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Abstract: Pedestrian dead reckoning is a common technique applied in indoor inertial navigation 
systems that is able to provide accurate tracking performance within short distances. Sensor drift is 
the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, 
a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial 
measurement units, short-range radio frequency systems and particle filter map matching is 
proposed. The system is a drift-free pedestrian navigation system where position error and sensor 
drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, 
the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time 
positioning and tracking performance with satisfactory accuracy. 
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1. Introduction 

Indoor Positioning Systems (IPS) for pedestrians, aiming at providing accurate indoor position 
information for tracking and navigation, are of significant interest for increasing number of Location 
Based Services (LBS). A number of IPS solutions can be found in literature. Majority of these  
systems are based on the use of Radio Frequency (RF) and/or Inertial Navigation Systems (INS) 
sensing techniques. 

For RF-based systems, Wi-Fi [1–3] signals are the most widely used type due to their extensive 
coverage. With known anchor points, trilateration, triangulation or fingerprinting is commonly used 
to obtain location information based on the signal characteristics such as received signal strength 
indicator (RSSI) [2], angle-of-arrival (AoA) and time-of-arrival (ToA) [4]. These approaches suffer 
from indoor environment fluctuation and multi-path problems, while signal fingerprinting [3] 
requires a radio map to be established before deployment. Other short-range RF technologies, 
including Bluetooth [5], radio-frequency identification (RFID) [6–8] and near field communication  
(NFC) [9,10], are also considered. Methods similar to those used in Wi-Fi are employed for Bluetooth 
and RFID. The corresponding systems are limited to a small area due to the short-range characteristic 
of the signal protocol while the effective area can be increased by relying on a dense installation of 
signal transmitters. The emerging technology of NFC can be used to build an interactive indoor 
navigation systems [9] where users equipped with NFC enabled devices can navigate by scanning a 
series of NFC nodes along the route. 
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Meanwhile, INS [11–21] is a powerful alternative for tracking and navigation, particularly if 
combined with human kinematics modeling. Pedestrian dead reckoning (PDR) is a common 
approach used in such systems with an inertial measurement unit (IMU) collecting motion data while 
the pedestrian is walking. IMUs often integrate several sensors including accelerometers, gyroscopes 
and magnetometers, and the sensor data are used to determine the distance and orientation the 
pedestrian has travelled by double integration of acceleration- or step-based approaches. INS is able 
to deliver accurate tracking performance within a relatively short distance and the errors accumulate 
as the sensors drift over time. Different approaches are proposed to deal with sensor drift. For 
example, self-resetting [11] or zero-velocity update (ZUPT) [12] is used to calibrate the drift errors 
when double integrating the acceleration along the direction of motion over time to calculate the 
travelled distance. Information fusion from gyroscopes and magnetometers through an extended 
Kalman filter (EKF) [16] is proposed to obtain correct heading from drifted sensor data. Additional 
consideration such as map and physical constraints [18] can also help to improve the accuracy of the 
system. Regarding the INS platform, it can either be dedicated IMU nodes [11–15] or handheld 
devices [16–21] such as smartphones with a built-in IMU. Thanks to the rapid development of mobile 
devices, smartphones are becoming an ideal and excellent platform for IPS, enabling self-contained 
systems because of its accessibility and integration of various sensors and powerful processing 
capability. In smartphone-based INS, step-based approaches [16–21] are more commonly used as the 
drift in the accelerometer has little influence on the whole system and efforts are devoted to accurate 
step detection, step length estimation and orientation determination. 

Both RF-based systems and INS have their strengths and weaknesses. Hybrid systems which 
incorporate the INS and RF [22–27] approaches or proximity-based user interactions [28] were 
proposed to further enhance the reliability and performance of IPS. Studies [29,30] have also 
presented the feasibility of fusing GPS with INS to offer long-term accurate positioning performance, 
but such satisfactory performance is only available outdoors due to the limitations of GPS signals. In 
this paper, we propose a hybrid indoor localization and navigation (HILN) system for pedestrians 
combining the advantages of both the RF and INS systems. A step-based PDR system built with IMU 
only, known as enhanced PDR tracking system and typically providing sub-meter positioning and 
tracking accuracy, was proposed in our previous work [20]. In this paper, the step-based PDR system 
using smartphones is extended by fusing a Short range proximity access control system, referred to 
as SRP, which can be RFID- or NFC-based, and integrated with the constraints in the form of an 
indoor map. Though SRP is limited by the short range at which a smartphone can communicate with 
an SRP device, the feature is turned to a strength as the exact position can be obtained when the target 
to be tracked is within the effective range of an SRP device. By combining with traditional PDR, the 
exact position obtained can be used to calibrate the error caused by sensor drift in PDR, enabling PDR 
to offer long-term accurate positioning performance as long as SRP devices are available with 
reasonable density. At the same time, the PDR system contributes to the reduction of the required 
density of SRP devices as it compensates the tracking between adjacent SRP nodes. Moreover, 
contrary to an external SRP network that requires the user to scan nodes/tags interactively, the 
interaction is naturally integrated with the access control system, which is a common scenario in 
buildings, especially office and public buildings. Therefore, the proposed HILN system can be readily 
deployed in buildings equipped with already existing SRP access control systems. The proposed 
system is capable of providing reliable long-term localization and tracking performance with 
satisfactory accuracy while operating on off-the-shelf devices. In this case, real-time navigation is 
achieved on the tracked smartphone itself. 

The remainder of the paper is organized as follows: a literature review on related works and the 
contributions of this paper is presented in Section 2. Section 3 describes the proposed hybrid system 
in detail. Evaluations and discussions can be found in Section 4 and conclusions and future work are 
presented in Section 5. 
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2. Related Works 

Pedestrian dead reckoning (PDR) is a common approach used in tracking pedestrians. Basically, 
it consists of two major parts, which are the distance calculation and orientation estimation. The 
distance travelled can be accumulated through double integration of acceleration and a step-based 
approach. Accurate estimations of travelled distance are reported in both approaches. When 
performing double integration, ZUPT [12] is widely applied to reduce the accumulated error caused 
by drift and noise in accelerometers by identifying the stance phase of walk, while in step-based 
methods, different step length models [17,19,20,31,32] are developed to enhance the accuracy. In the 
static step length model [31], the step length is considered as a constant for each individual according 
to height and gender. Dynamic models are also proposed to evaluate step length for every single step 
using variables such as vertical acceleration [17,32], leg length combined with height change during 
walking [19,32] and step frequency [20]. 

For orientation determination, magnetometers and gyroscopes can be utilized to obtain the 
heading of the pedestrian. Different methods are proposed to calibrate the heading errors caused by 
sensor drift or magnetic interference. Zengshan et al. [16] proposed an EKF to determine the correct 
heading by fusing data from both the magnetometer and gyroscope, and [21] also used information 
fusion from these two sensors to obtain a reliable heading estimation under magnetic disturbance. 

Apart from sensor error calibration, physical constraints are also taken into consideration to 
improve the positioning and tracking accuracy of the system. Particle filter (PF)-based map matching 
methods are used in [15,17] to eliminate the possibilities of positions outside the range of a valid map 
and [13] introduced a shape filter to regulate the shape of the path by turn detection, assuming a 
perpendicular route inside buildings. For [15], improvement incorporating map matching and PF are 
proposed to enhance the localization accuracy as well as correcting sensors errors with the help of 
the map. Nevertheless, only the corridor scenario in an indoor environment is considered and the 
computationally intensive principle component analysis (PCA) algorithm is used to obtain the  
step orientation. 

Meanwhile, an IPS solely based on SRP techniques remains an alternative solution. RFID signals 
are only able to cover a limited area (within a few meters) while NFC has a working range of up to 
only 10 cm. Lim et al. [6] proposed a robust RFID-based IPS by deploying 176 tags in the ceiling of 
the room within an area of 4.2 m × 8.4 m and achieved 97% positioning accuracy within 1 m. Despite 
its accuracy, the requirement for a dense tag distribution presents a challenge in practice. Ozdenizci 
et al. [9] developed an interactive navigation system where NFC tags are placed at known positions 
in a building and the users carrying NFC-enabled devices can navigate by scanning tags one after 
another on the route to destination with the help of the map.  

In addition, hybrid systems fusing INS and RF approaches are addressed in [22–27].  
Jin and Lee et al. [22,23] implemented a pedestrian localization system by integrating a PDR approach 
and RF beacon nodes (BNs). Ten BNs installed at known locations in an area of 13.2 m × 20 m are 
used in [22] to enhance the position accuracy of a PDR system by BN ranging using PF. Five unknown 
position BNs deployed in a 380 m2 environment are used in [23]. The locations of BNs are first 
determined using PF, then BN ranging is also used to achieve improved localization accuracy. In [24], 
Wi-Fi RSSI is introduced to enhance the long-term accuracy of PDR by means of recursive density 
estimation. EKF is used in [25] to fuse the PDR system with Zigbee RSSI to reduce the cumulative 
errors of PDR. Nevertheless, the BNs and Wi-Fi/Zigbee anchor points are external infrastructure and 
may incur additional cost. Also, BNs and Wi-Fi/Zigbee signals are vulnerable to environmental 
fluctuations and these modules significantly increase the power consumption of the overall system. 
The fusion of INS with SRP approaches are investigated in [26,27]. In [26], NFC readers are attached 
to the underside of the shoes to detect NFC tags distributed on the floor and thus correct the INS 
position error. This method suffers from limitations since users must know the exact positions of the 
tags since the working range of NFC signals is very short. The fusion of INS and RFID ranging is 
presented in [27] to reduce the error caused by sensor drift and achieve long-term tracking of 
pedestrians. In order to achieve an average position error of 1.35 m regardless of travelled distance,  
71 RFID tags are required in an area of 40 m × 60 m, which represents a significant infrastructure cost 
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incurred by the system. Other than hybrid systems incorporating PDR and RF systems, a PDR system 
fused with user interaction by scanning Quick Response (QR) code is proposed in [28], which is also 
proximity based. The position of the pedestrian is corrected to the location indicated by the QR code 
upon scanning it using a smartphone. The system achieves an average localization error of 0.64 m in 
an experimental path of 35 m with QR codes placed every 10 m along the route as an additional 
infrastructure. Further, the drift of kinematic sensors over time is not corrected in [22–28]. 

The experiments with the aforementioned techniques are limited to relatively short distances 
within several hundred meters [13,15–26,28], which is a limitation of kinematic sensor-based 
approaches due to sensor drift over time and the cost for external dedicated infrastructure support.  

Table 1. Summary of related works with PDR approaches. 

 Sensors* Technique* Evaluation Scenario* Max. 
Distance 

Achieved 
Accuracy** 

[13] Acc, Gyro ZUPT, Map 
Matching 

Waist mounted sensor 
node 

40 m TTD, 98.26% 

[14] Acc, Gyro Ramp detection 
Foot mounted sensor 
node 1000 m ε/TTD, 0.15%–1.06% 

[15] Acc, Mag 
PDR with Map 
Matching 

In-pocket motion 
sensor 104 m 

Average LE, 0.55 m–
0.93 m 

[16] 
Acc, Gyro, 
Mag 

Neural network, 
EKF 

Smartphone held in 
hand in front of body, 
outdoors 

400 m 

SD, approx. 100%; 
TTD, 97.98%–
102.67% 
ε/TTD, 0.85%–2% 

[17] 
Acc, 

Gyro 

Quaternion 
complementary 
filter 

Mobile device kept in 
jacket and trousers 
pocket, held in hand in 
front of body 

270 m 
SD, above 98%; 
Median of TTD, 
100.22% 

[18] Acc, Gyro, 
Mag 

Map Matching, 
Mag and Gyro 
Fusion 

Smartphone kept in 
pocket, held in hand 
while calling, swinging, 
in front of body 

600 m 

Average LE, 0.45 m–
0.74 m; 
95th percentile of LE, 
0.8 m–1.71 m 

[19] Acc, Gyro Novel stride length 
estimator 

Smartphone mounted 
on waist and kept in 
chest pocket 

6.69 m TTD, 96.14%–97.35% 

[20] Acc, Gyro Mode classification 

Smartphone kept in 
trouser pocket, held in 
hand while swinging 
and in front of body 

96.33 m 
SD, 95.49%; TTD, 
99.7% 

[21] 
Acc, Gyro, 
Mag 

Mag and Gyro 
Fusion 

Smartphone held in 
hand in front of body 

168.55 m 
Average LE, 1.35 m; 
Average HE, 2.28o 

[22] Acc, Gyro, 
BN 

PDR with BN 
Ranging 

Smartphone held in 
hand with BNs 
installed on ceiling 

90 m Average LE, 0.88 m 

[23] 
Acc, Mag, 
BN 

Estimating BN 
positions, PDR 
with BN Ranging 

Smartphone held in 
hand with BNs 
deployed at arbitrary 
positions on floor 

480 m 
Average LE, 1.59 m–
5.46 m 
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[24] Acc, Gyro, 
Wi-Fi 

PDR with Wi-Fi 
RSSI fusion by 
Recursive Density 
Estimation 

Smartphone held in 
hand with five Wi-Fi 
access points installed 

120 m Average LE, less than 
5.22 m 

[25] 
Acc, Gyro, 
Wi-Fi 

PDR with Zigbee 
RSSI fusion by EKF 

Waist mounted IMU 
and Zigbee node 25 m Maximum LE, 4 m 

[26] Acc, Gyro, 
NFC 

PDR with NFC 
error correction 

Smartphone held in 
hand in front of body 
with NFC tags on floor 
ground 

44 m Maximum LE, 1.7 m 

[27] Acc, Gyro, 
Mag, RFID 

PDR with RFID 
RSSI fusion by EKF 

Foot mounted IMU 
with RFID tags 
installed in rooms 

1000 m Average ε/TTD, 
1.27% 

[28] Acc, Gyro PDR with assistive 
QR code 

Smartphone held in 
hand and scan  QR 
code along the path 

35 m LE, 0.64 m 

* Acc = Accelerometer, Gyro = Gyroscope, Mag = Magnetometer, BN = Beacon Node, QR = Quick Response; 

** TTD = total travelled distance, ε/TTD = final position error over total travelled distance, SD = step detection, 
LE = Localization Error, HE = heading error. 

Antonio et al. [14] proposed a PDR system with ramp detection capable of providing drift-free 
localization in long-distance walks over one kilometer, but the approach relies on regular ramps 
located along the path, which significantly limits the practical deployment of the system as ramps are 
structural features of a building. Also, most experimental results are presented in the corridors of 
indoor environment only [13,14,18–21,23,24].  

Table 1 summarizes the related works with PDR-based approaches [13–28] in terms of sensors 
used, techniques employed, the scenarios in which the systems are evaluated, maximum travelled 
distance in experiment evaluation and achieved accuracy, respectively. Different criteria to quantify 
the accuracy of positioning and navigation systems including the estimated total travelled distance 
(TTD) with respect to ground truth distance, step detection (SD) rate, average and 95th percentile of 
localization error (LE) and average of heading error (HE) are found in the literature. In addition, 
when the experimental route has the same starting and ending point, the final position error over 
total travelled distance (ε/TTD) can be obtained and it equals to the final position drift with respect 
to the staring/ending point. 

To the best of our knowledge, existing hybrid systems combing PDR and RF/SRP approaches 
rely on dedicated external infrastructure at additional installation and deployment cost [22–27] and 
have limitations such as being vulnerable to environmental fluctuations [24,25]. The sensor drift in 
inertial sensors, which is the source of error in INS, is not corrected over time as well [22–28]. Systems 
based solely on RFID are confined within a limited area and interactive positioning systems using 
NFC are unable to provide location information between two adjacent nodes, resulting in a need for 
dense installation of nodes. By combining the advantages of different systems, a hybrid indoor 
localization and navigation (HILN) system is proposed in this paper, which contributions can be 
listed as follows: 

1. A light-weight PDR approach [20] is fused with a SRP system through user interaction and 
the accumulated errors, both positioning error and sensor drift, are regularly corrected. Moreover, 
the SRP system takes advantage of the essence of people’s walking behavior in buildings, i.e., moving 
from one room to another via corridors, with SRP interaction naturally integrated with existing access 
control systems at the entrances/exits of rooms, which are commonly found in buildings. It extends 
the practical scenario of IPS, covering both rooms and corridors of indoor environment. Therefore, 
the proposed system is able to deliver accurate long-term, distance-independent tracking 
performance without extra infrastructure installation. 
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2. The positioning accuracy is further enhanced by a novel simplified PF map matching 
algorithm with a lost track recovery mechanism. The computational complexity of the overall system 
is therefore minimized to reduce power consumption and increase real-time capability since the 
resources of a mobile device is quite limited. 

3. The whole system is implemented and validated on an off-the-shelf smartphone, achieving 
accurate real-time positioning and tracking of pedestrians with long-term robustness and reliability. 

The HILN system is a drift-free, low-cost, light-weight, easy-to-integrate IPS, enabling 
ubiquitous navigation of pedestrians in buildings equipped with access control systems at no 
additional cost. The accurate position information can then be the basis of all LBS available. 

3. Proposed HILN System 

In this section, the proposed HILN system is introduced first, followed by descriptions of 
individual components, including the step-based PDR system, adaptive drift calibration by SRP 
interaction and PF-based map matching algorithm, respectively. 

3.1. System Overview 

Figure 1 presents an overview of the HILN system operation. The axis definition of the 
smartphone used and the way it is carried during walking are illustrated in Figure 2a,b, respectively. 
The whole HILN system is implemented by a customized software application on a standard iPhone 
5s where sensor data are sampled at 50 Hz. The sensor data used in HILN include 3-axis user 
acceleration and gravity acceleration in g (9.8 m/s2) from the accelerometer and yaw data from the 
gyroscope in radians. The timestamp of each sample is also recorded. The accelerometer data are 
used for detecting steps while the step orientation is estimated using the yaw data from the gyroscope. 
Yaw data provide an indication of the phone’s orientation change around its z-axis with respect to a 
reference frame where the phone’s x-y plane is horizontal. Since the phone is hand-held in front of 
body as in Figure 2b, which is a common scenario in indoor environments [16,18,20,21–23,26], the 
yaw samples are a direct indication of step orientation. 

 

 

Figure 1. Overview of HILN system. 
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Figure 2. (a) Phone axis definition (b) Phone position. 

The processing iterations aim at updating the pedestrian position upon obtaining new sensor 
data. Firstly, the SRP-based subsystem checks whether an SRP interaction is detected. Every time an 
interaction is detected, the position error and sensor drift is corrected by updating the position of the 
pedestrian to the exact location indicated by the SRP interaction. The room position information (RPI), 
defining whether the pedestrian is in corridor or a specific room, can also be derived since the 
interaction is integrated with the access control system when entering or exiting a room. The updated 
position information provided by the SRP subsystem is assigned with higher priority than the PDR 
subsystem since the accuracy of the SRP subsystem is guaranteed. If no SRP interaction is detected, 
the PDR subsystem then performs step detection based on acceleration signals. When no valid step 
is detected, the processing in current iteration is completed, waiting for new available sensor data. 
Otherwise, step length and orientation are estimated if a valid step is identified. 

The PF map matching subsystem is introduced to enhance the localization and tracking 
performance of the PDR subsystem. The step length and orientation estimated by the PDR subsystem 
is used in particle propagation according to human kinematic model. Then, the weights of particles 
are evaluated combining the map constraints and RPI of the pedestrian. Map constraints are utilized 
to keep the tracking target in the valid range of the map and the RPI provided by the SRP subsystem 
is used to further constrain feasible positions. For example, a corridor RPI restricts the position of the 
pedestrian in the corridor zone only. In order to strengthen the robustness of the map matching 
subsystem, a lost track recovery mechanism is added, addressing situations where the PF loses track. 
The position information generated by the PF, which is always in valid map zone, is used to update 
the location of the pedestrian. The following subsections introduce the individual subsystems in 
details. 

3.2. Step-Based PDR System 

In a step-based PDR system, the position of a pedestrian is usually presented using a  
two-dimensional vector [x, y]T in a defined coordinate system and is updated from a known initial 
position according to Equation (1) where [xs+1, ys+1]T, [xs, ys]T, Ls and θ denote the updated position, 
original position before a step, step length and the angle of the step in the coordinate system: ቂݔୱାଵݕୱାଵቃ = ቂݔ௦ݕ௦ቃ + L௦ ∗ ቂsinθcosθቃ (1) 

The PDR subsystem includes step detection, step length and orientation estimation. 

3.2.1. Step Detection 

Vertical acceleration (perpendicular to the horizontal plane) is used for step detection when the 
smartphone is carried as in Figure 2b, while periodic vertical displacement of the smartphone 
coupled to human walking motion is observed. The vertical acceleration is calculated according to  
Equation (2), Equation (3) where gravy, gravz, uaccy, uaccz represent the gravitational acceleration along 
y and z axis, and user acceleration along y and z axis, respectively. As can be seen from Figure 3, the 
cross-section of the plane perpendicular to the ground and parallel to the walking direction, the angle 
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φ is firstly computed using Equation (2) and vertical acceleration is then calculated by combining the 
y and z axis user acceleration component as in Equation (3). It is observed that different people tend 
to hold the phone differently with varying angle of φ. When calculating vertical acceleration 
according to Equations (2) and (3), the acceleration can be obtained for an arbitrary value of φ within 
the range of [0, π/2], achieving robust performance for different holding preferences of the 
smartphone: 

φ = atan(abs(gravz/gravy)) (2) 

accvertical = uaccz*sinφ+ uaccy*cosφ (3) 

 
Figure 3. Calculation of vertical acceleration. 

Steps are basically identified by thresholding, i.e., a valid step corresponds to a positive peak 
whose magnitude is greater than a given threshold. The following constraints to achieve better 
detection were proposed in our previous work [20]: 

1. As human step frequency is in the range of 0.5–5 Hz [17], a low-pass filter with cut-off 
frequency at 5Hz is applied to the vertical acceleration to filter out noise. 

2. Since the maximum step frequency is 5 Hz, the minimum time interval between two 
consecutive steps is 0.2 s. Every time a valid peak above the threshold is detected, its timestamp is 
compared to the timestamp of the previous step timestamp, making sure that the minimum time 
interval constraint between steps is satisfied. 

3. False spikes are observed in the processed and filtered acceleration signal that appears 
before the true signal peak of a valid step. A false peak rejection (FPR) mechanism [20] is added to 
filter out the false peaks. A positive peak exceeding the threshold is considered as a valid step when 
no negative peak is found in the following nfpr acceleration samples, where nfpr denotes the size of FPR 
window in a number of samples. The value of nfpr is currently set to six based on our previous 
observations reported in [20]. 

3.2.2. Step Length & Orientation Estimation 

Step length is calculated according to the model in [20], which is proportional to height and step 
frequency (steps per second) as shown in Equation (4). k is a constant value taking gender into 
consideration and equals 0.3139 for males or 0.2975 for females. The same values for k as in [20] are 
used to achieve optimal accuracy of step length estimation where performances of different step 
length models are experimentally evaluated with five males and five females, whose heights are in 
the 1.56 m–1.83 m range. The method applied in tuning k in [20] is similar to the approach used in 
[17] by optimization analysis based on experiment data, achieving minimum error performance for 
all data sets. The step length is in meter units: step୪ୣ୬୥୲୦ = k ∗ height ∗ ඥstep୤୰ୣ୯୳ୣ୬ୡ୷ (4) 
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When detecting a valid step, the timestamp is recorded and the step frequency is calculated as 
the reciprocal of the time interval between two valid steps. The step frequency is updated every time 
a step is detected and the updated value is used to evaluate the length of the step. 

For the initial step from stationary state to walking, the step length cannot be calculated 
according to Equation (4) as only one step timestamp is available. The step length is then estimated 
using the static model [31] where step length is proportional to height. ks is a constant and its value 
is set to 0.415 for male or 0.413 for female guided by [31]. The step length is in meter units. 

steplength = ks*height (5) 

Since human step frequency has a minimum value of 0.5 Hz, the step frequency variable is set 
to zero when no valid step is detected for 2 s. Therefore, the step is considered as the initial step from 
stationary state to walking when the step frequency is found to be zero. Also, the step frequency is 
an indication of the pedestrian’s motion state. A non-zero step frequency indicates walking and a 
zero step frequency corresponds to standing still. 

Step orientation is estimated utilizing the yaw data from the gyroscope. Yaw data in radians 
indicates the angle turned around the phone’s z-axis. When the smartphone is held in the hand, the 
yaw data directly reflect the orientation of walking and making a turn will have equivalent changes 
in the yaw data samples. After detecting a step, all yaw samples within the step interval are averaged 
to obtain the orientation of the step used in updating the position according to Equation (1). Since the 
yaw data samples are presented in range of (–π, +π], the 180o ambiguity issue is caused when yaw 
data changes around ±π. In such a situation, the averaging of raw yaw data is performed according 
to the pseudo code presented in Algorithm 1 where yawraw is the array of yaw data recorded during 
the step, yawinter is an intermediate array holding temporary values of yaw data during processing, 
average is the operation to get the numerical average value of an array and yawcali is the output of the 
calibrated average value of the array. 

 
Algorithm 1 Averaging Yaw Data in 180o Ambiguity

1.   Given an array of raw yaw data yawraw with p samples 
2.   for i = 1: p 
3.       if yawraw(i) < 0 
4.           yawinter(i) = yawraw(i) + 2*π 
5.       else 
6.           yawinter(i) = yawraw(i) 
7.       end if 
8.   end for 
9.   if average(yawinter) > π 
10.      yawcali = average(yawinter)−2*π 
11.  else 
12.      yawcali = average(yawinter) 
13.  end if 

3.3. SRP Adaptive Drift Calibration 

In the proposed HILN system, the adaptive drift calibration (ADC) based on SRP interaction is 
a mechanism that aims at reinitializing position errors and calibrating sensor drift of PDR subsystem, 
enabling a drift-free system capable of providing long-term accurate positioning and tracking 
performance. Since the proposed PDR is step-based, drift in accelerometer has little influence on 
positioning accuracy and the main source of error is caused by the drift in gyroscope. 

Figure 4 presents the elements of access control system used for integration of SRP based ADC 
scheme in the proposed HILN system. The figure shows the entrance of a laboratory in the 
experiment area. Access into the room is controlled by swiping access card against the reader as 
shown in Figure 4a. To integrate the ADC subsystem with the PDR subsystem implemented on 
smartphone, the access card is attached to the back of smartphone and used in the way as shown in 
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Figure 4b to gain access to the room. A similar setting of SRP access card reader is also used inside 
the room for unlocking the door when leaving the lab. Additional information on this is provided in 
Section 4. 

 

Figure 4. Access control system (a) Access card reader (b) Phone position against reader. 

The access control system relies on RFID, which has a working range of about 5 cm, and in terms 
of performance is similar to NFC, commonly supported in modern smartphones. Thanks to the  
short-range characteristic of SRP signals, the exact position of the pedestrian can be established. When 
entering or leaving a room by swiping an access card against the reader, a drift calibration process is 
initiated and the pedestrian’s position is set to the entrance or exit of the room, hence effectively 
resetting any accumulated position errors. More specifically, the position of the pedestrian is set to 
be 0.5 m away from the location where the reader is installed (similar to the length of the arm) in  
the calibration. 

Moreover, the gyroscope drift can also be corrected in the calibration process during SRP 
interaction. Since the step orientation is estimated solely using yaw data, only the yaw drift is 
corrected. When the smartphone is swiped against the reader as in Figure 4b, the actual orientation 
of the smartphone can be determined with knowledge of the placement of the reader. By comparing 
the difference between the actual orientation and the measurement data from gyroscope, the 
gyroscope drift can be determined by Equation (6), where yawdrift, yawmeasure, yawtrue denote the yaw 
drift, gyroscope measurement and actual yaw orientation during the SRP interaction, respectively. 
Afterwards, the drift-free gyroscope data yawdr-free can be obtained by removing the sensor drift from 
measurement data as expressed in Equation (7): 

yawdrift = yawmeasure – yawtrue (6) 

yawdr-free = yawmeasure – yawdrift (7) 

Figure 5a is the layout (map) of an indoor environment of Level 3, Building 903, Newmarket 
Campus, at the University of Auckland, where the experiments were conducted. Figure 5b is the 
detailed view of a laboratory entrance. An example is given as follows regarding the yaw drift 
calibration process based on the knowledge of access card reader placement. In the coordinate system 
defined in Figure 5a, if the yaw sample of gyroscope is 0 rad when the pedestrian is walking along 
the positive p-axis with the smartphone held in hand, then the yaw samples will be π/2 rad and –π/2 
rad ideally when walking along the positive and negative q-axis. An access card reader, denoted by a 
blue star, is installed upright on the walls as shown in Figure 5b (also refer to Figure 4). When swiping 
a smartphone against the reader as in Figure 4b, the yaw orientation of the phone should ideally be 
π/2, indicating the device is facing towards the positive q-axis. Therefore, the sensor drift can be 
calculated using Equation (6) by comparing the yaw data measurement with the ground truth 
orientation. 



Sensors 2015, 15, 30759-30783 

30769 

 

Figure 5. (a) Map of the test indoor environment (b) Example of access control system. 

In addition, by integrating PDR with the access control system upon entering or leaving a room, 
the room position information (RPI), describing whether the pedestrian is in the corridor or in a 
specific room, can be accurately obtained. The interaction with the access control system corresponds 
to a change in the RPI. For example, an interaction with the reader at the room entrance indicates the 
RPI changes from corridor to the specific room, whereas the interaction made at the room exit 
corresponds to the transition from the specific room into the corridor in RPI. 

By integrating the PDR system with access control using the SRP signal, a drift-free positioning 
and tracking performance is achieved. The position error is regularly corrected when entering or 
leaving a room and the gyroscope drift is corrected when the phone is swiped against a reader with 
a known position and orientation. 

3.4. Particle Filter Map Matching 

A novel simplified PF map matching algorithm designed specifically for pedestrian navigation 
system with a robust lost track recovery mechanism is presented in this section to further enhance 
the localization and tracking accuracy of the HILN system. 

PF [33] is a powerful Monte Carlo-based method addressing dynamic Bayesian system state 
estimation problems and widely applied in tracking and navigation [34]. The probability density 
function (PDF) of system states based on a series of observations is recursively approximated by a 
group of particles with sampling, weight calculation and resampling processes. The resampling  
process [35] is introduced to solve the performance degeneracy problem by discarding particles with 
negligible weights and replicating particles with dominating weights. 

In the above presented step-based PDR system with two-dimensional coordinates, the system 
state evolving with steps is presented in Equation (1). In the state transition, additive noise is 
observed in both step length Ls and orientation θ due to errors in step length modeling and sensor 
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drift, as well as bias introduced by the pedestrian in the gyroscope, respectively. Given the fact that 
travelled distance is accurately estimated in the literature with less than 5% median error of the total 
travelled distance under different kinds of step length models [17,20], no additive noise is modeled 
in step length to simplify the algorithm as the system is targeted to achieve real-time performance on 
a standard smartphone device, so the system state transition functions are modeled as in Equations 
(8) and (9), which are the state propagation equations used in the PF. θm denotes the step orientation 
obtained directly from gyroscope measurement, where the true orientation θtrue is corrupted with 
noise of θdrift and θbias. θdrift represents the sensor drift in the gyroscope and θbias is the bias caused by 
the pedestrian holding the phone non-ideally while pointing in the walking direction. In traditional 
PF, a measurement model is also required and the weight of each propagated particle, wt

i , is 
evaluated utilizing the measurement value, zt, and importance desity, ݃(ܵ௧௜|ܵ௧ିଵ௜ ,  ௧) according toݖ
Equation (10), where t, i and S are time-step index, particle index and the state vector, respectively. 
In the simplified PF map matching algoritm in this paper, the measurement model is simplified in 
the form of the constraints imposed by the indoor map and a binary weight scheme [18] is used in 
weight calculation. It reduces the computational complexity of traditional PF by replacing complex 
computations in weight calculation step to binary mapping of particles, i.e., the weight of propagated 
particles within valid range of the map equals to 1 while particles outside the valid area have the 
weight of 0: ቂxୱାଵyୱାଵቃ = ቂxୱyୱቃ + Lୱ ∗ ൤sinθ୫cosθ୫൨ (8) 

θ୫ = θ୲୰୳ୣ + θୢ୰୧୤୲ + θୠ୧ୟୱ (9) 

w௧௜ 	∝ ௧ିଵ௜ݓ ௧௜|ܵ௧ିଵ௜ܵ)݌(௧|ܵ௧௜ݖ)݌ )݃(ܵ௧௜|ܵ௧ିଵ௜ , (௧ݖ  (10) 

The goal of the PF map matching algorithm is to constrain the position within the valid area of 
indoor environment when using noisy gyroscope measurements. In the proposed HILN system, the 
accurate RPI of the pedestrian is provided by the SRP ADC subsystem, so this information is also 
introduced in addition to the map constraint for better performance. The map and RPI help to restrict 
the position and walking track of the pedestrian to be within the range of corridors or rooms. 

Figure 6 presents the way in which valid map area is divided into different zones based on the 
RPI with three rooms numbered 328, 330 and 332 as examples. In the map matching algorithm of 
HILN system, the position is restricted to a specific zone according to the RPI. For instance, only the 
corridor zone is considered as the valid area when the pedestrian is in the corridor. 

 
Figure 6. Illustration of different zones. 
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The pseudo code for PF map matching using N particles is presented in Algorithm 2 as well as 
the symbol definitions. During initialization, the position and all particles are set to a known starting 
position. Regarding the experiment area presented in Figure 6, MAP is the set of all valid positions 
in the area, POSRPI is the set of all possible RPI {Corridor, Room328, Room330, Room332} and TP denotes the 
set of all turning points {TP1, TP2, TP3}, which are the center points of a turning zone. 

After detecting a valid step, the step length and orientation is obtained from the PDR subsystem. 
Also, current RPI is used to select a subset from MAP, containing only locations in the corresponding 
RPI zone. Then, all particles are propagated with random noise added to the step orientation. A 
binary weight is assigned to every particle at the same time. If not all weights of particles are zero, 
the position of the pedestrian is updated as the weighted average of the particle set. Since particles 
with non-zero weights are in the valid map area, the weighted average of the particle set will always 
fall within the constraints of the map. Afterwards, particles are resampled with standard systematic 
resampling [35] before the next iteration. Particles outside the valid map area are discarded and 
surviving particles are replicated, maintaining the total number of particles at N. 

Since the weight is binary, it is possible that all particle weights are zero. This situation is defined 
as a lost track where all propagated particles are outside the range of current valid zone. In the 
proposed algorithm, the issue of lost track is addressed by a novel lost track recovery (LTR) 
mechanism based on current position and RPI. 

Algorithm 2 Particle Filter Map Matching for Pedestrian Tracking

1.  Initialization: 

2.      Initial position ଴ܲ = ,௜௡௜௧ݔ] ଴௜݌ ,௜௡௜௧]், initialize particle set Particle0ݕ = ,௜௡௜௧ݔ] (1	௜௡௜௧]்ݕ ≤ ݅ ≤ܰ) 
3.      MAP is a set containing all valid positions in a map 

4.      POSRPI is a set containing all RPI {Corridor, Roomr (r = valid room number)} 

5.      TP is a set containing all turning point positions in corridor zone with a total number of M 

6.  at step index s+1	(࢙ ≥ ૙): 
7.      get the estimated step length Ls and orientation ߠ from PDR subsystem 

8.      get current RPI ݏ݋݌௥௣௜ ∈ 	ܱܲܵோ௉ூ, the current valid position set ݈݀݅ܽݒ௣௢௦ ∈  is selected ܲܣܯ	
based on posrpi 

9.      propagate particle set Particles to Particles+1, assign weight to each propagated particle 

10.         for i = 1 to N 

11.             draw a random number rand from N(0, σ2), ߠ௠௜  rand + ߠ = 

12.             propagate particles ݌௦௜  to ݌௦ାଵ௜  according to Equation (8) 

13.             assign particle weight ݓ௦ାଵ௜  

௦ାଵ௜ݓ                 .14 = ቊ0, ௦ାଵ௜݌	݂݅ 		 ∉ 	 ,௣௢௦1݈݀݅ܽݒ ௦ାଵ௜݌	݂݅ 	 ∈ 	 ௣௢௦݈݀݅ܽݒ  

15.        end for 

16.     if all particle weights are zero 

17.         if ݏ݋݌௥௣௜  equals Corridor and current position Ps is not in zones where lost track is 
allowed* 

18.             go to Lost Track Recovery 

19.         else 
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20.             Ps+1 = Ps, Particles+1 = Particles 

21.         end if 

22.     else 

23.         ௦ܲାଵ = ∑ ௦ାଵ௜݌ ௦ାଵ௜ே௜ୀଵݓ /ܰ, Resample particle set Particles+1 using Systematic Resampling 

24.     end if 

25.  end of processing at step index s+1 

26. 

27.  Lost Track Recovery 

28.      Start: 

29.      select the turning point TPk ∈ 	ܶܲ	(1 ≤ ݇ ≤  having the minimum distance to Ps in TP ,(ܯ

30.      if TPk is not unique 

31.          Ps = Ps-1, go to Start 

32.      else 

33.          Ps+1 = TPk, ݌௦ାଵ௜ = ܶ ௞ܲ, (1 ≤ ݅ ≤ ܰ) 
34.      end if 

* rooms, the boundary of map and zones near room entrance in corridor is considered as zones where lost track 
is allowed. 

It is observed that a lost track happens when the pedestrian is making a turn where the particles 
may have not reached or have passed the turning zone to make the corresponding turn and satisfying 
the map constraints at the same time. Therefore, the position and particles are corrected to the turning 
point having the minimum distance to current position of the pedestrian during LTR. If the turning 
point is not unique, i.e., more than one turning point have the same minimum distance to current 
position is possible, the position history of the pedestrian is used until the unique turning point 
requirement is satisfied. As shown in the illustration in Figure 6, the pedestrian walks from point A 
to point B with a left turn. When the person reaches the turn, the position might be erroneously 
estimated to point C due to overestimated step length. Thus all particles are in proximity to point C. 
After turning left, all particles will turn invalid as the path is blocked by the wall presented in the 
map. By introducing LTR mechanism, the position and particles are corrected to the nearest turning 
point TP1. Thus, the path is recovered and continues stretching left along the corridor after the turn. 

To enhance the robustness of the LTR mechanism, lost track is allowed in rooms and certain 
zones of the corridor including map boundaries and the proximity of every room entrance. When a 
lost track is identified in these zones, both the position and particles remain unchanged, without any 
update. 

Also referring to Figure 6 in the path from point A to B, after the turning point TP1, all particles 
might go out of the map boundary when the pedestrian reaches point B due to overestimated step 
length. Moreover, when approaching the room entrance in corridor, point D for example, it is possible 
that all particles become invalid as the room entrance is also the boundary of the corridor. In these 
situations, the position and particles should remain stable. 

Meanwhile, rooms are considered as free spaces. Lost tracks are allowed as long as the position 
of the pedestrian is restricted within the room. The RPI provided by the SRP subsystem is an accurate 
indication of the pedestrian’s location. 

By employing the PF map matching algorithm in pedestrian tracking, map constraints are 
introduced to improve the positioning and tracking accuracy. The LTR mechanism contributes to 
enhancing the robustness of the algorithm against lost track issues when making turns. 
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4. Evaluation & Discussion 

This section presents the evaluations of HILN system in pedestrian localization and navigation 
with experimental setup, short-term and long-term walking experiment and discussions, respectively. 

4.1. Experimental Setup 

The proposed HILN system is implemented on an iPhone 5s sampling accelerometer and 
gyroscope data at 50 Hz. The sensor data and the sampling timestamps are also recorded for more 
comprehensive offline analyses. Figure 7 is a screenshot of the developed application run with the 
map layout of the area used in experiments. The text box and switch above the map can be used to 
adjust the height and gender of the tracking target, which is set to 1.73 m and male by default, as the 
information is related to the step length model in Equations (4) and (5). The two labels to the left of 
the map are used to indicate the motion state, i.e., walking or standing, and RPI, i.e., in corridor or in 
a specific room, of the pedestrian. In implementing the SRP adaptive drift calibration feature, the 
access card is attached to the back of the smartphone and swiped against the reader as in Figure 4b. 
The calibration process is emulated by an HTTP message, containing position error correction and 
gyroscope yaw drift calibration information, sent to the application from an external computer when 
user interaction between the smartphone and the reader is performed. The point S labeled with a star 
indicates the initial position of the pedestrian to be tracked while point E denoted the upper boundary 
of corridor in the experiment area. During walking, the smartphone is carried in hand as in Figure 
2b, which is a reasonable position commonly found in the literature [16,18,20,21–23,26] when people 
navigate themselves in indoor environment. Also, it is more convenient for the pedestrian to hold the 
device in hand as the phone is regularly used to interact with the access control reader when entering 
or leaving rooms. 

 

Figure 7. Application screenshot. 

For the PF algorithm, the number of particles used in pedestrian tracking varies from 100 [15] to 
200 [23] in the literature. In order to ensure low computational complexity in implementing the 
simplified PF map matching algorithm, a total number of 100 particles are used. The variance of the 
normal distribution N(0, σ2) used in modeling additive noise in step orientation, i.e., σ2, is set as 0.22, 
corresponding to a 99.7% probability that the random number is within the range of [−0.6 rad, 0.6 rad] 
(0.6 rad = 34.4°). The value is set based on observations that yaw data drift is within this range. 
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Turning points defined for LTR mechanism in the corridor zone are the same as presented in  
Figure 6. 

4.2. Short-Term Walking Experiments 

Two short-term walking experiments are conducted. The route in the first experiment is in 
corridor and focuses on the effectiveness of the LTR mechanism. Figure 8 presents the tracking results 
where the path generated in real-time on the smartphone by HILN system is illustrated in Figure 8b 
and the path generated using the same set of data offline using PDR standalone approach is depicted 
in Figure 8a. In the experiment, the actual starting point of the walk is a few steps ahead the point S 
as in Figure 7 in order to cause lost track in a shorter distance, so when the subject reaches the turning 
zone, the path drawn by the application has not reached the area yet. By turning left, the path is 
blocked by the wall and all particles become invalid. As can be seen in Figure 8b, the path is 
immediately recovered to the turning point of TP1, drawn with a red line, and continues to track the 
subject accurately. After getting to the leftmost point of the map, a few extra steps are made 
deliberately at the same location to force all particles to be outside the boundary of the map. As lost 
track is allowed at a map boundary, the particles are not propagated anymore and the position of the 
pedestrian remains stationary. Then the subject turns back and keeps walking with a left turn along 
corridor towards the entrance of Room 330, which is accurately tracked as seen from the figure. After 
arriving at the entrance, a few extra steps are also made at the same spot to force all particles to be 
outside the boundary of the corridor (i.e., getting into Room 330). Afterwards, the subject turns back 
and continues walking along corridor to point E. The tracking result presented proves that particles 
and the pedestrian’s position are not reset when a lost track is identified in the proximity of a room 
entrance. The whole path in the experiment is also accurately plotted by the application. 

 
Figure 8. First short-term walking experiment result: (a) Path generated offline with the PDR 
standalone approach; (b) Path generated real-time by HILN system. 

The path generated offline with the PDR standalone approach using the same set of data, 
presented in Figure 8a, is obviously influenced by behaviors during the experiment. Since the real 
starting point is a few steps ahead the point S, error is observed in the path after the first left turn. 
Also, the path stretches beyond the left-side map boundary due to the extra steps made on the same 
location. The influence of those faked steps is observed near the entrance of Room 330 as well. Seen 
from the overall path, the position errors continue to affect the tracking performance throughout the 
experiment once introduced. 



Sensors 2015, 15, 30759-30783 

30775 

The route taken in the second experiment starts from point S towards point E along the corridor. 
Then the subject enters Room 332 and returns to point S. The total length of the path is 202.8 m and 
the actual step count is 273. The tracking performance of the HILN system is summarized in Table 2. 
The step detection rate and estimated total travelled distance (TTD) achieved over 99% accuracy. 
With the help of the SRP ADC subsystem, the position error and gyroscope yaw data drift are 
corrected when the subject enters and leaves Room 332. The position error and gyroscope drift 
calibrated are 1.19 m and 0.78 m, 0.011 rad and 0.033 rad, respectively. As the subject returns to the 
starting point when the walk finishes, the final position error is measured as 1.51 m, 0.74% over TTD. 

Table 2. Tranking performance of the second short-termexperiment. 

Actual Step Count 273 
Detected Step Count/Accuracy 271/99.27% 
Travelled Distance (m) 202.8 

Estimated Total Travelled Distance (m)/Accuracy 202.1/99.65% 

Position Error Corrected (m) 
Entering Room 332 1.19 

Leaving Room 332 0.78 

Gyroscope Yaw Drift 
Corrected (rad/deg) 

Entering Room 332 0.011/0.63o 

Leaving Room 332 0.033/1.89o 

Final Position Error ε (m) 1.51 
ε/TTD 0.74% 

The tracking path of the experiment is presented in Figure 9 where the red path denotes the 
position correction by the SRP ADC subsystem. Figure 9c is the real-time generated path during the 
walk presented on the smartphone. Figure 9a is the path using PDR standalone approach and Figure 
9b illustrates the path combining PDR and the SRP ADC subsystem.  

 

Figure 9. Tracking path of the second short-term experiment (a) PDR standalone (b) PDR + SRP ADC 
(c) HILN. 

When using the PDR only approach, the position error accumulates over time due to the 
inaccuracy in step length and gyroscope drift. After combining the SRP ADC subsystem, the position 
error and yaw data drift are corrected, providing better tracking performance, but the path still 
occasionally falls into invalid zones of the map. The tracking path of the HILN system enhances the 
performance further by integrating constraints imposed by the map information. The final position 
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errors of the three paths are 2.4 m, 1.76 m and 1.51 m, respectively. In addition, the corrected position 
errors in Figure 9b when entering and leaving Room 332 are 2.78 m and 0.13 m, respectively. HILN 
system not only improves the final position accuracy, but also the positioning and tracking 
performance throughout the path, which is observed in Figure 9. 

4.3. Long-Term Walking Experiment 

A long-term walking experiment is carried out to verify the drift-free accurate tracking of the 
HILN system. Starting from point S, the subject makes a 998 s (16.6 min) walk exploring all the 
corridor area, visiting Room 328 and Room 332 many times and returning to the initial position of 
point S when the walk finishes. A total number of 1486 steps are taken in the route, while the 
developed application successfully detected 1449 steps with 97.51% accuracy. The total travelled 
distance is 1062.21 m reported by the application, achieving 97.99% accuracy as the ground truth 
distance is 1083.95 m. The quantified tracking results are presented in Table 3. During the experiment, 
the subject enters Room 328 and Room 332 both four times, so a total number of 16 calibrations are 
processed in the SRP ADC subsystem. The maximum, minimum and average values of position error 
corrected when entering or exiting rooms are 2.76 m, 0.2 m and 1.23 m, respectively. Meanwhile, the 
maximum, minimum and average values of yaw data drift calibrated are 0.402 rad/23.04°, 0.034 
rad/1.95° and 0.202 rad/11.58°, respectively. When the walk finishes, the final position error is 1.36 m, 
0.13% over TTD. 

Table 3. Tracking performance of the long-term experiment. 

Actual Step Count 1486 
Detected Step 
Count/Accuracy 1449/97.51% 

Total Travelled 
Distance (m) 1083.95 

Estimated Total 
Travelled Distance 
(m)/Accuracy 

1062.21/97.99% 

Position 
Error 
Corrected 
(m) 

Entering 
Room 
328 

2.76 0.57 1.39 0.57 

Leaving 
Room 
328 

0.95 0.85 0.20 0.70 

Entering 
Room 
332 

1.55 1.34 1.22 1.75 

Leaving 
Room 
332 

1.68 1.56 1.29 1.31 

Gyroscope 
Yaw Drift 
Calibrated 
(rad/deg) 

Entering 
Room 
328 

0.068/3.90o 0.210/12.04o 0.238/13.64o 0.345/19.78o 

Leaving 
Room 
328 

0.039/2.24o 0.034/1.95o 0.117/6.71o 0.242/13.87o 

Entering 
Room 
332 

0.137/7.85o 0.224/12.84o 0.214/12.27o 0.402/23.04o 
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Leaving 
Room 
332 

0.071/4.07o 0.251/14.39o 0.235/13.47o 0.402/23.04o 

Final Position Error ε 
(m) 1.36 

ε/TTD 0.13%

Similarly, the tracking paths using PDR only, PDR + SRP ADC and the real-time plotted path by 
HILN system are presented in Figure 10 using the same set of data during the experiment. Red lines 
in the path represent the position correction in SRP ADC subsystem and LTR in PF map matching 
algorithm. The final position errors of the three paths are 22.08 m, 1.84 m and 1.36 m, respectively. By 
using four access points (two per room) in the experiment area, the final position error is significantly 
reduced from 22.08 m to 1.36 m. With more access points utilized, the overall performance will be 
further improved since the errors in PDR system will be more frequently corrected. 

As can be seen from Figure 10a, the path obviously deviates from the actual one due to gyroscope 
drift when only PDR is used. With the help of the SRP ADC subsystem, by regularly correcting 
position errors and yaw data drift, the path fits better to the real route travelled by the pedestrian. 
Nevertheless, the gyroscope drift between two calibration processes leads to inaccurate positioning 
and tracking results. For instance, the leftmost part of the path in Figure 10b deviates significantly 
from the corridor because of yaw data drift. The maximum, minimum and average position errors 
corrected by SRP ADC subsystem in the result of Figure 10b are 11.04 m, 0.36 m and 2.33 m, 
respectively. With further enhancement introduced by the PF map matching algorithm, an accurate 
positioning and tracking performance is observed along the whole experiment path plotted by HILN 
system. In the experiment, lost track happened once and the timestamp of incidence during the 998 s 
walk was 791.5 s as indicated in Figure 10c near turning point TP1. The path is successfully recovered 
to continue tracking of the subject. The long-term experiment demonstrates the advantages of the 
HILN system to provide robust and drift-free pedestrian navigation independent of the travelled 
distance. 

 
Figure 10. Tracking path of the long-term experiment (a) PDR standalone (b) PDR + SRP ADC (c) 
HILN. 
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Figure 11. Intermediate tracking results during the long-term experiment (a) Walking in corridor (b) 
Walking in room 332 (c) Standing in room 328. 

Figure 11 shows a collection of intermediate screenshots of tracking result in the first lap of the 
route. The two labels to the left of the map correctly show the motion state and RPI of the subject 
during the whole walking period and three examples illustrated in Figure 11a–c correspond to 
walking in corridor, walking in Room 332 and standing in Room 328, respectively. 

Figure 12 presents the calculated gyroscope drift in yaw measurement during user interaction 
in the 998 s experiment with increasing timestamp. It is observed that drift in the yaw measure does 
not always become larger over time as the minimum drift appears at the 8th time instance, 461 s, 
when leaving Room 328. Although the drift is always a positive value in this experiment, negative 
values appear in other experiments with similar routes. 

 
Figure 12. Gyroscope drift in yaw measurement. 
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4.4. Discussions 

As the most significant feature of HILN system is the capability to offer drift-free accurate 
positioning and tracking performance, the long-term experiment result is firstly compared to [14,27] 
with comparable travelled distance. The final position error with respect to TTD reported in [14] is 
1.06%, 0.37%, 0.22% and 0.15% when the number of ramps per 125 m is 0, 1, 2 and 3, respectively. The 
PDR-only result in this paper of 22.08 m, 2.04% over TTD, is not as good as the one in [14] when no 
ramp is used for drift correction, but the path in [14] is a regular square path, less complex than the 
one presented in this paper with an irregular shape. When drift correction methods are applied, the 
HILN system outperforms the accuracy reported in [14] with only 0.13% error over TTD. For [27], 
ε/TTD is 0.15%, 0.45%, 0.25% and 0.1% for different path length of 600 m, 550 m, 520 m and 1000 m. 
While the performance of HILN is marginally higher than the 0.1% final position error, the system  
in [27] requires 71 RFID tags to be pre-installed in the building with an area of 40 m × 60 m (2400 m2). 
In the HILN system, comparable performance is achieved by using only four SRP nodes in the 
experiment area of 75 m × 34 m (2550 m2). Regarding the correction methods, ramp detection [14] 
relies on the structural features of the building and RFID ranging [27] requires additional 
infrastructure support, incurring significant cost, while the access control system used in this paper 
is more commonly employed in buildings nowadays and can be readily installed as well. 

Moreover, the experiment route covers both rooms and corridor in indoor environment and 
HILN system is able to provide accurate RPI at the same time, whereas experiments presented in [14] 
are for corridor-only scenarios. Other works [13,18–21,23,24] are limited to corridor scenarios, as well. 
Since people walking in indoor environments are typically moving from one room to another via 
corridors, it is necessary to cover both parts of the building for a PDR system. The RPI also enhances 
the advantages of the HILN system over traditional PDR systems with PF map matching. In [15], the 
measurement model of PF is also simplified into the form of map constraints. Without the RPI, the 
binary weight of particles is assigned based on whether the propagation path of particles crosses wall 
or not since rooms are also valid locations of pedestrians [15]. Nevertheless, the evaluation of the 
system is only conducted in a corridor environment, while in the HILN system, the RPI is used to 
provide more detailed map constraints for the PDR system. The process of weight evaluation can also 
be simplified by checking whether the position of particles is in valid area or not. 

The accuracy of step detection and estimation of TTD is then compared to previous works (also 
refer to Table 1). In terms of step detection rate, the accuracy of 99.27% reported in the short-term 
experiment which covers 202.8 m is comparable with the close to 100% accuracy in [16] and better 
than the accuracy of 98% reported in [17]. The step detection rate of 97.51% in the long-term 
experiment is not as good as that in [16,17]. As for estimation of TTD, the accuracy of both short-term 
and long-term result in the HILN system outperforms that of [19]. Meanwhile, performance is 
comparable with other works [13,16,20], all offering performance of less than 3% error. 

Despite the fact that the accuracy of the HILN system is marginally lower compared to some of 
the previous works, the differences in experiment scenarios, i.e., the TTD and shape of the path, 
should be considered. The TTDs in [13,15–26,28] cover from a few meters to a maximum of 600 m 
while the route presented in this paper has a total length of over one kilometer. Besides, the 
experiment in [16] is taken on a 400 m track in an outdoor sports field, whereas several independent 
walks in a straight path are conducted in [17,19] and the length of the path is 32 m in [17] and less 
than 7 m in [19], respectively. Paths of square shape are found in [13–15,20,21,23–28]. The path 
travelled as presented in this paper is much more complex and realistic for indoor scenarios with 
frequent stops and sharp 180° turns, which are not considered in previous works [13–28]. It is 
observed that the main reason for position errors in the proposed HILN system is undetected steps 
since the drift in yaw data is regularly corrected when entering/leaving a room and the position is 
constrained by the building map. The initial steps from stationary to walking state are missed more 
likely since the magnitude in vertical acceleration is relatively small. In the experiment, the subject 
has frequent transitions between stationary and walking state when entering or leaving the rooms. 
The transitions are also observed in sharp 180° turns when the subject reached the boundary of the 
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map or returned to the exit after exploring the room, causing undetected steps. In addition, it is 
observed that the yaw data drift of gyroscope increases more drastically in sharp 180° turns. 

Furthermore, the processing time of individual iterations when steps are detected during the  
short-term experiment is presented in Figure 13. The processing time of long-term experiment is 
similar since the processing flow is the same. After detecting a step, the processing time includes step 
length and orientation estimation, position update through a PF map matching algorithm with  
100 particles and graphical processing updating the path of the pedestrian on the screen. Also, the 
smartphone is used normally and all the processing is scheduled by the operating system. As 
illustrated in the figure, the maximum processing time of one iteration is 66.7 ms, while most of the 
processing takes between 10 ms and 30 ms, with an average value of 22.5 ms. In the experiment, the 
subject walks at a step frequency of less than 2 Hz. Therefore, a time window of more than 500 ms is 
allowed for the processing of a valid step. Moreover, a minimum time window of 200 ms is available 
since the maximum step frequency of a pedestrian is 5 Hz. With maximum processing time of 66.7 
ms, the HILN system achieves real-time positioning and tracking performance by using a standard 
smartphone. 

 
Figure 13. Example processing time of individual iterations. 

In order to address the advantage of the simplified PF map matching algorithm over standard 
PF, the computation complexity is investigated offline. The simplification of PF mainly reduces the 
computations in weight calculation of particles. A Matlab program implementing the whole 
pedestrian tracking system with both simplified PF and traditional PF (the required measurement 
data is set as a constant since the simulation is only used to study the computation complexity) 
algorithm is used. With the same set of sensor data obtained in the long-term experiment, the average 
processing time consumed by a PF iteration when a valid step is detected is 0.42 ms for simplified PF 
and 0.72 ms for traditional PF, respectively, on a MacBook Pro host machine with 2.2 GHz Intel Core 
i7. Therefore, a 42% reduction in computation complexity is achieved. While regarding the 
localization, it is shown in previous works [22–24], where hybrid systems fusing PDR and indoor 
RSSI information are developed using a standard PF algorithm and the average localization error can 
be up to 5.46 m [23] and 5.22 m [24]. In [22], the average localization error is 0.88 m but experiments 
are only conducted along a 90 m path. Also, additional dedicated infrastructure is required in [22–
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24]. The proposed HILN system achieves drift-free, satisfactory localization performance with 
minimum computational and infrastructure cost. 

5. Conclusions and Future Work 

A hybrid indoor localization and navigation (HILN) system for pedestrians is proposed in this 
paper. The system integrates a traditional PDR system with SRP adaptive drift calibration at access 
control points and a particle filter map matching algorithm. The information derived from SRP 
subsystem enables PDR to offer drift-free tracking and by taking advantage of existing access control 
systems, it offers a natural way to integrate user interactions at no additional cost. The map 
constraints, introduced by a simplified particle filter with LTR mechanism, further enhance the 
accuracy and keep the computation complexity acceptable for real-time processing on mobile devices 
with limited resources. The long-term experiment verified the robust and reliable tracking of the 
proposed system with 0.13% final position error with respect to a total travelled distance of over one 
kilometer. Moreover, the accurate tracking performance is independent of travelled distance and the 
system covers both corridor and rooms of indoor environments, offering a more practical way for 
pedestrian navigation. 

Future work will focus on extending the system to support different ways of carrying the 
smartphone during walking. Also, a more comprehensive system will be studied combining both 
outdoor and indoor environments to provide seamless tracking of the pedestrians. 
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