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Abstract: All kinds of vehicles have different ratios of width to height, which are called the aspect
ratios. Most previous works, however, use a fixed aspect ratio for vehicle detection (VD). The use
of a fixed vehicle aspect ratio for VD degrades the performance. Thus, the estimation of a vehicle
aspect ratio is an important part of robust VD. Taking this idea into account, a new on-road vehicle
detection system is proposed in this paper. The proposed method estimates the aspect ratio of the
hypothesized windows to improve the VD performance. Our proposed method uses an Aggregate
Channel Feature (ACF) and a support vector machine (SVM) to verify the hypothesized windows
with the estimated aspect ratio. The contribution of this paper is threefold. First, the estimation
of vehicle aspect ratio is inserted between the HG (hypothesis generation) and the HV (hypothesis
verification). Second, a simple HG method named a signed horizontal edge map is proposed to
speed up VD. Third, a new measure is proposed to represent the overlapping ratio between the
ground truth and the detection results. This new measure is used to show that the proposed method
is better than previous works in terms of robust VD. Finally, the Pittsburgh dataset is used to verify
the performance of the proposed method.
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1. Introduction

Vehicle detection (VD) is one of the major research issues within intelligent transportation system
(ITS) organizations, and considerable research has been conducted. Most of the research works
consist of two steps: HG (hypothesis generation) and HV (hypothesis verification).

Concerning the HG, symmetry [1,2], color [3,4], shadow [5,6] and edges [7,8] were used to
select the vehicle candidates. Further, search space reduction methods were developed to save the
computational resources in HG. For example, in [9], the linear model between the vehicle position and
vehicle size is updated using a recursive least square algorithm. This linear model helps to generate
the Region of interests (ROIs) such that they are likely to include vehicle regions. Therefore, this
approach can reduce false positives as compared with the previous exhaustive search or sliding
window approaches. Interestingly, in [10], image inpainting is used to verify the detection results.
Image inpainting is actually a method for restoring damaged images. This approach also reduces
false positives.

Concerning the HV, lots of research has focused on the application of machine vision
technologies to VD, as in [11,12]. The HV works based on machine vision mainly consist of features
and classifiers. In case of the features, the Histogram of oriented gradient (HOG) [13], Haar-like
wavelet [14], Gabor feature [15] and Aggregate channel features (ACF) [16] are generally used.
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The Haar-like wavelet takes less computational time than the HOG or Gabor feature. However, the
detection performance using the Haar-like wavelet is lower than that of the HOG or Gabor feature.
In [17], the HOG and Haar-like wavelet are combined in cascade form to reduce the computational
time and to improve the detection performance. The Haar-like wavelet accelerated the hypothesis
generation (HG), while HOG verified the generated hypotheses. In addition to these features, the
Gabor feature is also an effective feature for VD. The Gabor filter is a kind of band-pass filter that
extracts specific information called the Gabor feature from the frequency domain. In [18], a gamma
distribution is used to represent the Gabor feature for better detection performance when compared
with the Gaussian distribution. The Gabor feature, however, takes a long computational time due to
how the computation of a convolution is required. Some works have been reported [19,20] to reduce
the computational time of the Gabor filter. In case of the classifiers, the support vector machine (SVM),
Adaboost [21] and Neural Network (NN) are used to train the various features. Recently, Latent
SVM has been researched for a deformable part-based model (DPM) [22]. This model can capture
significant deformation in the object appearance.

On the other hand, all kinds of vehicles have different ratios of width to height, which are called
the aspect ratios. Most previous works, however, use a fixed aspect ratio for vehicle detection (VD).
The use of a fixed vehicle aspect ratio [23–26] for VD degrades the performance. Thus, a new step
named HI (hypothesis improvement) is developed to enhance the VD performance in this paper.
In the HI, the aspect ratio of the hypothesized windows is estimated and the result is applied to the
classifier in the HV. Thus, the HI is positioned between the HG and the HV. A part of this paper
was presented in [27]. The contribution of this paper is threefold: (1) the HI based on the estimation
of vehicle aspect ratio is inserted between the HG (hypothesis generation) and the HV (hypothesis
verification); (2) a simple HG method named a signed horizontal edge map is proposed to speed up
VD; (3) a new measure is proposed to quantify how well the detection result matches the ground
truth. This measure can be used to show that the proposed method is better than previous methods
in terms of robust VD.

The remainder of this paper is organized as follows: In Section 2, the proposed vehicle detection
system is briefly outlined. In Section 3, the vehicle aspect ratio is estimated and is used to generate
an efficient ROI. In Section 4, some experiments are conducted to verify the validity of the proposed
method. Some conclusions are drawn in Section 5.

2. Motivation and System Overview

Figure 1 shows the distribution of vehicle aspect ratios in the Pittsburgh dataset.
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A total of 10,907 vehicles are used in the Pittsburgh dataset, as shown in Figure 1. As can be
seen in the figure, the vehicle aspect ratio is approximately 1, but it varies from 0.5 to 2, depending
on the types of vehicles and the camera viewpoint. Examples of vehicle images are given in Figure 2.
In general, sedans have low vehicle aspect ratios, while trucks or buses have high vehicle aspect
ratios, as shown in Figure 2. Thus, the use of a fixed aspect ratio in VD can degrade the performance.
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between the HG and the HV. In the HG, a simple method named a signed horizontal edge is 
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windows are estimated by combining the symmetry and horizontal edges of the vehicles. In the HV, 

ACF is employed with SVM to test the hypothesized windows with estimated aspect ratios. 

 

Figure 3. Flow chart of the proposed vehicle detection system. 

Figure 2. Vehicle images for various vehicle aspect ratios: (a) 0.7; (b) 1; and (c) 1.5.

The proposed system is outlined in Figure 3; as shown in the figure, the HI is positioned between
the HG and the HV. In the HG, a simple method named a signed horizontal edge is developed to
provide good hypothesized windows. In the HI, the aspect ratios of the hypothesized windows
are estimated by combining the symmetry and horizontal edges of the vehicles. In the HV, ACF
is employed with SVM to test the hypothesized windows with estimated aspect ratios.
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3. Proposed Method

In this section, the three steps of the proposed method are explained. The results of the three
steps are summarized, as in Figure 4. As in [28], the hypotheses for the vehicles are generated in the
HG. Here, let us denote the i-th hypothesis for the vehicle as wi “ pxi, yi, wi, hiq, where pxi, yiq denotes
the left-lower position of the i-th hypothesis and wi and hi are the associated width and the height
of the window, respectively. In the HI, the aspect ratio, or the equivalent height, of the hypothesized
window wi is estimated. Initially, the height of the hypothesis is set to hi “ 2wi, which is long enough
to include all kinds of vehicles, as shown in Figure 1. As in Figure 4a, the candidates of vehicle width
are generated. Figure 4b shows the results of the estimation of vehicle height hi for the given vehicle
width wi. Let us denote the estimated value for the vehicle height by ĥi. Then, the i-th hypothesis is
computed by ŵi “

´

xi, yi, wi, ĥi

¯

. Figure 4c shows the hypothesized windows given as the result of
the HI. Finally, ACF and SVM are used to test all of the hypothesized windows given from the HI.
The vehicle detection results of the proposed method are shown in Figure 4d.
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Figure 4. The framework of the proposed method: (a) shows the result of the HG by signed 

horizontal edges  2i ih w ; (b) is the result of the estimation of the vehicle height; (c) shows the 

hypothesized windows given as the result of the HI; and (d) shows the vehicle detection results in 
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3.1. Hypothesis Generation (HG)—A Signed Horizontal Edge Map 

An efficient hypothesis generation method for VD was reported by Alonso et al. in [28]. The 

method uses an absolute edge map defined by  

     , , ,h vE x y E x y E x y   (1) 

Figure 4. The framework of the proposed method: (a) shows the result of the HG by signed horizontal
edges phi “ 2wiq; (b) is the result of the estimation of the vehicle height; (c) shows the hypothesized
windows given as the result of the HI; and (d) shows the vehicle detection results in the HV.

3.1. Hypothesis Generation (HG)—A Signed Horizontal Edge Map

An efficient hypothesis generation method for VD was reported by Alonso et al. in [28].
The method uses an absolute edge map defined by

E px, yq “ |Eh px, yq ´ Ev px, yq| (1)

where Eh px, yq and Ev px, yq represent the horizontal and vertical gradient images, respectively.
Figure 5a,c shows an original vehicle image I px, yq and the associated absolute edge map E px, yq
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and the generated hypotheses. The absolute edge map method in [28] is very efficient but it has the
drawback that the absolute edge map E px, yq sometimes misses some weak horizontal edges such
as vehicle shadows, degrading the VD performance. To avoid missing some weak horizontal edges
such as shadow edges, the signed horizontal edge map computed by

Es px, yq “ I px, yq ˚ H, H “

»

—

–

´1 ´2 ´1
0 0 0
1 2 1

fi

ffi

fl

(2)

It is used as in Figure 5b. The signed horizontal edge map Es px, yq takes into account both
sign and magnitude of the horizontal edges and outperforms the absolute edge map E px, yq in
detecting the edges between shadows and roads since the shadows tend to be darker than the
roads. Figure 5b,d show the same image I px, yq, and the associated edge Es px, yq and the generated
hypotheses. The signed horizontal edge map Es px, yq outperforms the absolute edges image E px, yq
in the HG.
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horizontal edge image; (c) HG by absolute edge image [28]; and (d) HG by signed horizontal  

edge image. 

3.2. Hypothesis Improvement (HI)–Aspect Ratio Estimation 

In this subsection, the symmetry of the vehicle images, the horizontal edges and the prior 

knowledge about the aspect ratio of the vehicles are combined to estimate the aspect ratio of the 

hypothesized windows provided by the HG.  

Figure 5. Hypothesis generation methods for VD: (a) Absolute edge image by [28]; (b) Signed
horizontal edge image; (c) HG by absolute edge image [28]; and (d) HG by signed horizontal
edge image.

3.2. Hypothesis Improvement (HI)–Aspect Ratio Estimation

In this subsection, the symmetry of the vehicle images, the horizontal edges and the prior
knowledge about the aspect ratio of the vehicles are combined to estimate the aspect ratio of the
hypothesized windows provided by the HG.
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3.2.1. Symmetry

The basic idea of this subsection is to exploit the fact that vehicles are symmetric while the
backgrounds are not, as shown in Figure 6. The symmetry for each value in the y axis is computed
as follows:

(1) The given hypothesized window is flipped horizontally as in Figure 6, making a mirror
image. Figure 6a,b show examples of the original image and the corresponding flipped image,
respectively. For js that belong to vehicles, the two images are almost the same while, for js that
belong to backgrounds, the two images are different from each other.

(2) In order to quantify the symmetry of the given hypothesized window, the similarity between
the hypothesized window and the mirror image is computed. Instead of intensity values, gradient
values in images are used because they are more robust than intensity values under various
illuminations. Thus, the HOG feature vector, is used. The HOG feature is a part of ACF and includes
the gradient magnitude and orientation. The HOG feature vector for a hypothesized window can be
denoted by H “

“

F1,1, ¨ ¨ ¨ , FI,1, ¨ ¨ ¨ , F1,J , ¨ ¨ ¨ , FI,J
‰

P <TI J ; Fi,j “
”

B1
i,j, ¨ ¨ ¨ , BT

i,j

ı

P <T denotes the

histogram of the pi, jq block, and Bt
i,j denotes the sum of the gradient magnitudes according to the

orientation bin t in the pi, jq block, where I and J are the numbers of column and row blocks of the
window, respectively, as shown in Figure 6; T denotes the number of orientation bins in the HOG;
i, j and t are the indices for I, J and T, respectively.
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Figure 6. The procedure of using the symmetry: (a) is the HOG feature of the hypothesized window;
and (b) is the HOG feature of the flipped hypothesized window pT “ 9q.
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(3) For the HOG of the hypothesized window H “
“

F1,1, ¨ ¨ ¨ , FI,1, ¨ ¨ ¨ , F1,J , ¨ ¨ ¨ , FI,J
‰

P <TI J

and the HOG of the associated flipped image HF “
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I,1, ¨ ¨ ¨ , FF
1,J , ¨ ¨ ¨ , FF

I,J

ı

P <TI J , the
similarity between the two HOGs is defined by

S “ H ˝HF “

«

F1,1 ˝ FF
1,1

loooomoooon

P<T

¨ ¨ ¨ FI,1 ˝ FF
I,1

loooomoooon

P<T

¨ ¨ ¨ F1,J ˝ FF
1,J

loooomoooon

P<T

¨ ¨ ¨ FI,J ˝ FF
I,J

looomooon

P<T

ff

“

»

–

”

B1
1,1 ¨ B

1F
1,1 ¨ ¨ ¨ BT

1,1 ¨ B
TF
1,1

ı

looooooooooooooooooomooooooooooooooooooon

P<T

¨ ¨ ¨

”

B1
I,1 ¨ B

1F
I,1 ¨ ¨ ¨ BT

I,1 ¨ B
TF
I,1

ı

looooooooooooooooooomooooooooooooooooooon

P<T

¨ ¨ ¨

”

B1
1,J ¨ B

1F
1,J ¨ ¨ ¨ BT

1,J ¨ B
TF
1,J

ı

looooooooooooooooooomooooooooooooooooooon

P<T

¨ ¨ ¨

”

B1
I,J ¨ B

1F
I,J ¨ ¨ ¨ BT

I,J ¨ B
TF
I,J

ı

looooooooooooooooooomooooooooooooooooooon

P<T

fi

fl

“

«

s1,1
loomoon

P<T

¨ ¨ ¨ sI,1
loomoon

P<T

¨ ¨ ¨ s1,J
loomoon

P<T

¨ ¨ ¨ sI,J
loomoon

P<T

ff

P <TI J

(3)

where ˝ denotes component-wise multiplication; si,j “

”

B1
i,j ¨ B

1F
i,j ¨ ¨ ¨ BT

i,j ¨ B
TF
i,j

ı

P <T .
The symmetry for the j-th row vector block can be quantified by

m “
“

m1, ¨ ¨ ¨ , mJ
‰

, mj “

I
ÿ

i“1

||si,j||1 (4)

Finally, the symmetry is summed over all js (over all row blocks) and the accumulated symmetry
is defined as

M “
“

M1, ¨ ¨ ¨ , MJ
‰

, Mj “

J´j
ÿ

t“0

`

mJ´t ´ Ts
˘

(5)

where Ts is a median value of the symmetry vector m. That is, the accumulated symmetry Mj for
the j-th vector row block is the sum of the symmetry values of m from the bottom to the j-th vector
row block. Figure 7 shows the computation results of the accumulated symmetry for vehicle images.
In Figure 7b, the symmetry is depicted for different js. Since the vehicle region has high symmetry,
the background region has low symmetry, and Ts is a median value of the symmetry vector m, the
j-th row vector block corresponding to the vehicle height has a maximum accumulated symmetry as
shown in Figure 7c.
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



S H H F F F F F F F F

1 1

1, , , , ,

1,1 ,1 1, ,

T T

T T T T

T TF F T TF

J J I J I J I J I J

TIJ

I J I J

B B B B B

 

   


        


 
  
 
 

s s s s

 

(3) 

where  denotes component-wise multiplication; 1 1

, , , , ,

F T TF T

i j i j i j i j i jB B B B     s . The 
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 1 , 1
1

, , ,
I

J j i j

i

m m m


 m s  (4) 

Finally, the symmetry is summed over all j s (over all row blocks) and the accumulated 

symmetry is defined as 

   1

0

, , ,
J j

J j J t s

t

M M M m T






  M  (5) 

where 
sT  is a median value of the symmetry vector m . That is, the accumulated symmetry 

jM  

for the j -th vector row block is the sum of the symmetry values of m from the bottom to the  

j -th vector row block. Figure 7 shows the computation results of the accumulated symmetry for 

vehicle images. In Figure 7b, the symmetry is depicted for different j s. Since the vehicle region 

has high symmetry, the background region has low symmetry, and 
sT  is a median value of the 

symmetry vector m , the j -th row vector block corresponding to the vehicle height has a 

maximum accumulated symmetry as shown in Figure 7c.  

 

(a) (b) (c) 

Figure 7. The result of estimating symmetry: (a) is the hypothesized window; (b) is the symmetry in 

terms of j ; and (c) is the accumulated symmetry from bottom to top  8, 64I J  . 

  

Figure 7. The result of estimating symmetry: (a) is the hypothesized window; (b) is the symmetry in
terms of j; and (c) is the accumulated symmetry from bottom to top pI “ 8, J “ 64q.
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3.2.2. Horizontal Edge

In addition to the symmetry of the vehicles, the horizontal edge is also an important cue that we
can use to estimate the vehicle height. The horizontal edge is also computed using the HOG feature
vector H. Figure 8 shows the result of the horizontal edge detection. The amount of the horizontal
edge is defined by

E “
“

E1, ¨ ¨ ¨ , EJ
‰

, Ej “

I
ÿ

i“1

Bt0
i,j (6)

where t0 denotes the bin for the horizontal orientation. For simplicity, E is also called the horizontal
edge. In Figure 8b, the j corresponding to the vehicle height has the highest magnitude of the
horizontal edge due to the intensity difference between the vehicle and the background.
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1
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2
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/ 21

exp
2σσ2 π

σ
2

J

j

W

J
W

J

W

j
j

  
   

 
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where    denotes a Gaussian distribution. The mean of the vehicle aspect ratio is set to one.  

Figure 9 shows the distribution of the prior knowledge match degree. 

Figure 8. The result of the horizontal edge: (a) is the hypothesized window; and (b) is the horizontal
edge in terms of j.

3.2.3. Prior Knowledge about Aspect Ratio

Finally, our prior knowledge about aspect ratio is used to fine-tune the heights of vehicles.
As shown in Figure 1, it is unusual for the vehicle aspect ratio to be less than 0.5 or larger than
1.5. Thus, we model the vehicle aspect ratios using a Gaussian distribution, as shown in Figure 9.
The degree to which the estimated aspect ratio matches our prior knowledge is used to reduce false
estimations of the vehicle aspect ratio. Here, prior knowledge match degree is defined by

W “
“

W1, ¨ ¨ ¨ , WJ
‰

Wj “ N
ˆ

j
ˇ

ˇ

ˇ

ˇ

J
2

,σ
˙

“
1

σ
?

2π
exp

˜

´
pj´ J{2q2

2σ2

¸

(7)

where N p¨ q denotes a Gaussian distribution. The mean of the vehicle aspect ratio is set to one.
Figure 9 shows the distribution of the prior knowledge match degree.
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Figure 10. The results of estimating vehicle height: (a) is the hypothesized window; (b) is the total 
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red line. 

In Figure 10c, the estimated height of a given vehicle is marked by a red line. As shown in the 

figure, the estimated height is very close to the ground truth. 

  

Figure 9. The prior knowledge match degree: (a) is the hypothesized window; and (b) is the prior
knowledge match degree in terms of j pσ “ 10q.

3.2.4. Estimating Vehicle Height

Three measures, the accumulated symmetry Mj, the horizontal edge Ej, and the prior knowledge
match degree Wj, are combined to define a score for the vehicle height as

T “
“

T1, ¨ ¨ ¨ , TJ
‰

, Tj “ Mj ¨ Ej ¨Wj. (8)

Figure 10 shows the final height score Tj of a window for different values of j. Using the height
score, the vehicle height is estimated as in Equation (9) below:

ĥ “ h ¨
J ´ ĵ

J
, ĵ “ arg max

j
Tj. (9)
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Figure 10. The results of estimating vehicle height: (a) is the hypothesized window; (b) is the total
score for vehicle height estimation; and (c) shows the estimated vehicle height represented by the
red line.
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In Figure 10c, the estimated height of a given vehicle is marked by a red line. As shown in the
figure, the estimated height is very close to the ground truth.

3.3. Hypothesis Verification (HV)

In the HV, ACF and SVM are applied to the fine-tuned windows obtained from the HI and
the vehicle verification is conducted. ACF uses the five channels: normalized edge, HOG and LUV
color channels. Figure 11 shows the ACF channels for the vehicle image. The channels are divided
into 4 ˆ 4 blocks and pixels in each block are summed [16]. The features extracted from ACF are
trained by a linear SVM [29]. Finally, the trained SVM is used to detect the vehicles for the fine-tuned
windows obtained from the HI.
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Figure 11. ACF channels for the image (a): (b) is HOG; (c) is L color space in LUV; (d) is U color space
in LUV; (e) is V color space in LUV; (f) is normalized edge.

4. Experiment

In this section, experiments are conducted to compare the performance the proposed method
with that of the previous two methods. In Table 1, the HG, HI and HV of the competing algorithms
are summarized. The first two algorithms denoted by “SW” and “Alonso” are the existing ones.
Here, “SW” means a sliding window approach in [30] and “Alonso” means the algorithm in [28].
In “SW”, the aspect ratio is set to 1. The last one denoted by “SHE + VH” is the proposed
method. Here, “SHE” means the signed horizontal edges and “VH” means the proposed aspect
ratio estimation.

Table 1. The mean absolute errors with the proposed method and previous methods.

Methods HG HI HV

Previous method 1 (SW) Sliding window ˆ ACF + SVM
Previous method 2 (Alonso) Absolute edge image Peaks of edges ACF + SVM

Proposed method (SHE + VH) Signed horizontal edge image Symmetry, Horizontal edge ACF + SVM

The proposed methods are evaluated on three aspects: (1) the aspect ratio estimation; (2) the
vehicle detection; and (3) the computation time. First, the aspect ratio estimation is considered.
A total of 11,021 vehicles from the Pittsburgh dataset are used to evaluate the performance of the
aspect ratio estimation. In Table 2, the previous methods and the proposed methods are compared
in terms of the mean absolute error (MAE) between the true and estimated aspect ratios, which is
defined by

1
NG

NG
ÿ

i“1

ˇ

ˇ

ˇ
Ri

E ´ Ri
G

ˇ

ˇ

ˇ
(10)
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where NG is the number of vehicles; Ri
G and Ri

E are the true and estimated aspect ratios for the
i-th sample, respectively. In Table 2, the MAE is evaluated for different types of vehicles: sedans,
Sport Utility Vehicles (SUVs), trucks and busses. For sedans, trucks, and buses, the proposed method
has a lower MAE than “SW” and “Alonso”. For SUVs, however, the proposed method underperforms
compared to the previous methods. The reason for that is that the aspect ratio of a SUV is close to
one and the fixed aspect ratio of one is better than the aspect ratio estimation. Overall, the proposed
method demonstrates the lowest MAE among the competing methods and it means that the proposed
method generates more accurate hypothesized windows than the previous methods do.

Table 2. The mean absolute errors (MAE) with the proposed and previous methods.

Vehicle Number of
Vehicles

Previous
Method1 (“SW”)

Previous Method2
(“Alonso”)

Proposed Method
(“SHE + VH”)

Sedan 5982 0.1425 0.1044 0.1014
SUV 4350 0.0694 0.0635 0.0902
Truck 390 0.3087 0.1844 0.0961
Bus 299 0.1415 0.3438 0.1309

Total 11,021 0.1656 0.1740 0.1047

Second, the proposed method is evaluated in terms of the VD performance. In Figure 12, the
VD results of the previous methods and proposed methods are compared. From the figure, it can be
seen that the bounding boxes of the proposed methods fit the vehicles more accurately than those of
the previous methods. Further, the previous methods produce some false positives and miss some
vehicles, while the proposed method detects the vehicles successfully. To qualitatively evaluate the
detection performance, two measures are introduced: the PASCAL measure [31] and the average
overlapping ratio (AOR).
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(a) (b) (c) 

Figure 12. The vehicle detection result of (a) “SW”; (b) “Alonso”; and (c) “SHE+VH”. Figure 12. The vehicle detection result of (a) “SW”; (b) “Alonso”; and (c) “SHE+VH”.

30937



Sensors 2015, 15, 30927–30941

The PASCAL measure considers a detection to be correct if the PASCAL measure r between the
detection result BD and ground truth BT defined by

r “
area pBD X BTq

area pBD Y BTq
(11)

exceeds a threshold Tr, where BD X BT denotes the intersection between the detection result and
ground truth, and BD Y BT denotes their union. In this experiment, the threshold Tr is set to 0.55.
Using the PASCAL measure, the true positive rate (TPR), the false positive per image (FPPI), and,
subsequently, the Receiver operating characteristic (ROC) curve are evaluated. In addition to them,
another measure, AOR, is proposed in this paper. The AOR is defined by

AOR “

ND
ř

i“1
riI rri ą Trs

ND
ř

i“1
I rri ą Trs

(12)

It represents the accuracy of true positive detection, where ND is the number of the detected
vehicles; ri is the PASCAL measure for the i-th vehicle detection; and I p¨q is an indicator function that
returns to one if the argument is true and zero otherwise. Using the TPR and AOR, we can define the
true positive score (TPS) by

TPS “ TPR ¨ pAOR´ Trq “

˜

1
NG

ND
ÿ

i“1

I rri ą Trs

¸

¨

¨

˚

˚

˚

˝

ND
ř

i“1
riI rri ą Trs

ND
ř

i“1
I rri ą Trs

´ Tr

˛

‹

‹

‹

‚

“
1

NG

ND
ÿ

i“1

pri ´ TrqI rri ą Trs (13)

where NG is the number of vehicles. TPS reflects both TPR and AOR and it represents the true
detection rate and accuracy simultaneously. In Figure 13, the detection performances of the proposed
and previous methods are compared in terms of the TPR, FPPI, ROC and AOR. In the experiment,
the size of the images is 320 ˆ 240 and only the vehicles covering more than 30 pixels are considered
as true targets. Figure 13a is the ROC. From the figure, the proposed method demonstrates better
detection performance than the previous methods. In Figure 13b, the AOR (detection accuracy)
is depicted against TPR (detection rate). This figure clearly shows that the proposed method
outperforms the previous two methods in detection accuracy (AOR) when the detection rates (TPR)
are the same. In Figure 13c, the detection performance is compared in terms of the TPS and FPPI.
The TPS is the combination of the detection accuracy and rate. The proposed method demonstrates
much higher TPS than the previous methods, meaning that the proposed method detects the vehicles
better and more accurately than the previous methods simultaneously. In Figure 13d and Table 3,
three competing methods are compared in terms of the speed-up ratio (SUR) [32], TPS, TPR and AOR
when the FPPI is set to 1. SUR means how much faster the algorithm runs in comparison with the
exhaustive search “SW” and it is defined as

SUR=
processing time o f “SW”

processing time o f an algorithm
(14)
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Figure 13. The detection performance in terms of (a) FPPI (false positive per image) vs. TPR (true 

positive rate); (b) TPR vs. AOR (average overlapping ratio); (c) FPPI vs. TPS (true positive score); 

and (d) SUR (speed-up ratio) vs. TPS vs. TPR vs. AOR when FPPI is 1. 

Table 3. The overall performance of the proposed and previous methods (when FPPI is 1). 

Methods TPS TPR AOR SUR 

Previous method 1  

(SW) 
0.0872 0.665  0.6812 1 

Previous method 2 (Alonso) 0.0425 0.2574 0.715 2.4736 

Proposed method 

(SHE + VH) 
0.1249 0.6436 0.744 1.3243 

From the figure and table, the proposed method runs 1.87 times slower than “Alonso” but it 

achieves much better performance than “Alonso” in the other three measures. Compared with 

“SW”, the proposed method runs 1.32 times faster and it achieves much better performance in TPS 

and AOR. Its TPR is almost the same as that of “SW”. Thus, it is evident that the proposed method 

is attractive both in detection rate and accuracy even though it is computationally slightly more 

expensive than “Alonso”. 

5. Conclusions 

In this paper, a precise new on-road vehicle detection system has been proposed. In situations 

that require the vehicle position and size, accurate vehicle detection is very important. For accurate 

vehicle detection, the signed horizontal edge map was proposed in the HG and the aspect ratio of 
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Figure 13. The detection performance in terms of (a) FPPI (false positive per image) vs. TPR (true
positive rate); (b) TPR vs. AOR (average overlapping ratio); (c) FPPI vs. TPS (true positive score); and
(d) SUR (speed-up ratio) vs. TPS vs. TPR vs. AOR when FPPI is 1.

Table 3. The overall performance of the proposed and previous methods (when FPPI is 1).

Methods TPS TPR AOR SUR

Previous method 1 (SW) 0.0872 0.665 0.6812 1
Previous method 2 (Alonso) 0.0425 0.2574 0.715 2.4736

Proposed method (SHE + VH) 0.1249 0.6436 0.744 1.3243

From the figure and table, the proposed method runs 1.87 times slower than “Alonso” but it
achieves much better performance than “Alonso” in the other three measures. Compared with “SW”,
the proposed method runs 1.32 times faster and it achieves much better performance in TPS and
AOR. Its TPR is almost the same as that of “SW”. Thus, it is evident that the proposed method
is attractive both in detection rate and accuracy even though it is computationally slightly more
expensive than “Alonso”.

5. Conclusions

In this paper, a precise new on-road vehicle detection system has been proposed. In situations
that require the vehicle position and size, accurate vehicle detection is very important. For accurate
vehicle detection, the signed horizontal edge map was proposed in the HG and the aspect ratio of
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the vehicle windows was estimated in the HI. The windows from the HI were provided to the HV
composed of the ACF and SVM, and good VD performance was obtained.

Finally, a new measurement was proposed to test the accuracy of the proposed vehicle detection
method. In the experiment, the proposed method was compared with the previous methods in
terms of the TPR, FPPI, ROC, AOR, and SUR. The validity of the proposed method was proven
through experimentation.
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