability
and robustness on mobile phones. The GPS, gravity and inertial sensors embedded on mobile phones
not only enable us to provide fast and accurate location results, but also produce a robust estimate
of the camera pose before any processing of the image, which makes wide-area localization and
tracking possible on mobile phones. Because of the use of all these sensors, we call our method
“sensor-aware”.

2. Related Work

2.1. Mobile Visual Recognition

With the popularization of camera-embedded mobile devices, mobile visual recognition has
received a wide range of attention from both academia and industry. The bag-of-features approach
presented in [11] and its variants [12–14] are some commonly used approaches. Given an image,
keypoint features are detected and quantized to a visual word, which will be employed to represent
an image. An inverted index file is build up to implement visual words-based indexing and searching.
For efficient queries these methods need the original feature vectors stored in memory, which will
quickly lead to storage and computational problems in most implementations. Some approaches
have been proposed to compress the tree histogram [15] or inverted files [16] to solve the storage
problem in the mobile phone’s limited memory. However, both methods require some selective
decompression during a query process. Compressed Fisher vector [17], VLAD [18] and REVV [19]
are adopted for efficient data organization and search. Database image representations are generated
from local descriptors like SIFT [20], PCA-SIFT [21] or SURF [22], yet they utilized visual word
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residuals aggregation to replace bag-of-words histograms which can utilize a much smaller codebook
and perform comparisons directly in the compressed domain. Such a small codebook reduces the
memory requirements of the vector quantization and makes it possible to run on a mobile phone
platform. VLAD can be seen as a simplified non-probabilistic version of the FV and it is faster to
compute. Many mobile visual recognition systems are based on VLAD and its variants [23–25].
There are also plenty of applications utilizing those mobile visual recognition methods in the field
of entertainment. For example, Layar [26], an augmented reality browser, provides readers a new
way to “read” magazines. Once people use their smartphones to scan magazines, Layar will show
them more about what they read such as videos, websites or 3D models. SyFy TV, a channel of
Junaio [27], lets people see different images pop up on their mobiles’ screens when they point their
phones toward advertisements.

While promising, there are still some problems to be solved to further improve the recognition
accuracy. For example, geometric information which is proved to be useful for improving retrieval
accuracy is neglected absolutely. Besides mobile phones commonly provide additional sensors which
can also be used to facilitate the visual recognition process.

2.2. Camera Tracking on Mobile Phone

In the past decades, real-time camera tracking technology applied for augmented reality systems
has gone from marker-based tracking to the current stage of markerless and hybrid tracking methods.
In recent years, natural feature-based real time camera tracking has been extensively studied. Visual
structure from motion (SfM) and simultaneous localization and mapping (SLAM) are two kinds
of prevalent techniques that have been used for wide-area camera tracking. While SfM has been
rooted in the off-line optimal reconstructions of the scene structure and camera trajectory, SLAM
approaches involve recovering the environment structure and the camera pose in a recursive way.
As demonstrated in [28], the authors presented a camera tracking system called monoSLAM, which
could recover the 3D structure of the unprepared scenes while meeting the real-time requirements.
Nevertheless, due to the fact that monoSLAM is a system for PC-based AR and it uses a large
amount of memory, it is not suitable for mobile augmented reality. In [29], the authors presented a
real-time camera tracking and reconstruction system relying on alignment of every pixel rather than
feature extraction. Recently the work presented in [6] proposed to use keyframes to build up local
panorama maps registered in the 3D map instead of filtering the corresponding keyframe candidates
and running both on mobile phones and a PC. In [30], the authors used orientation information
from mobile phones’ inertial sensors to resolve inherent ambiguities for 3D pose estimation when
tracking on mobile phones. In order to apply to a wide area, [31] used multiple sub-map-based
methods instead of single global map method, which is more suitable for mobile phones. Benefiting
from those researches on tracking, there are a lot of related applications, especially AR games [32,33],
on the market.

On the other hand, a wealth of research work has reported often enough in the past that hybrid
tracking methods can achieve considerable improvement in tracking stability and robustness over
either sensor alone. For example, earlier in [34], the authors demonstrated a model-based hybrid
tracking system for outdoor augmented reality systems. An edge-based tracker was utilized to
estimate the accurate camera pose, with gyroscope measurements to deal with fast motions. The work
in [35] described a camera tracking system for AR applications, which fused IMU and camera data
in a tightly coupled manner by an error-state extended Kalman filter (EKF). As there is more than
one possible combination of fusing inertial sensors data and vision data at an extended Kalman
filter (EKF), [36] proved that fusing different sensors’ data in the correction stage would be the best
approach. Because mobile phones are equipped with high-resolution cameras and multiple sensors,
it is a good choice to make hybrid tracking systems on them. The most common method to fuse visual
and inertial sensors data on mobile phones is also the Kalman filter and its variants [37–40]. Among
them, the work in [37,38] fused inertial and visual data from mobile phones by an extended Kalman
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filter (EKF), while [39] proposed to use an unscented Kalman filter (UKF). In [40], the authors took
into account the rolling-shutter effect rather than only assuming that all cameras use a global shutter.
After our investigation, we noticed that there are a few research projects on data fusion on mobile
phones, most of which only focused on gyroscopes when tracking because of the low accuracy of the
accelerometers installed on mobile phones. In our study, we have used the wavelet filter to improve
the reliability of accelerometer data based on a number of experiments. As a result, our system can
keep tracking for a while even when the visual target is lost.

3. Sensor-Aware Recognition and Tracking

3.1. System Framework

Our system is based on a client/server architecture. An overview of our framework is given first
in Figure 1, which is divided into the offline data processing stage and the online stage. The offline
data processing module is responsible for 3D reconstruction of scenes, selecting keyframes and
training the keyframe recognition algorithm with geographic and gravity tagged camera captured
images. In our algorithm, we partition the whole wide area scene into some geometry independent
sub-scenes, and all built sub-scenes are integrated into a tracking system by using our keyframe
image recognition algorithm. Images tagged with GPS and gravity information can help us to
reduce the image search scope and improve the recognition performance during the online visual
recognition process. During the online stage, the geographic location information is used to locate
the geographical regions of mobile devices. Gravity information from mobile phones is used to
measure the rotation of images with upright direction. A KLT tracker is employed to realize the
frame-to-frame tracking of ORB features instead of frame-to-frame matching. Finally, our system
combines markerless camera tracking with inertial measurements in an extended Kalman filter
framework for optimal pose estimation purposes. It is worth noting that we use SURF features for
recognition and ORB features for tracking to ensure the real-time performance on mobile phones.
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Figure 1. Framework overview.

We will introduce key issues of our system in the following sections. In Section 3.2, we will
introduce the offline data processing stage. The 3D structure and recognition algorithm will be
described in this section. In Section 3.3, we will introduce our sensor-aware scene recognition
algorithm applied to outdoor environments. Gravity information and GPS are used to improve the
recognition performance of the VLAD method. On the basis of recognition results, in Section 3.4,
data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF)
to achieve dramatic improvements in tracking stability and robustness.
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3.2. 3D Reconstruction of Scenes

During the offline stage, we utilize a camera phone to capture a moderate scale scene from
different viewpoints with GPS and gravity tags. Since a GPS device’s sampling rate is about 1 Hz,
we use a linear interpolation method to obtain the geometry tag of each input frame. For each
scene, a keyframe-based SfM method [41] is employed to build the 3D structure of this scene.
Four to five keyframe images containing sufficient and evenly distributed salient feature points
are selected as keyframe images. Here we use SQLite to store the 2D/3D correspondence of each
point between keyframe images and 3D structures and use a XML file to store feature descriptors
of that point. For tracking, once points on the current frame and points stored in the XML file
are matched, we can quickly get their corresponding 3D coordinate values from SQLite with the
help of 2D/3D correspondence so that the camera pose can be estimated. Once all the needed 3D
structures of outdoor scenes are built, we organize all obtained keyframes by using a sensor-aware
VLAD algorithm discussed in Section 3.3 for online scene recognition use. With the 3D structure and
recognition algorithm built, we can then download them to the mobile phone on which the real time
camera tracking will be carried out. One of 3D reconstruction of scenes is illustrated in Figure 2.
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Figure 2. An example of 3D reconstruction of scenes.

3.3. Scene Recognition Algorithm for Wide-Area Scenes

This section describes our keyframe image recognition algorithm, which is able to match each
online frame to candidate keyframes stored in an image database. Our recognition algorithm uses
additional orientation information to make it possible to distinguish features with similar visual
appearance at different rotation changes to improve the recognition performance of the VLAD
algorithm. With the help of GPS, our system is more suitable for wide-area applications.

3.3.1. VLAD Algorithm

Recently, VLAD has attracted many researchers’ attention because of its speed and scalability. In
VLAD, a visual codebook C = {c1 c2 . . . ck} of K visual words is learned offline by using a classical
K-means approach for all local feature descriptors of training images. The codebook is formally used
as a quantization function to assign each d-dimensional local descriptor x to its nearest visual word ck.
Here, we assume that an image is represented by a set of local features as X = {x1, x2, . . . , xn}. A VLAD
signature of an image can be obtained by directly concatenating the aggregated residual vector
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vk = Σx´ ck, where ck = NN(x) and the concatenation vector v = [v1, v2, . . . , vk] is a K ˆ d dimensional
vector. Finally, the concatenation vector v = [v1, v2, . . . , vk] is normalized by power law normalization
to avoid the burstness problem.

3.3.2. Gravity-Aware VLAD Algorithm

In the VLAD algorithm, using L2 distance metrics to assign local visual descriptors may cause
a situation where those features with similar semantics may be far away from each other, while the
features with different semantics may be close to each other. This will unavoidably lead to a decrease
in the retrieval performance. To alleviate that problem, we present a gravity-aware VLAD method
by taking advantage of dominant orientation information that were already obtained at the feature
extraction stage. In this paper, we call it the GVLAD algorithm. For GVLAD, we only cluster features
with similar characteristics of orientation to the same visual code.

Finding the absolution rotation direction of images and orientation quantization are the two most
important steps of our GVLAD method. The gravity direction θg of a user’s mobile phone can be
roughly calculated by using gravity-sensor information Gi = [gx(i), gy(i), gz(i)] as follows:
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Given all of local visual features X extracted from dataset, we firstly construct a gravity-aware
codebook by clustering absolute orientation context θangle = |θd ´ θg| of all descriptors with Obins
equally sized orientation regions. Here θd is the dominant orientation of feature descriptors, θg is
the gravity direction of a mobile phone. Typically angles have a circular distribution in the range
of [0, 2π), therefore the absolute orientation angle should be calculated as:
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After estimating absolute orientation, we utilize a simple orientation quantization function
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to partition local features descriptors X into Obins orientation clusters,

here O is the index of orientation bins. Figure 3 illustrates the framework of our GVLAD method.
Each local feature will be assigned to its visual word according to its geometrical orientation context
and descriptor.
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Additional orientation information will make it possible to distinguish features of similar visual
appearance at different rotation changes. After orientation context-based clustering, we can arrange
these visual features pooled in the same bins with any state-of-the-art coding schemes, such as BoW,
FV and VLAD.

3.3.3. GPS-Aware GVLAD Algorithm

In fact a coarse estimation of the user’s location via GPS can provide sufficient search space
information, which can narrow down the image database to a small range. On the basis of GVLAD,
we propose a more efficient scene recognition algorithm. We call it the geo-based GVLAD method.
At the offline stage, we group database images into geo-cells according to the geometry information
measured by a GPS sensor. A density-based clustering method is used to partition the geometry
information into different geographical regions. Then, we consider each cluster as a root node of the
GVLAD method. Figure 4 gives an illustration of geo-based GVLAD method, where the global map
is divided into four geographical regions. One thing that needs to be noted is that the density-based
clustering method we used has two parameters to control cluster regions. One parameter is radius
and the other is minimal points. By setting different parameters in the density-based clustering
method, our method can suit different scale scenes ranging from a small office room to a large
city. Meanwhile the geo-based GVLAD allows us to limit irrelevant retrieval data and only consider
images coming from nearby locations, which can improve the retrieval speed and recognition
rate significantly.
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Figure 4. A novel methodology to introduce geo-based GVLAD.

3.4. Sensor-Aware Tracking

3.4.1. Pose Estimation

To ensure the real-time operation of the system on mobile phones, here we use ORB features.
Given a current image, newly detected ORB features are matched to those features lying on
key-frames. A KLT tracker is employed to realize the frame-to-frame tracking. After that, we can
establish 2D correspondences between the current image points mc and the keyframe mk. Since a
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feature in the keyframes corresponds to a 3D point in the reconstructed model, we can use these
2D/3D correspondences to estimate camera pose. Given a set of 2D-to-3D matches for current frame
t, we can compute the corresponding camera pose parameters by minimizing the re-projection error:

min
ÿ

i

‖K rRt|Tts Mi ´mi‖2 (3)

In Equation (3), the camera pose parameters rRt|Tt s are the only unknowns in the vector
(assuming the internal camera parameter K fixed). We initialize rRt|Tt s to rRt´1|Tt´1 s. For the initial
frame of the image sequence or the one immediately after tracking failure, keyframe recognition
algorithm is used to find the corresponding keyframe.

The solution to Equation (3) can provide a reasonable estimate of the camera pose, yet typically
leads to the jitter problem, which is particularly noticeable when the camera is completely or nearly
stationary. In order to stabilize the solution, we use the pose estimation results as initial data and add
a smoothing term which favors minimum camera motion between consecutive frame sequences to
optimize the final pose estimation. Equation (4) shows the cost function:

min
ÿ

i

‖KrRn|Tn sMi ´mi‖2
` λ1‖Rn ´ Rn´1‖2

` λ2‖Tn ´ Tn´1‖2 (4)

where λ1 and λ2 are the different weights on the camera pose parameters. At first, we solve for rRt|Tt s

using Equation (1), with λ1 = 0, λ2 = 0. Once a local minimum has been reached, we execute a few
additional Levenberg-Marquardt iterations by solving Equation (4) with gradually updating values
of λ1 and λ2 as follows:

λ1 “
e
`

Rn
k , Tn˘

min
!

e
`

Rn´1, Tn´1
˘

, e
´

Rn
k , Tn´1

k

¯) (5)

λ2 “
e
`

Rn
k , Tn˘

min
!

e
`

Rn´1, Tn´1
˘

, e
´

Rn´1
k , Tn

k

¯) (6)

where e(R, T) is the re-projection error, n represents the n-th frame image and k is the k-th iteration.
In Equation (5), use the translation matrix of the last frame Tn´1 and the rotation matrix of the
current frame Rn to calculate the re-projection error. If the re-projection error e(Rn, Tn´1) is small,
which shows that the change between two adjacent frames is small, increase the parameter λ1. If the
re-projection error e(Rn, Tn´1) is large, which shows that the change between two adjacent frames is
large, reduce the parameter λ1. The tuning method of parameter λ2 is the same as the parameter λ1.
As a result, larger values of λ1 and λ2 are used for slower frame-to-frame motions, which can
significantly reduce jitter. However when the camera motion is fast or abrupt, the jitter problem
is not the major consideration.

3.4.2. Sensor Fusion

In this section, we will fuse a low frequency vision sensor and a high frequency inertial sensor to
overcome the limits of any single technology. An extended Kalman filter is used for fusing visual and
inertial measurements from camera phone sensors. The geometry and related coordinates to support
the development of equations for our sensor fusion problem are illustrated in Figure 5. pRc

s, Tc
s q are

the rotation and translation between the camera and inertial sensors, which have been pre-calibrated
by using Horn method [42]. Meanwhile the intrinsic parameters of camera are calibrated using the
method developed by Zhang [43].
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Fusion Core

As described in [44], considering the inertial measurements as control inputs to the time update
of the Kalman filter can reduce the number of features needed and provide significantly higher
prediction quality. Thus, in our fusion model, we only use inertial measurements as control inputs
and assume that the camera’s motion has a constant angular velocity and constant acceleration.
Therefore the state vector can be represented by

á
x “ pqw

s ,ω, pw
s , vw

s , a,4 aq. Here the unit quaternion
qw

s “ pq0, q1, q2, q3q is used to represent the orientation of sensor frame S relative to world frame
W. p and v are the position and velocity of the inertial sensor with respect to the world frame. ω,
a are the gyroscope and accelerometer, respectively. ∆a is accelerometer’s error. For an inertial
sensor, accelerometers produce three acceleration measurements as (units are m/s2). Here as is the
acceleration in the moving frame, which must be transformed into free acceleration measurements by:

a “ qw
s b pas ´ gq b qw

s (7)

In Equation (7), g denotes the gravity direction in the world coordinate system and qw
s is the

inverse quaternion of qw
s . Gyroscopes produce three angular velocity measurements ω, one for each

axis (units are rad/s), so the system dynamics in the inertial frame at time t + ∆t can be expressed by
the following equation:

xt`4t “

»

—

—

—

—

—

—

—

—

—

–

pt ` vt ¨4t` 0.5t2 ¨ a
vt `4t ¨ a

»

–

cosp0.5ω4 tq
sinp0.5ω4 tq

ω

‖ω‖

fi

flb qt

ω

a`4a

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8)

In our sensor fusion model, only vision-based measurements are used to correct the prediction.
The orientation and position between camera and world frame at time t can be expressed by:

pw
c “ pq

w
s q
˚
b Ts

c b qw
s ` p, qw

c “ qs
c b qw

s (9)

where qs
c and Ts

t are the rotation and translation between the camera and inertial sensors. Because
the orientation and translation data expressed by state vector are represented in the inertial sensor
system, the vision measurements data should be transformed into the sensor coordinate system.

Failure of Vision Measurements

A failure of the vision measurements occurs easily generated in the case the feature disappears
or in case of the mistracked image features. In order to make the motion estimation more robust
and applicable, some kind of reliable failure detection is needed. An inertial sensor can assist in
stabilizing the camera allowing it to quickly redirect its gaze when motion blurs visual feedback.
If no vision measurements are output, the state uncertainty will obviously increase. Therefore we
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can compute the Frobenius norm of the state uncertainty and compare it to a threshold. Furthermore
the translation measurement in the state vector is also checked. If the change of the translation is
significant and exceeds the threshold (see Equation (10)), we will use inertial sensor data to update
the state vector directly:

sqrtp
ÿ

i“1,2,3

ppi
t ´ pi

t´1q
2
q ą threshold (10)

where pt is the translation estimate at time t and pt´1 is the translation estimate at time t ´ 1.

4. Experimental Results

The system presented in this paper is a C/S architecture. The server is built on a personal
computer with an Intel(R) Xeon(R) CPU E5-2670 @ 2.60 GHz and 8 G RAM. The client is built on
an iPhone5, which is equipped with a camera, GPS, gravity and inertial sensors. The WiFi network is
a campus network through TL-WR740N 150 M TP-LINK wireless router access. Software is written in
C++ and objective-C using the OpenCV library. The Unity 3D engine is chosen to render 3D models.

4.1. Recognition Performance

To evaluate the performance of our scene recognition algorithm for a wide area, our own
database (Figure 6 shows a part of our database) is chosen to test the recognition rate. Our database
contains 4 K keyframe images selected from 800 outdoor scenes with partial occlusions, different
viewpoints, scale and illumination changes. Each image is labeled with UTM GPS coordinates
and gravity information (e.g., latitude: 39.96339504 longitude: 116.30417682; gx = 9.319382,
gy = 0.66389465, gz = ´2.3644562). The database is publicly available [45] and readers can download
it by citing this paper or contacting the corresponding author by E-mail.Sensors 2015, 15, page–page 
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Table 1 shows the recognition accuracy of our Geo-based GVLAD method compared with the 

state of the art approaches. The performance of different methods is measured by recall @ R which is 

defined as the proportion of query vectors for which the correct match is ranked within the top 

returned results. We use SURF features here for recognition and use PCA to reduce the 

dimensionality of the training dataset. In Table 1, K means the number of code words. As can be seen 

from Table 1, the retrieval accuracy can increase significantly with the help of GPS and gravity 

information. The retrieval accuracy of geo-based VLAD is about 4% higher than that of original 

VLAD. However, the performance of GVLAD is about 9% higher than original VLAD and a 6% 

improvement over that of geo-based VLAD. The retrieval accuracy of geo-based GVLAD shows an 

improvement of up to about 14%. From the experimental results we can see that using gravity 

information or GPS alone can improve the accuracy of VLAD and gravity helps more. The retrieval 

accuracy can increase a lot when using the method presented in this paper, with the help of both GPS 

and gravity information. In addition, the size of the recognition algorithm is about 5.99 MB when K 

is 128 and the average size of 3D structure is 0.68 MB for each scenario, which we can easily pre-download 

to the mobile phone. It is worth noting that partial occlusion of the buildings by the pedestrian and 

cars causes the distribution of features to change and thus affects the recognition results. Moreover, 

buildings that have similar color and symmetrical structure of the windows and doors also cause the 

percentage of correct matches to decrease. Figure 8 shows the recognition results of our method. 

Figure 6. Examples of our database images.

We apply the density-based clustering method to our database and Figure 7 shows the clustering
results. In this experiment, we set radius as 0.03 and minimal points as nine so as to get 10 clusters.
In order to demonstrate the results clearly, we only take five clusters as an example.
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Figure 7. Geometry clustering result.

Table 1 shows the recognition accuracy of our Geo-based GVLAD method compared with the
state of the art approaches. The performance of different methods is measured by recall @ R which
is defined as the proportion of query vectors for which the correct match is ranked within the top
returned results. We use SURF features here for recognition and use PCA to reduce the dimensionality
of the training dataset. In Table 1, K means the number of code words. As can be seen from Table 1,
the retrieval accuracy can increase significantly with the help of GPS and gravity information. The
retrieval accuracy of geo-based VLAD is about 4% higher than that of original VLAD. However, the
performance of GVLAD is about 9% higher than original VLAD and a 6% improvement over that
of geo-based VLAD. The retrieval accuracy of geo-based GVLAD shows an improvement of up to
about 14%. From the experimental results we can see that using gravity information or GPS alone
can improve the accuracy of VLAD and gravity helps more. The retrieval accuracy can increase a lot
when using the method presented in this paper, with the help of both GPS and gravity information.
In addition, the size of the recognition algorithm is about 5.99 MB when K is 128 and the average
size of 3D structure is 0.68 MB for each scenario, which we can easily pre-download to the mobile
phone. It is worth noting that partial occlusion of the buildings by the pedestrian and cars causes the
distribution of features to change and thus affects the recognition results. Moreover, buildings that
have similar color and symmetrical structure of the windows and doors also cause the percentage of
correct matches to decrease. Figure 8 shows the recognition results of our method.

Table 1. The recognition accuracy.

Method K = 64 K = 128 K = 256

VLAD 0.778 0.794 0.806
Geo-based VLAD 0.814 0.833 0.847

GVLAD 0.875 0.893 0.897
Geo-based GVLAD 0.922 0.933 0.934
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Figure 9. Effect of de-noising. (a) Static; (b) Random moving. 

Because of the lack of ground truth data, we use the re-projection errors to test the accuracy of 

our hybrid tracking method. The re-projection error we utilized here is the squared distance between 

the projection of feature points in the current image and the measured 2D coordinates in the keyframe. 

Figure 10a gives the re-projection errors of the hybrid tracking method when a user holds an iPhone 

in his hand walking around randomly, with the iPhone is rotating along the Y-axis. The purpose of 

this kind of movement is to simulate the case when users make large view angle changes. Figure 10b 

gives the re-projection errors of the hybrid tracking method when users move backwards and 

forwards to simulate the case when users move close to or far from the scene. All the errors above 

are below 4.5 pixels, which demonstrates the accuracy of the proposed method. 
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4.2. Hybrid Tracking Performance

In our experiment, we firstly use wavelet de-noising with four layers to reduce the noise of
the accelerometer data. Figure 9 shows the effect of de-noising on acceleration compared with the
original acceleration. In Figure 9, the blue line shows the original acceleration and the red line shows
the acceleration after denoising. Figure 9a gives the acceleration when the mobile device is stationary,
and Figure 9b gives the acceleration when the mobile device moves randomly. Here, the change of
X-axis is taken as an example. From Figure 9, we can see that the effect of wavelet threshold denoising
is obvious for the accelerometer, but the sensitivity of the accelerometer to motion is slightly reduced.

Because of the lack of ground truth data, we use the re-projection errors to test the accuracy of our
hybrid tracking method. The re-projection error we utilized here is the squared distance between the
projection of feature points in the current image and the measured 2D coordinates in the keyframe.
Figure 10a gives the re-projection errors of the hybrid tracking method when a user holds an iPhone in
his hand walking around randomly, with the iPhone is rotating along the Y-axis. The purpose of this
kind of movement is to simulate the case when users make large view angle changes. Figure 10b gives
the re-projection errors of the hybrid tracking method when users move backwards and forwards to
simulate the case when users move close to or far from the scene. All the errors above are below 4.5
pixels, which demonstrates the accuracy of the proposed method.
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Figure 10. Re-projection error of hybrid tricking method. (a) Rotate along Y-axis; (b) Move backwards 

and forwards. 

Figure 11 shows the motion estimation results in comparison, when vision measurements are 

unavailable in some frames. Here, the change of X-axis is taken as an example. The red line shows 

the vision measurements. Some equaling zero correspond to missing vision data. The blue line shows 

motion estimation results by using the sensor fusion model method, where the pose is solely based 

on inertial sensors when vision data is unavailable. We can see in this figure that for a short time the 

camera pose can still be estimated accurately without vision data by using inertial data. However, 

without vision data the inertial data will quickly drift within several minutes. 
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Figure 11. Motion estimation results when vision measurements are unavailable in some frames.  

(a) Rotation; (b) Translation. 

Figure 12 shows the tracking effects. We can see that the computer-generated 3D model is 

superimposed on the live image successfully. 

   

Figure 12. Tracking effects. 

4.3. Computation Time 

In our experiments, for each keyframe and input image, we extract about 400 ORB features. The 

computation time of the experiment are recorded in Table 2. 

  

Figure 10. Re-projection error of hybrid tricking method. (a) Rotate along Y-axis; (b) Move backwards
and forwards.

Figure 11 shows the motion estimation results in comparison, when vision measurements are
unavailable in some frames. Here, the change of X-axis is taken as an example. The red line shows
the vision measurements. Some equaling zero correspond to missing vision data. The blue line shows
motion estimation results by using the sensor fusion model method, where the pose is solely based
on inertial sensors when vision data is unavailable. We can see in this figure that for a short time the
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camera pose can still be estimated accurately without vision data by using inertial data. However,
without vision data the inertial data will quickly drift within several minutes.
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4.3. Computation Time 

In our experiments, for each keyframe and input image, we extract about 400 ORB features. The 

computation time of the experiment are recorded in Table 2. 

  

Figure 11. Motion estimation results when vision measurements are unavailable in some frames. (a)
Rotation; (b) Translation.

Figure 12 shows the tracking effects. We can see that the computer-generated 3D model is
superimposed on the live image successfully.
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Figure 12. Tracking effects.

4.3. Computation Time

In our experiments, for each keyframe and input image, we extract about 400 ORB features.
The computation time of the experiment are recorded in Table 2.

Table 2. The average computation time.

Step Time (ms)

Initialization phase Feature Extraction 88.4
Feature Matching 3.4

Tracking phase

Optical Flow Tracking 17.1
PROSAC 2.5

Pose Estimation 6.4
Sensor Fusion (Prediction) 0.5
Sensor Fusion (Correction) 1.4

Render latency 0.5

As can be seen from Table 2, the time for feature extraction is 88.4 ms and for feature matching
only 3.4 ms, which belong to the initialization phase. Next, Optical Flow Tracking and the PROSAC
method take 19.6 ms. Finally, pose estimation needs about 6.4 ms and sensor fusion needs only 1.9 ms.
It is worth noting that the render latency for the mobile device is only 0.5 ms in our experiment.
Table 2 shows that our algorithm can meet the real-time requirements of mobile devices.

31104



Sensors 2015, 15, 31092–31107

5. Conclusions

This paper describes a sensor-aware large-scale scene recognition and tracking algorithm
applied for mobile augmented reality systems. A geo-based GVLAD method, which uses GPS and
gravity information to improve the performance of recognition, is utilized to recognize different
scenarios. An affine invariant interest point detector is used to extract natural features in the
unprepared environment and track them frame-to-frame by computing the optical flow. Gyroscope
and acceleration data from inertial sensors and vision are fused together to achieve significant
improvements in tracking stability and robustness.

Experimental results demonstrate that our method is real-time, robust and effective in outdoor
environments. However, our algorithm still has some limitations which require further improvement
in future work. First, the stability of our system will drop quickly when the actual illumination
conditions are quite different from the light conditions used in the training stage. The reason is
whether an object that can be reliably detected mainly depends on the training images. Once trained,
the performance can no longer be improved. Second, when the camera moves to some distant
locations, the appearance of the selected features may be drastically different. This will lead to a
sharp drop in the number of the inners. Third, due to the limited accuracy of mobile accelerometer,
tracking algorithm will drift quickly in several minutes without vision data.
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