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Abstract: Recent advances in nanotechnology, electronic technology and biology have enabled the
development of bio-inspired nanoscale sensors. The cooperation among the bionanosensors in a
network is envisioned to perform complex tasks. Clock synchronization is essential to establish
diffusion-based distributed cooperation in the bionanosensor networks. This paper proposes a
maximum-likelihood estimator of the clock offset for the clock synchronization among molecular
bionanosensors. The unique properties of diffusion-based molecular communication are described.
Based on the inverse Gaussian distribution of the molecular propagation delay, a two-way message
exchange mechanism for clock synchronization is proposed. The maximum-likelihood estimator
of the clock offset is derived. The convergence and the bias of the estimator are analyzed. The
simulation results show that the proposed estimator is effective for the offset compensation required
for clock synchronization. This work paves the way for the cooperation of nanomachines in
diffusion-based bionanosensor networks.
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1. Introduction

Recent advances in the fields of nanotechnology, electronic technology and biology have enabled
the development of bionano-devices manufactured in a scale ranging from one to a hundred
nanometers [1]. At this scale, a nano-device, also called a bionanosensor or nanomachine, is
considered to be the most basic functional device, able to perform tasks at the nano-level, such as
computing, data storage, sensing or actuation. Like ordinary sensors and wireless sensor networks,
nanomachines can also be interconnected, forming a bionanosensor network [2], to execute more
complex tasks and to expand their range of operations [3]. Bionanosensor networks have a broad
range of potential applications. For example, in the area of biomedical engineering, bionanosensor
networks can be applied in intra-body health monitoring, drug delivery systems, etc. In industrial
and consumer goods applications, bionano-sensor networks can be used for the development
of intelligent functionalized materials, new manufacturing processes, distributed quality control
procedures, etc. [4].

Molecular communication, a kind of bio-inspired communication, is a very popular and
promising information exchange technique in the recent nano-communication and bionanosensor
network studies [5–8]. A typical molecular communication system is shown in Figure 1. A transmitter
nanomachine sends messages by releasing the information molecules. The information molecules
propagate directionally or diffuse randomly in the environment, and reach a receiver nanomachine.
The receiver nanomachine then decodes the information molecules into the original message. Since
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the molecular communication paradigm is different from the conventional radio communication
at the physical layer such as channel and signal propagation, the corresponding communication
techniques and networking protocols need to be reconsidered and redesigned.
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Figure 1. A typical molecular communication system in a bionnanosensor network.

Clock synchronization is a very important issue for all kinds of communication networks,
including nano-communication and nanosensor networks. It is the foundation of the distributed
collaboration among a set of cooperative nanomachines. For example, in an immune defense
bionnanosensor network, the nanomachines are envisioned to release antibody molecules at the same
time to effectively kill the pathogen, or in a nanosensor network-based monitoring scenario, clock
synchronization is the basis for the interpretation of the sensed data from different nanomachines.
However, the slowness and randomness of the propagating molecules represent a big challenge to
clock synchronization in bionanosensor networks. The relevant studies of the clock synchronization
issues in the wireless sensor networks field can be the good references for the study of clock
synchronization in bionanosensor networks [9,10], while those solutions cannot be directly applied to
solving the clock synchronization problems in the bionnanosensor networks. The solutions in [11,12]
proposed an averaging algorithm for the clock offset compensation for the synchronization in the
wireless sensor networks. However, the design ignores the propagation delay of the information
exchange between the sensor nodes. Since in bionnanosensor networks, the information molecules
propagate much more slowly than electromagnetic waves, the propagation delay is much larger,
which cannot be ignored in any algorithm design for clock synchronization. The timing-sync protocol
for sensor networks (TPSN) [13] and the recursive time synchronization protocol (RTSP) [14] for
wireless sensor networks considered the propagation delay in the design, however, they assume
that the propagation delays are bi-directionally symmetrical, while in molecular communications,
the molecules move with strong randomness, so the assumption of symmetrical propagation
delays is not appropriate for molecular communications. References [15,16] modeled the random
propagation delay following a Gaussian distribution. References [16–20] modeled the random delay
as an exponential delay and a bivariate exponential delay, but in molecular communications, the
propagation delay is normally assumed to follow an inverse Gaussian distribution [21]. In [22], an
approach for clock offset estimation has been proposed which is robust to the distribution of the
network delays, however, it has high computational complexity and no closed-form expression of the
estimator can be obtained.

The oscillation and synchronization of bionanosensor networks have been investigated in
recent years. In [23,24], the authors used a bacterial quorum sensing mechanism to synchronize
nano-machines. Molecules, called inducers, can be released by one nanomachine, and trigger another
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nanomachine to release the same self-induced molecules. When the concentration of the inducer
particles in the environment reaches a certain threshold at a moment in time, the entire nanonetwork
can achieve clock synchronization. In [25,26], clock synchronization was realized by inhibitory
molecules. These molecules are released by one transmitter, and inhibit the release of the similar
molecules from another transceiver in the nanonetwork. When the concentration of molecules falls
below a certain threshold, those molecules can be released again. The pattern of the release pulses
of the inhibitory molecules provides the synchronization. However, the abovementioned works
try to synchronize the oscillation period rather than align the time. It is crucial and indispensable
for the nanomachines to synchronize the time in various nanonetwork applications. In [27], the
authors proposed a blind algorithm for such synchronization using non-decision directed maximum
likelihood. The clock sequence is calculated by the receiver based on the analysis of the molecular
channel delay. However, the authors designed receiver sampling sequences without any further
discussion on how to synchronize the time between the transmitter and the receiver.

In this paper, based on the statistical delay model of the molecular diffusion, a two-way message
exchange model for clock synchronization is proposed. A maximum likelihood estimator of the clock
offset between two nanomachines is designed. We assume that the nanomachines have their own
time and the aim of this work is to estimate the time difference between nanomachines. This is the
major difference of this paper from the other literature [6–10]. To the best of our knowledge, this is
the first work focusing on estimating the clock offsets for diffusion-based nano-communication. The
simulation results validate the effectiveness of the proposed algorithm. This work is an important
step and the foundation for the distributed cooperation of nanomachines.

The rest of the paper is organized as follows: Section 2 introduces the system model. The
maximum likelihood estimator and the analytical analysis are given in Section 3. The Cramer Rao
Lower Bound is derived in Section 4. Section 5 presents the simulation results and discussions.
Finally, Section 6 concludes the paper.

2. System Model

In bionanosensor networks, it is assumed that every individual nanomachine has its own
clock. The clock in the nanomachine is analogous to the clock in electronic devices [28]. A
clock in an electronic device is considered as a measurement device consisting of an oscillator and
memory. Accordingly, the nanomachine components are designed similarly. The memory and
processing functionalities in nanomachines are mentioned and designed in [4,29,30]. For example,
the nanomachine can use the increase or decrease Ca2+ levels, high or low levels of the pH value,
or some three dimensional structure to implement the memory function. There are several ways to
implement the oscillator. A circadian oscillator is proposed in [31]. In references [32,33] translation
and transcription in gene expression is used to generate the oscillation. A molecular phase locked
loop (PLL) is proposed in [28] which can be used for the oscillator in a nanomachine. The clock
reading of node i at time t, Ci ptq, is defined as in Equation (1), where βi is the clock offset. In the ideal
situation, βi is equal to 0, and Ci ptq is equal to the real time t:

Ci ptq “ t` βi (1)

In order to achieve a distributed cooperation among nanomachines, clock synchronization is
required. The objective of clock synchronization is to estimate and compensate the clock offset.
For this purpose, one nanomachine can send its clock readings to another nanomachine. Since
the message exchange in the nanonetwork is through molecular communication, the information
molecules need a quite long period of time to propagate from the transmitter to the receiver. Therefore
the propagation delay estimation is necessary.

In a molecular communication scenario, we consider a clock synchronization process between
two nanomachines, node A and node B. Assume that node A and node B have independent times.
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The clock offset between them is supposed to be β0, where β0 “ βB ´ βA. Node A is synchronized
with node B by a two-way timing message exchange mechanism shown in Figure 2. Take the ith
round of message exchange as an example. Node A sends a clock synchronization request message.
At the same time it records the timing on its own clock as T1,i. Node B records its time T2,i at the
reception of the message, and replies to node A at T3,i. The reply message contains the time stamps
T2,i and T3,i. Then, node A records the reception time of node B’s reply as T4,i. T1,i and T4,i are the
time stamps recorded by the clock of node A, while T2,i and T3,i are those recorded by node B. After
n rounds of message exchange, node A obtains a set of time stamps

 

T1, i, T2, i, T3, i, T4, i
(N

i“1. Node
A then tries to use these time stamps to estimate the propagation delay of the information molecules.
The above procedure can be modeled as:

T2, i “ T1, i ` β0 ` Xi (2)

T3, i “ T4, i ` β0 ´Yi (3)

where β0 denotes the clock offset of node B with respect to node A. Xi and Yi are the random variables
of the propagation delays from node A to node B and from node B to node A, respectively.
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Figure 2. Two-way message exchange for diffusion-based clock synchronization between two
nanomachines, node A and node B.

Molecular diffusion is characterized by Brownian motion. It is assumed in this paper that the
information is modulated based on the type of the molecules. Each molecule can carry multiple
information bits [34] so that the time stamp message can be encoded into an individual molecule.
Normally, a Gaussian distribution is used to estimate the distance of the Brownian motion in a fixed
period. The inverse Gaussian distribution is used to describe the distribution of the duration a
Brownian motion takes to reach a fixed positive distance [35]. The probability density function of
an inverse Gaussian distribution random variable can be expressed as:

f pt; µ; λq “

ˆ

λ

2πt3

˙

1
2 exp

«

´
λ pt´ µq2

2µ2t

ff

(4)

where t is the random propagation delay, known as the first arrival time [21]. µ is the mean of t. λ is

the shape parameter. According to [36], µ “
d
v

and λ “
d2

2D
, where d represents the distance between

the nanomachines, v is the medium velocity, and D represents the diffusion coefficient. Xi and Yi are
modeled as independent and identical distributed (i.i.d.) inverse Gaussian random variables with a
common shape parameter λ. The goal is to estimate the clock offset β0 based on the observation of a
set of time stamps.
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3. Maximum-Likelihood Estimator

In this section, we propose an approach using maximum- likelihood estimation (MLE) to
estimate the clock offset β0. To derive the MLE, we rewrite Equations (2) and (3) as Equations (5)
and (6):

Xi “ T2, i ´ T1, i ´ β0 (5)

Yi “ ´T3, i ` T4, i ` β0 (6)

Since tXi, Yiu
N
i“1 are i.i.d. inverse Gaussian random variables, denoting their probability

density function as tp pXiq , p pYiqu
N
i“1, the likelihood function of

 

T1, i, T2, i, T3, i, T4, i
(N

i“1 is given by
śN

i“1 p pxiq p pyiq. xi and yi are the outcomes of Xi and Yi. Equations (5) and (6) into the likelihood
function, we have the expression:

f
´
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(N
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¯
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N
ś
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λ

2πxi
3
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2 e
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3
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2 e
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i“1p
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˘3

¸

1
2

e
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2µ2pT2, i ´ T1, i ´ β0q

ˆ
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e
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In the system model, µ and λ are unknown by the nanomachines. They are considered
as the nuisance parameters. To estimate β0, µ and λ should be replaced by the expression of
 

T1,i, T2,i, T3,i, T4,i
(N

i“1 and β0. A new random variable, Xi ` Yi, is introduced. By this way β0 can
be eliminated. Since Xi and Yi are i.i.d. inverse Gaussian random variables, Xi ` Yi “ T4,i ´ T3,i `

T2,i ´ T1,i also follows the inverse Gaussian distribution, with a mean of 2µ and a shaping parameter
of 4λ [35]. The likelihood function can be expressed as:

f
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The MLE of µ and λ can be obtained by differentiating the logarithm of Equation (8) with respect
to µ and λ and setting the results to zero:

$
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We put µ̂ and λ̂ into Equation (7). The logarithm of the profile likelihood function is expressed as:

ln
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f
´
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The MLE of β0 can be obtained by differentiating Equation (9) with respect to β0 and setting the
results to zero:

Bln
´

śN
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¯

Bβ0
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We thus have:
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So far, we managed to use
 

T1,i, T2,i, T3,i, T4,i
(N

i“1 to estimate the clock offset β0 between the two
nanomachines. The proof of the convergence of the estimated offset is shown in Equation (11).
The estimated offset converges in probability to the true offset value between the transmitter and
the receiver:

lim
nÑ8

`

β̂0 ´ β0
˘
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nÑ8

˜
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˘

2N
´ β0

¸

“ lim
nÑ8

˜

řN
i“1

`

2ˆ β0 ` Xi ´Yi
˘

2N
´ β0

¸

“
1
2

lim
nÑ8

ˆ

1
N

N
ř

i“1
Xi ´

1
N

N
ř

i“1
Yi

˙

“
1
2
pµ´ µq “ 0

(11)

The estimator is unbiased as proved below. Equations (5) and (6) are used in the derivation:

E
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¸
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2N
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(12)

4. Cramer Rao Lower Bound

In this section, the Cramer Rao Lower Bound (CRLB) is derived. The CRLB is a bound of the
variance of any unbiased estimator. It is critical to evaluate how much performance loss is incurred by
the proposed estimator of the clock offset based on the observations. For the molecular transmission

30832



Sensors 2015, 15, 30827–30838

from node A to node B in the ith round of message exchange, the likelihood function of the unknown
β0 is written as:

L
`

β0; µ , λ , T1, i , T2, i
˘

“

˜

λ

2π
`

T2, i ´ T1, i – β0
˘3

¸

1
2
ˆ exp

«

´
λ
`

T2, i ´ T1, i ´ β0 ´ µ
˘2

2µ2
`

T2, i ´ T1, i ´ β0
˘

ff (13)

where µ and λ are unknown, and T1, i and T2, i are random variables. The score is defined to indicate
how sensitively a likelihood function depends on its parameter. The score for β0 can be expressed as:

Vβ0 “
B

Bβ0
logL

`

β0; µ , λ , T1, i , T2, i
˘

(14)

The variance of the score is known as the Fisher information. It can be expressed as:

FIMXi
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β0
˘
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B2

Bβ0
2 logL

`

β0; µ , λ , T1, i , T2, i
˘

ˇ

ˇ

ˇ

ˇ

ˇ

β0

¸

“ ´E
ˆ

B

Bβ0

ˆ

3
2

Xi
´1 `

λ

2µ2

´

1´ µ2Xi
´2

¯

˙˙

“ ´E
ˆ

3
2

Xi
´2 ´ λXi

´3
˙

(15)

where Xi “ T2, i´ T1, i ´ β0. The closed-form expression of the expected value is difficult to compute.
FIMXi pβ0q can be approximated as:

FIMXi pβ0q “ ´

`8
ÿ

x“0

ˆ

3
2

Xi
´2 ´ λXi

´3
˙ˆ

λ

2πXi
3

˙

1
2 e

´λpXi ´ µq2

2µ2Xi ∆Xi (16)

For the message transmission from node B to node A, the Fisher information FIMYi pβ0q is
calculated. The result is that FIMYi pβ0q is equal to FIMXi pβ0q. For the total N round bi-directional
message exchanges, the fisher information is expressed as:

FIM pβ0q “ N ˚
`

FIMXi pβ0q ` FIMYi pβ0q
˘

“ ´2N
`8
ř

x“0

ˆ

3
2

Xi
´2 ´ λXi

´3
˙ˆ

λ

2πXi
3

˙

1
2 e

´λpXi ´ µq2

2µ2Xi ∆Xi

(17)

The CRLB is the inverse of the fisher information. The variance of the estimator will be greater
than or equal to the CRLB as:

var
`

β̂0
˘

ě
1

FIM pβ0q
(18)

5. Simulation Results and Discussions

To evaluate the proposed maximum-likelihood estimator for the clock offset, extensive
simulation experiments using MATLAB have been conducted. Suppose that there are two
nanomachines, a transmitter nanomachine and a receiver nanomachine. They are separated by a
distance of 1–10 µm, which is a typical distance used in [37,38]. The medium velocity is set to

1–5 µm/µs [21,39]. Using the equation µ “
d
v

mentioned in Section 2, we choose the average
propagation delay of the information molecules from 1 to 5 µs which is within the feasible range.
The diffusion coefficient D is set to 1–10 µm2/µs, which is used in [36,40]. According to the equation
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λ “
d2

2D
mentioned in Section 2, we choose the shape parameter λ “ 1, which is within the feasible

range. Assume that at each integral time instant, the transmitter nanomachine sends a timing-request
command to the receiver nanomachine. The propagation delays of the message transmissions
between the transmitter nanomachine and the receiver nanomachine are generated based on the
inverse Gaussian distribution with mean µ and the shape parameter λ. Since the simulation aims
to evaluate the performance of the proposed maximum likelihood estimator for the clock offset based
on the system model in Equations (2) and (3), we generate the propagation delay directly based on the
inverse Gaussian distribution. The initial clock offset in the simulation is set to 100 µs to 300 µs. The
simulations are performed 100 times. The mean square error (MSE) of the clock offsets is calculated.

Figure 3 shows the relationship between the MSE of the estimated offset and the number
of rounds for different pre-defined β0 values. It is clear that as the number of synchronization
rounds increases, the MSE of the estimated clock offset decreases quickly. This result illustrates the
effectiveness of our proposed estimation algorithm. It should also be noted that after 50 rounds of
the synchronization, the MSE still does not reach zero. In the figure, the MSEs of the estimated clock
offset for three different initial clock offset values, 100, 200 and 300 µs, are presented. The result
implies that the initial clock offset does not affect the clock synchronization accuracy by the proposed
clock synchronization algorithm.
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Figure 3. The MSE of the estimated offset as a function of the number of rounds for different initial
clock offsets when µ = 5 µs and λ = 1.

Figure 4 shows the relationship between the MSE of the estimated clock offset and the number
of clock synchronization rounds with different means of the propagation delay µ. Like Figure 3, the
MSE of the estimated clock offset decreases as the number of synchronization rounds increases for
all the different propagation delays. This also proves the effectiveness of our proposed algorithm. It
is obvious that the larger the mean propagation delay is, the larger the MSE of the estimated clock
offset is. The reason for this fact is that if the mean of the propagation delay is larger, then there
will be a longer period for the information molecules to move randomly in the environment. The
delay will be more diverse and decrease the clock synchronization accuracy. Generally speaking, a
larger mean propagation delay is due to a longer distance between the nanomachines. Therefore,
a densely deployed nanonetwork could achieve a better clock synchronization performance than a
loosely deployed nanonetwork in terms of accuracy.
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Figure 4. The MSE of the estimated offset as a function of the number of rounds with various delays
when β0 = 100 µs and λ =1.

The CRLBs of the estimated clock offset for different average delays are also drawn in this figure.
It is clear that the CRLB becomes smaller as the number of message exchange rounds increases. This
can be explained by Equation (16). Due to the additivity property of the Fisher information [41],
as long as the experiments are independent, every observation contains the information about the
unknown parameter. Therefore, as N increases, more information about β0 is obtained. Then the
CRLB becomes smaller. From Figure 4, it can also be seen that the MSE of the estimated clock offset is
bigger than the CRLB. This implies that the proposed estimator is not the minimum variance unbiased
(MVU) estimator. The work can be continued to find the MVU estimator of the clock offset.

Figure 5 compares the MSEs of the estimated clock offsets by using the proposed MLE algorithm,
the direct synchronization, and the estimator proposed in [42]. In the direct synchronization
algorithm, the receiver ignores the propagation delay, and considers that the difference between
its recorded receiving time stamp and the received transmitting time stamp from the transmitter
is the clock offset. The algorithm in [42] is similar to the algorithm proposed in this paper but
considers both the clock offset and the clock skew estimation. For fair comparison, all the three
algorithms use the same input data in the simulations. From the figure, it can be seen that as the
number of rounds increases, the estimated offsets become smaller, which manifests the effectiveness
of all three algorithms. The MSEs of the estimated clock offset by the proposed MLE scheme is
smaller than that by the other two schemes. This proves that the proposed MLE can achieve a better
accuracy performance. The reason that the direct synchronization has the biggest MSE is because
the propagation delay is neglected in the calculation. The model is simplified compared to the other
two algorithms, while in a real scenario, the molecular communication incurs a propagation delay,
which affects the estimation significantly. The reason that the proposed algorithm outperforms the
estimator described in [42] is because the estimation in [42] is a joint estimation for the clock offset
and the clock skew. The result is obtained when both of the two estimators achieve their maximum
likelihood. For the estimation of the clock offset in this paper, the proposed estimator is derived only
for the clock offset itself achieving the maximum likelihood. Therefore, the proposed solution gives
better performance.
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Figure 5. Comparison among the proposed algorithm, direct synchronization, and estimator
proposed in [42]; β0 = 100 µs, µ = 5 µs and λ = 1.

Table 1 summarizes the computational complexity of the three estimators. The numbers of the
operations for the clock synchronization by the nanomachine or sensor node are shown in the table.
The values are calculated based on the expressions of the different estimators. From the figure it is
clear that the direct synchronization method uses fewer operations than the other two estimators. But
the performance in terms of the accuracy is the worst, which is obtained in Figure 5. The complexity
of our proposed algorithm and the estimator proposed in [42] are both O pNq.

Table 1. Complexity comparison of different algorithms.

hhhhhhhhhhhhhhEstimator
No. of Operations

Number of +/´ Number of ˆ Number of ˜

Direct synchronization 2N 0 1
Estimator proposed in [42] 7N ´ 5 5N + 3 1

Proposed algorithm 4N N 1

6. Conclusions

In this paper, we have addressed the issue of clock synchronization among nanomachines in
bionanosensor networks. A two-way packet-based synchronization method has been proposed. The
maximum-likelihood estimator for the clock offset between nanomachines has been derived. The
simulation results have demonstrated the effectiveness of the proposed scheme. The convergence and
the bias of the estimator have also been verified. The work presented in this paper is a very important
step towards achieving distributed cooperation among nanomachines in bionanosensor networks.
Future work will focus on solutions to achieve global clock synchronization in nanosensor networks.
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