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Abstract: With the development of the vehicle industry, controlling stability has become more and
more important. Techniques of evaluating vehicle stability are in high demand. As a common
method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by
fusing data from the two system sensors. Although prior model parameters should be recognized in
a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent
and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation
method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman
filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to
a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the
approach. Finally, a simulation and real experiment is made to verify the advantages of this approach.
The experimental results showed the merits of this method for measuring vehicle stability, and the
approach can meet the design requirements of a vehicle stability controller.
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1. Introduction

With the improvement of road traffic and the development of vehicle technology, automobiles are
moving faster and faster. There is a gradual increase in the role of high-speed instability as a factor
in all kinds of traffic accidents. Audi company statistics indicate that with traffic accidents involving
vehicles at speeds of 80 km/h to 100 km/h, there was a loss of stability in 40% of the cases [1]. When the
speed exceeds 160 km/h, almost all accidents involve a vehicle that is unstable. Related studies also
indicate that in serious traffic accidents caused by the loss of stability control, 82% of vehicles continue
to travel for 40 m after loss of control. A Toyota Corporation study also points out that vehicle sideslip
motion is involved in almost all accidents caused by loss of control [2]. Therefore, stability control for
vehicles is proposed. Vehicle handling stability is improved by controlling vehicle yaw motion.

Yaw rate and vehicle sideslip angle are the significant parameters [3] of a vehicle control stability.
Usually, the vehicle sideslip angles [4] are defined as the angles among vehicle velocity direction
and the vehicle body’s longitudinal axis. The accurate measurement for the real yaw rate and actual
vehicle sideslip angles is the largest problem in vehicles stability control improvement [5]. A gyro
can measures the yaw rate, but there is no desirable facilities which can gauge the vehicle sideslip
angle directly, so estimation approaches are used. These approaches are merged with use of the lateral
acceleration sensor and yaw rate gyro normally. These sensors, however, contain noise and a bias
usually. Besides, lateral gyro sensors cannot present safe description for vehicle acceleration force
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component [6]. These sensors’ errors will be cumulated and lead to divergence while the integral is
employed, influencing the vehicle stability control system’s performance. The vehicle sideslip angle,
however, is directly measurable by means of the utilization in GPS/INS [7]. DGPS (Differential GPS)
can achieve millimeter-level precision since it is appended to a differential rectification signal to amend
data processing.

There is a solid complementary [8] between INS and GPS. GPS possesses a number of
disadvantages. For instance, a receiver antenna may drop location data owning to signal disruption
or be obstructed for the moment [9]. INS can supply velocity information, azimuth information
and position data beyond an outside reference source but the INS has cumulated bias. It cannot
provide accuracy position data for long working hours due to gyro drifting flaw. INS bias is primarily
irregular drifting flaws that cannot be reimbursed. On the other hand, GPS advantages include great
positioning correctness and no accumulation errors. The combination of two types of system can
recompense each one and play to their respective advantages. Although GPS testing is stabilizing, the
update rate (1~10 Hz) is comparatively minor. GPS/INS Integration navigating system is a sort of
composite system having uncommon superiority in bandwidth. Using the Kalman filter algorithm to
fuse GPS/INS data is a common method [10].

In a data fusion method of multi sensors, in order to estimate the state parameters correctly, each
sensor should be synchronized to transmit data [11]. In the actual global positioning system and inertial
navigation system sensors, however, data sent to the Kalman filter are frequently not synchronized.
If data from the two system sensors is not synchronized, a flaw will be yielded, decreasing the multi
sensors system measuring accuracy [12]. Therefore, real-time data synchronization is of practical
significance for the global positioning system and inertial navigation system sensors. Both INS and GPS
have their own clock frequency. Due to the differences in the character of frequency and temperature
stability for GPS/INS, there are a number of changes after GPS/INS long operating hours, even though
INS and GPS begin at the same time. Additionally, INS and GPS have a distinct data update rate
normally (for example, the update rate of INS is 100 Hz or more and the data update rate of GPS
receiver is 1~20 Hz) [13]. If INS and GPS data processing time is not synchronized, time difference will
happen in Kalman filter.

GPS/INS is the trend to measure vehicle movement stability in modern automobile
technology [14]. At present, GPS measurement has a low refresh data rate, and sometimes there
are obstacles that prevent vehicles from accepting GPS information. Therefore, GPS and inertial sensor
combination application is needed. Nowadays there are Kalman federated filtering algorithm, D-S
evidence theory, neural network, adaptive H filtering and fuzzy logic for data fusion [15]. However,
each algorithm has limitations. Therefore, more convenient and high precision data fusion algorithm is
a very meaningful problem. In addition, adaptive method, error compensation technology, statistical
characteristic and noise filtering in data fusion are subjects for future research.

2. Related Work

In general, the stability of vehicles is tested using Global Positioning System. In addition, GPS
can supply real time vehicle sideslip angle information to vehicles stability control system as a sensor.
Although methods for vehicle stability controlling have been implemented for more than a decade,
the GPS/INS integration research in vehicles stability measurement stays long way. There are a few
similar reports in this area.

In driving conditions, one of the key vehicle stability controls is the accurate measurement of
automobile state parameters. This is also the premise and foundation for the system to control the
vehicle’s stability [16]. However, some important vehicle state parameters either cannot be measured
through the sensor, or the measuring cost is too high. For instance, an extremely significant stability
parameter for vehicle control is sideslip angles, which are the angles between direction of vehicle
speed’s longitudinal axis and the direction of the vehicle body. It directly influences the vehicle yaw
moment affecting the automobile’s stability. However, unfortunately there is still no common sensor
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that can measure the tire sideslip angle and the vehicle sideslip angle directly [17]. The incomplete
information on vehicle stability control has caused great difficulties for the implementation and
promotion of the vehicle active safety control system, which requires estimating parameters such
as the main adhesion coefficient of the road, the sideslip angle, and speed. Vehicle sideslip angle
estimation algorithms are a common integral method, such as the Kalman filtering method, fuzzy
observer, Luenberger observer, sliding mode observer and nonlinear observer. Cho proposed a method
which can estimate the vehicle sideslip angle based on the extended Kalman filter [18]. The vehicle
speed estimation method is a maximum wheel speed method, a slope method, and a comprehensive
method. Solmaz proposed a method of estimation based on rolling horizon vehicle speed. Estimation
of road adhesion coefficient mainly has the direct detection method based on sensor and method of
vehicle dynamics parameters [19]. Jun proposed a road friction coefficient estimation method based on
an extended Kalman-filter algorithm [20]. Yang Fuguang proposed real-time road adhesion coefficient
estimation method based on extended state observer [21]. These algorithms are based on vehicle
dynamic models. Some models are founded without considering some affects such as lateral slip forces.
Those methods would product limitation since the lateral slip forces is relative small sometimes during
normal driving condition. In addition, the accelerometers, which were used in those approaches,
would drift over time due to sensors bias, so more noise would be present in the measurement.

In vehicle active safety, Deng-Yuan Huang proposed a feature-based vehicle flow analysis
approach and measurement system for real-time traffic surveillance system [22] and Jeng-Shyang Pan
proposed a vision optical flow based vehicle forward collision warning system for intelligent vehicle
highway applications [23]. The researchers had a wide scope in vehicle active safety research.

Since the beginning of the 21st Century, Chinese researchers have been conducting research on
the measuring stability of state parameters of automobile. These researchers have already made some
achievements. Yu Ming et al in Southeast University developed automobile road five-wheel RTK
testers, based on GPS carrier phase RTK technology [24]. The five-wheel tester can precisely measure
vehicle motion parameters and evaluate the vehicle movement performance test based on dynamic
measurement. However, the five-wheel tester is a very professional instrument and its cost is very high.
Xin Guan and his student in Jilin University have done exploratory studies in GPS/INS integrated
navigation algorithm for measuring vehicle state information. The method can precisely measure
vehicle state parameters, but the GPS and INS instrument that they used is very expensive.

The research on integration navigation's data fusion has been carried out for ages. Before
Kalman filtering, the Lagrange interpolation approach was used to data fusion usually [9]. The
Lagrange interpolation is a classic mathematic approach and an elementary method. However,
Lagrange interpolation is a linear interpolation. That is, for a nonlinear system the linear interpolation
method is not suitable to interpolate data. The errors of interpolation are not minor. The large errors
of interpolation are Lagrange interpolation’s main defect. The final curve of interpolation is also
rough [25].

Though the Lagrange interpolation approach can obtain rough values in multi-sensors data fusion
system, the method is hard to apply in the general example. This work’s major contribution is to
obtain a novel, realistic, and generic method to find out optimum in data fusion. With the fuzzy
clustering method’s aid, this work proposed a generic method which optimizes interpolation errors
intelligently [26].

GPS is used for vehicle stability performance testing. It can measure real-time vehicle stability
parameters such as running track, distance, azimuth, sideslip angle, speed and acceleration. Differential
GPS technology cannot only achieve the online dynamic testing function of motion-state parameters,
it also brings the dynamic positioning precision to within the centimeter level. GPS and inertial
navigation system is combined in the vehicle motion measurement system of British Oxford Technical
Solutions company, in which speed precision is up to 0.05 km/h, and sideslip angle accuracy is up to
0.15˝. Zhang Sumin used the inertia navigation system and GPS to estimate vehicle speed, vehicle
sideslip angle, yaw rate and other status information [27]. Kirstin L. Rock at Stanford University used
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GPS and auto optics test system to measure for comparative experiments, and verify the effectiveness of
the GPS/INS to measure the vehicle sideslip angle and speed [28]. Zhibin Shuai described the electrical
vehicles’ lateral motion control related to on-board network-induced time delays. Co-simulations
with CarSim and Simulink demonstrate the proposed controller’s effectiveness [29]. Tommaso
Goggia introduces an essential sliding mode formulation for the torque-vectoring control of a fully
electric vehicle. A meaning enhancement of controlled vehicle performance is shown during all
maneuvers [30].

Binh Minh Nguyen concentrated on a novel electronic vehicles stability control system that was
based on sideslip angles estimation by using Kalman filter. Through dealing with the combination of
external disturbances and model flaws as prolonged states in a Kalman filter algorithm, precise sideslip
angle estimation was accomplished [31]. Jin-Oh Hahn built a novel tire road friction coefficients
approximation algorithm that is based on measurements relevant to lateral dynamics of the developed
vehicle. The advantage is that it does not need big longitudinal slip to provide responsible friction
estimations [32]. Auburn Bevly gauged three important vehicle stability parameters like tire sideslip
angle, tire-slip ratio, and sideslip angle that was based on the GPS velocity gauging approach [33]. They
adopted the integration between GPS velocity sensors and inertial testing unit with a low update rate
gyro. A new update algorithm for enhancing Kalman filtering was proposed for the tire lateral stiffness.
A precise estimate of vehicle state values was provided. However, the robustness of the approach
is not verified with some lateral disturbance. The vehicle multi-sensor research center of Calgary
University have a research on suppressing bias and enhancing precision in details [18]. They presented
a measurement method that can decrease the accumulated errors while GPS signals are lost. Ryu at
Stanford University put an approach forward to estimate vehicle stability's key parameters, which
used a combination of INS and GPS sensors [34]. The approach could enhance estimation’s precision
for vehicle state parameters in consideration the influence of roll, pitch and sensors bias. Although this
method can measure the key vehicle state parameters accuracy, the computation efficiency in real time
is not mentioned.

In this paper, an objective fuzzy interpolation before the Kalman algorithm is used for data
synchronization. This objective fuzzy interpolation approach can work out time delays’ problem.
Utilizing the integration of INS and GPS, fused by the two-stage Kalman filter, it can work out the
problem of low update rate and GPS signal loss. The objective fuzzy interpolation method improves the
accuracy effect of GPS/INS data fusion, and the two-stage Kalman filter is more robust. The RT3102
instrument is used to verify the effect of GPS/INS measurement and estimation of vehicle state
parameters under typical driving conditions. The experimental consequences showed the approach of
GPS and INS measurement for vehicle stability key parameters is accurate and robust.

3. Objective Fuzzy Logic System and Subtractive Clustering Method

3.1. Objective Fuzzy Logic System

In this paper, an objective fuzzy system modeling is adopted. Through modeling the output
and input data, the system recognition could usually be completed based on fuzzy cluster methods
involving data’s organization into similar behavior’s clusters. Sugeno type models, which a rule
consequent can be presented as polynomial inputs functions, are employed to objective fuzzy system.
Least Square Error method can provide better consequence parameters (a polynomial function’s
coefficients) for designated sets of clusters. The objective fuzzy system’s structure is illustrated in
Figure 1. The objective fuzzy logic system and subtractive clustering method can be described as the
following [9,35].
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Figure 1. Objective fuzzy system’s structure.

Two first roles in the fuzzy inference system, applying the fuzzy operator and fuzzifying inputs,
are precisely equivalent. A distinctive rule in Sugeno inference has following relationship:

If x “ Input1 and y “ Input2 then Output is z “ c` by` ax.
The system’s final output is all rule outputs’ weighted average, computed as [35]
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A Sugeno fuzzy system is demonstrated in the following Figure 2.
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3.2. Fuzzy Logic Subtractive Cluster Approach

In order to model the system behaviors, subtractive clustering method based first order Sugeno
system was employed. Subtractive clustering method has four parameters and carries a parameter
investigation out on the cluster parameters. Then it can discover the optimal n-rule modeling with
a least square error (LSE) method. In the optimal n-rule-modeling method, the model having acceptable
LSE in overall best models will be picked up. Employing ANFIS (Adaptive Network-based Fuzzy
Inference System) to the chosen model will be the last step to refine the membership functions.

In order to investigate the behaviors of the system, the method of subtractive cluster based on
the first-order Sugeno fuzzy system is employed. The subtractive cluster method has four main
parameters, and the parameters are studied. Then we can find the best formal model using the least
square error method (LSE). In the best n-rule-modeling approach, the model will be picked up by
the overall optimization model with acceptable LSE. ANFIS (adaptive neuro fuzzy inference system)
is employed to select the model. In addition, the last step is improving the membership function of
this model.

In the subtractive cluster method there are four cluster values: ra defines the cluster’s
neighborhood range in data space, and it is a positive constant. The additional values are: accepted
ratio P, squash factor η, and rejected ratio P. A parameter investigation is implemented in the cluster
values to discover the optimal n-rule modeling.

The subtractive cluster method is described in the following Figure 3 [35].

30473



Sensors 2015, 15, 30469–30486

Sensors 2015, 15 7 

 

 

factor η, and rejected ratio . A parameter investigation is implemented in the cluster values to discover 

the optimal n-rule modeling.  

The subtractive cluster method is described in the following Figure 3 [35]. 

 

Figure 3. Procedure flow chart of the subtractive clustering algorithm. 

The first-order Sugeno method is described as the following: 

1Ru : If x is  then 1 10 11
( )w p p    

2Ru : If x is  then 2 20 21
( )w p p    

Here, parameters 10 11 20 21, , ,p p p p  are optimized by employing the LSE approach. If an input 0u  is 

given, the output of model *
0

( )w  is computed as: 

)()(

)()(

)()(

)()()()(
)(

021202011101

0

*

220

*

11

00

0

*

200

*

10

0

*

21

21

uppupp

uwuw

uuuu

uwuuuwuu
uw

AA

AA













 (2) 

Parameters Initialization

Accepting    and increasing  

cluster counter

  ar 

The first cluster center is the Maximum 

potential point     

ikik PPPxccK  *
1

*
1 ,,1

ix

Calculation each point potential 







n

j

xx

i
jieP

1

2


ar 2


  .4

Revision each data point potential   

2

* ki cx

kii ePpP



  

2

4

br
  

ab rr *

 
tk xckk  ,1

 
tx

Rejection     and end  
tx

Changing           the shortest  

distances 

 mind

Rejection       and setting         to 0 
tx  

tP

 *

1PPt 

Y

N

 *

1PPt 
Y

N

 
1

*

1

min 
P

P

r

d t

a

Y
N

1

2

Figure 3. Procedure flow chart of the subtractive clustering algorithm.

The first-order Sugeno method is described as the following:

Ru1: If x is A1 then w1pµq “ p10 ` p11µ

Ru2: If x is A2 then w2pµq “ p20 ` p21µ

Here, parameters p10, p11, p20, p21 are optimized by employing the LSE approach. If an input u0 is
given, the output of model w˚pµ0q is computed as:

w˚pu0q “
uA1pu0qw˚1 pu0q ` uA2pu0qw˚2 pu0q

uA1pu0q ` uA2pu0q

“ β1w˚1 pu0q ` β2w˚2 pu0q

“ β1pp10 ` p11u0q ` β2pp20 ` p21u0q

(2)

where, βi “
uAipu0q

uA1pu0q ` uA2pu0q
u1, u2, ......, un are inputs,

w˚1 pu1q “ β11pp10 ` p11u1q ` β21pp20 ` p21u1q

w˚2 pu2q “ β12pp10 ` p11u2q ` β22pp20 ` p21u2q

.

.
w˚npunq “ β1npp10 ` p11unq ` β2npp20 ` p21unq

(3)
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where, βij “
µAipµjq

µA1pµjq ` µA2pµjq
.

Utilizing the typical representation AX “ B, there is Least Square Error (LSE) questions where
A is constant matrix (it is distinguished), B is an output values matrix (distinguished), and X is the
parametric matrix which should be assessed [36]. The pseudo-inverse solving method is well-known
for this question. That is, X “ pAT Aq´1 AT B gives the minimal value of ‖ AX´ B ‖2 [35].

Following the knowledge referred to earlier, the following stages are described in details:
Discover fuzzy clusters in order to set up fuzzy rules number at the output space. In other words,

at the output space, the clustering centers are discovered to build fuzzy membership functions which
stand for rule bases. Then the resultant is optimized by employing the LSE approach. In order to
discover the optimal four values (P is accept ratio, ra is cluster radius, P is reject ratio, η is squash factor)
should make less for the errors. A first-order Sugeno modeling method is used, which employing
LSE approaches optimizes the values [35]. The range of η is [0 2], the range of ra is [0 1], the range of
P is [0 1], and the range of P is [0 1]. In this work, if the step is 0.01, then twenty thousand rules will
be calculated.

For every rule base involved the number of rule, the least error could be found. A parametric
optimization is implemented in the cluster values to discover the optimal n-rule model [9].
In this work, a 6-rules model is taken since it has satisfactory least square errors. In this work,
ra “ 0.6, η “ 0.8, P “ 0.7, P “ 0.2.

4. Models of Vehicle Testing

4.1. Dynamical Model of Vehicle

In order to reflect an automobile motion state, this paper establishes an eight degrees of freedom
dynamic model including vehicle rotary motion, vehicle lateral motion, vehicle longitudinal motion,
vehicle yaw motion, vehicle roll motion, four wheels rotary motion, steering wheel angle and vehicle
speed. It is assumed that:

(1) Automobile vertical and pitch motions are ignored;
(2) The dynamic characteristics of the four tires are same;
(3) The influence of air resistance is ignored;
(4) The effect of sprung mass is ignored [37].

According to Figure 4, eight degrees of freedom dynamic equations are presented as the following:
Longitudinal movement:

ÿ

Fxi “mp
.
vx ´ vyγq (5)

ÿ

Fxi “pFx2 ` Fx1qcosδ` Fx3 ´ pFy2 ` Fy1qsinδ` Fx4 (6)

Lateral movement:
ÿ

Fyi “mp
.
vy ` vxγq ´mshs

..
φ (7)

ÿ

Fyi “ pFx2 ` Fx1qsinδ` Fy3`pFy2 ` Fy1qcosδ` Fy4 (8)

Yaw movement:
Ixz

..
ϕ` Iz

.
γ “

ÿ

Mz (9)
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ř

Mz “ l f pFy1 ` Fy2qcosδ´ pFy3 ` Fy4qsinδ`
t f

2
pFy1 ´ Fy2qsinδ´

t f

2
pFx1 ´ Fx2qcosδ` l f pFx1 ` Fx2qsinδ´

tr

2
pFx3 ´ Fx4q

(10)

Roll movement:
Ix

..
ϕ´mshsp

.
vy ` vxγq ` Ixz

.
γ “

ÿ

Mx (11)
ÿ

Mx “ ´pkϕ f ` kφrqϕ´ pcφ f ` cφrq
.
ϕ`msghssinϕ (12)

Four wheels motion equation:

Iwi
.

ωwi “ FxiRw ´ Tbi p“ i “ 1, 2, 3, 4q (13)

Sensors 2015, 15 9 

 

 

(1) Automobile vertical and pitch motions are ignored; 

(2) The dynamic characteristics of the four tires are same; 

(3) The influence of air resistance is ignored; 

(4) The effect of sprung mass is ignored [37]. 

According to Figure 4, eight degrees of freedom dynamic equations are presented as the following: 

Longitudinal movement: 

)( yxxi vvmF    (5) 

2 1 3 2 1 4
( )cos ( )sin

xi x x x y y x
F F F F F F F        (6) 

Lateral movement: 

 
ssxyyi hmvvmF  )(  (7) 

2 1 3 2 1 4
( )sin ( )cos

yi x x y y y y
F F F F F F F        (8) 

Yaw movement: 

xz z z
I I M     (9) 

)(
2

sin)(cos)(
2

sin)(
2

sin)(cos)(

432121

214321

xx
r

xxfxx

f

yy

f

yyyyfz

FF
t

FFlFF
t

FF
t

FFFFlM









 (10) 

Roll movement: 

 xxzxyssx MIvvhmI   )(  (11) 

( ) ( ) sin
f rx f r s sM k k c c m gh            (12) 

Four wheels motion equation: 

biwxiwiwi TRFI   ( 4,3,2,1i ) (13) 
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Figure 4. Eight degrees of freedom (DOF) vehicle dynamic model.

ř

Fxi are wheels longitudinal resultant forces (i “ 1, 2, 3, 4).
ř

Fyi are wheels lateral resultant
forces.

ř

Mz is Zv axis torque. m is vehicle mass. vx and vy are velocity components in Xv and Yv.
l f and lr are distances between centroid to front and rear axles. t f and tr are distances between front
and rear wheels. γ and

.
γ are yaw velocity and yaw angular acceleration. Ix is the moment of inertia

around Xv axle Iz is the moment of inertia around Zv. Ixz are the moments of inertia around Xv and Zv

axle. ωwi are wheel angular velocity (i “ 1, 2, 3, 4). Iwi are wheel moments of inertia (i “ 1, 2, 3, 4). Rw is
wheel radius. Tbi are brake torque (i “ 1, 2, 3, 4). δ is steering wheel angle. ms are vehicle sprung mass.
hs is the vertical distance from spring centroid to the roll center. ϕ is side angle. ∆Fx,eq is the front
suspension’s roll stiffness, and kφ r is the rear suspension’s roll stiffness. cφ f is the front suspension’s
roll angle damping, and cϕr is the rear suspension’s roll angle damping.

4.2. Model of Two-Stage Kalman Filter

INS and GPS combination approaches consist of dynamic methods and kinematics methods.
Kinematics approach is based on a vehicle’s movement relations, and it does not depend on
estimating vehicle kinetics models. Since there is no modeling flaw, measure accurateness relies on the
accurateness of the installation position and measuring apparatus, so this approach is very robust.

For the effect of discretization and time delays related to the GPS part, an important issue is the
appropriate handing of the nonlinearities from uncertain time varying delays. In this work, an objective
fuzzy interpolation before Kalman algorithm is used for data synchronization. This objective fuzzy
interpolation method can solve the problem of time delays.

The fusion algorithm for vehicle sideslip angle that is based on the integration of GPS/INS was
illustrated as Figure 5. GPS measurement major values are azimuth angle θGPS, speed vGPS and
heading angle ψGPS, and major values in INS measuring are longitudinal acceleration ax,acc, lateral
acceleration ay,acc and yaw rate γgyro.
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This work used two-stage Kalman filter to fuse GPS and INS measurement. First, yaw rate
measured by gyro and heading angle measured by double antenna GPS receiver are fused by Kalman
filter 1. The output is vehicle course angle ψ. Longitudinal vx,GPS and lateral vy,GPS velocities are
calculated according to the azimuth angle θGPS and velocity course angle ψ. Second, the longitudinal
ax,acc and lateral ay,acc acceleration measured by INS and the longitudinal vx,GPS and lateral velocities
vy,GPS are fused by Kalman filter 2. The vehicle sideslip angle ratio can be obtained according to the
vehicle sideslip angle β.

Compared with the conventional GPS/INS algorithm, the algorithm has some advantages: Less
state vector and computing times. Therefore, the algorithm can meet the requirement for real-time
vehicle stability control. When GPS signal is lost, inertial navigation system can calculate the vehicle
sideslip angle. At the same time, inertial navigation system achieves the error correction with
GPS information.

4.3. Vehicle Stability Parameters Calculation

4.3.1. Vehicle Heading Angle Calculation

Yaw rate measured by gyro and heading angle measured by double antenna GPS receiver are
fused by Kalman filter 1. In order to understand the heading, sideslip angles, azimuth and yaw and so
forth, Figure 6 shows the relationship between them.
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Figure 6. Illustrations of heading, yaw, azimuth and side slip angle.
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Heading angle measured by dual antenna GPS receiver can be written as

ψGPS “ ψ`wGPS
ψ (14)

ψGPS is heading angle measured by GPS receiver. wGPS
ψ is GPS observation noise.

Yaw rate measured by gyroscope can be written as:

γgyro “
.
ψ` γ∆ `wgyro

γ (15)

γgyro is yaw rate measured by gyroscopes. ψ is heading angles. γ∆ is yaw velocity deviation.
wgyro

γ is the gyro noise (the process noise).
The state equation of Kalman filter is written as the following:

.
x “

« .
ψ
.
γ∆

ff

“

«

0 ´1
0 0

ff«

ψ

γ∆

ff

`

«

1
0

ff

γgyro `

«

wgyro
γ

0

ff

(16)

Observation equation is written as:

y “ ψGPS “
”

1 0
ı

«

ψ

γ∆

ff

`

«

wGPS
ψ

0

ff

, or y “
”

0 0
ı

«

ψ

γ∆

ff

`

«

wGPS
ψ

0

ff

(17)

The state vector x is
”

ψ γb

ıT
, and the input is yaw rate γgyro measured by gyroscope.

The observation value is the heading angle ψGPS measured by GPS. If GPS is available, the observation
matrix C is [1 0]. If GPS is not available, the observation matrix C is [0 0].

4.3.2. Vehicle Vertical and Horizontal Velocity Calculation

The longitudinal and lateral acceleration measured by INS and the longitudinal and lateral
velocities are fused by Kalman filter 2.

(1) GPS measurement of the vehicle longitudinal and lateral velocity GPS measurement of the
vehicle sideslip angle

β1 “ θGPS ´ψ (18)

β1 is sideslip angle measured using INS and GPS. θGPS is the azimuth measured using GPS. ψ is
the heading angles measured by GPS and INS.

GPS measurement of the vehicle longitudinal and lateral velocity (vehicle body coordinate) can
be written as:

vx,GPS “ ‖ vGPS ‖ ¨ cospβ1q (19)

vy,GPS “ ‖ vGPS ‖ ¨ sinpβ1q (20)

If the main antenna of GPS is installed at the vehicle centroid, longitudinal and lateral velocity
can be written as:

vx,GPS “ vx `wGPS
x (21)

vy,GPS “ vy `wGPS
y (22)

(2) Longitudinal and lateral velocity measured by acceleration sensor

ax,acc “
.
vx ´

.
ψ ¨ vy ` a∆x `wax (23)

ay,acc “
.
vy ´

.
ψ ¨ vy ` a∆y `way (24)

vGPS is speed measured by GPS. vx,GPS and vy,GPS are longitudinal and lateral velocity
components measured by GPS. vx and

.
vx are longitudinal velocity and longitudinal acceleration
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measured through sensors. vy and
.
vy are lateral velocity, lateral acceleration measured by sensors.

ay,acc and ax,acc are lateral, longitudinal acceleration measured through acceleration sensors. a∆y and
a∆x are lateral and longitudinal acceleration deviation. wGPS

x and wGPS
y are longitudinal and lateral

GPS receiver noise. wax and way are longitudinal and lateral acceleration sensor noise.
Kalman filter state equation:
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where
.
ψ “ γgyro ´ γb Kalman filter observation equation:

«

vx,GPS
vy,GPS

ff
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1 0 0 0
0 0 1 0

ff

»

—
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–

vx
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(26)

”

vx a∆x vy a∆y

ıT
is a state vector, and

”

vy,GPS vx,GPS

ıT
is observation values.

4.3.3. Vehicle Sideslip Angle Calculation

Sideslip angle measured by GPS and INS

β “ arctan
vy

vx
(27)

When GPS signal is lost, no measurement can be done for ψGPS, vx,GPS and vy,GPS. However,
γgyro, ax,acc and ay,acc can be measured with an INS sensor. Then the sideslip angle can be determined.

The sideslip angle measured through GPS is the sideslip angle of GPS antenna. Usually the
sideslip angle of vehicle centroid and even the wheel sideslip angle are needed. As the sideslip angle
of GPS antenna is transformed into the sideslip angle of any point at vehicle, there should be a speed
increment which angular velocity changes.

Vp “ VA ` γ ¨ RA{P (28)

Vp is the speed at P point. VA is the speed at main antenna of GPS. RA{P is the distance from main
antenna to P. γ is yaw rate.

The sideslip angle of the point P is calculated by the following equation.

βp “ tan´1

˜

pVPqy

pVx

¸

(29)

pVPqx and pVPqy is the velocity components in the vehicle body coordinates.

5. Simulation and Application

In this simulation, vehicle structure parameters are listed in Table 1.
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Table 1. Vehicle structure parameters table.

Symbols Meaning Values Symbols Meaning Values

m Vehicle mass 1704.7 kg kφF Front suspension stiffness 47,298 N¨ m/Rad
ms Suspended mass 152.6 kg kφR Rear suspension stiffness 37,311 N¨ m/Rad

D f
Front axle to centroid

distance 1.035 m cφF Front suspension damp 2823 (N¨ m)/(rad/s)

lr
Distance from

centroid to rear axle 1.655 m cφR Rear suspension roll damp 2653 (N¨ m)/(rad/s)

t f
Distance between

front wheels 1.535 m Iwi Wheel inertia 0.99 kg¨ m2

tr
Distance between

rear wheels 1.535 m Rw Wheel radius 0.313 m

hc Centroid height 0.542 m k f Front wheel cornering stiffness 55,095 N/rad
Ix Roll inertia 744.0 kg¨ m2 kr Rear wheel cornering stiffness 55,095 N/rad
Iz Yaw inertia 3048.1 kg¨ m2 A Front windward area 1.8 m2

5.1. Simulation

The double lane change conditions are selected. The vehicle dynamics models are built using
Carsim software. Double lane change simulation is more commonly used in a vehicle stability testing,
and it is a working state for the simulation of vehicle overtaking and obstacle avoidance. Figure 7 is
a double lane change simulation route map. B1 “ 3.5 m, B2 “ 3.5 m, S1 “ 60 m, S2 “ 40 m, S3 “ 60 m.
Then the steering angle is shown in Figure 8, vehicle dynamic response is analysis. Assume that the
speed is 120 km/h, the adhesion coefficients were 0.9 and 0.4, the parameters of simulation vehicle is
shown in Table 1. Figure 9 shows the yaw rate curve in the simulation. Figure 10 illustrates the sideslip
angle curve in the simulation. Figure 11 shows the simulation output of yaw rate when the adhesion
coefficient is low. Figure 12 illustrates the sideslip angle curve with the low adhesion coefficient.
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Figures 9 and 10 are yaw rate and sideslip angle curve respectively when the adhesion coefficient
is 0.9.
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precision is 0.1 degrees. Its positions accuracy is up to sub-meter level. It has 20 Hz data update rate 

(only for position data update rate). Performance indicators are shown in Table 2. The antenna pair 
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The simulation experiment shows that the working condition is very dangerous when the vehicle
loses its stability. Such a situation is very difficult for the driver. Therefore, it is necessary to evaluate
the stability state of the motion control system and other auxiliary means for the automobile control.

5.2. Experimental Apparatus

This paper utilizes a HV2 double antenna double function GPS receiver. The HV2 Antenna and
HV2 GPS receiver are demonstrated in Figure 13. HV2 can supply precise directions, and the GPS’s
heading precision is 0.1˝. Its positions accuracy is up to sub-meter level. It has 20 Hz data update rate
(only for position data update rate). Performance indicators are shown in Table 2. The antenna pair
mounted on the vehicle is parallel to forward axis, and the baseline length is 1.5 m.

The system uses the vehicle INS sensor which is made BOSCH Inc.

Sensors 2015, 15 16 

 

 

 

Figure 11. Yaw rate curve. 

 

Figure 12. Sideslip angle curve. 

The simulation experiment shows that the working condition is very dangerous when the vehicle loses 

its stability. Such a situation is very difficult for the driver. Therefore, it is necessary to evaluate the 

stability state of the motion control system and other auxiliary means for the automobile control.  

5.2. Experimental Apparatus 

This paper utilizes a HV2 double antenna double function GPS receiver. The HV2 Antenna and HV2 

GPS receiver are demonstrated in Figure 13. HV2 can supply precise directions, and the GPS’s heading 

precision is 0.1 degrees. Its positions accuracy is up to sub-meter level. It has 20 Hz data update rate 

(only for position data update rate). Performance indicators are shown in Table 2. The antenna pair 

mounted on the vehicle is parallel to forward axis, and the baseline length is 1.5 m. 

The system uses the vehicle INS sensor which is made BOSCH Inc. 

 

Figure 13. Crescent HV2 GPS receiver with two antenna. Figure 13. Crescent HV2 GPS receiver with two antenna.

Table 2. Crescent HV2 performance parameters.

Band 1.575 GHz

Type of Receiver Carrier phase smoothing function, L1, C/A code.
Maximum data update rate Heading and position are 20 Hz

Horizontal positioning accuracy single machine: <2.5 m (95%, No SA); E-Dif: <1.0 m (95%, 30 min).
DGPS: <0.5 m (95%); L-Dif: <0.2 m (95%)

Heading accuracy <0.25˝ RMS, baseline is 0.5 m; <0.15˝ RMS, 1.0 m baseline;
<0.10˝ RMS, 2.0 m baseline

Pitch/roll <1˝ RMS
Angular rate 90˝/s (max)

Maximum speed 515 m/s
Maximum elevation 18.288 m
Speed and accuracy 0.05 m/s

In this work, the data acquisition system is an INDAS-5000 embedded system. The system
includes a printed circuit board which is imploded with input and output ports for digital and analog
signals, a programmable gate array (FPGA) and a real-time embedded processor.

An Oxford RT3102 inertial and GPS navigation system instrument is used to verify to GPS and INS
system measurement. RT3102 made in Oxford Technical Solution Company can accurately measure
motion in real time. It can measure the vehicle longitudinal velocity, lateral velocity and sideslip angle.
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5.3. Measurement Experiment

The single lane experimental conditions are selected to measure the vehicle sideslip angle.
Single lane experiment is more commonly used in vehicle stability testing. In addition, it can test the
vehicle ability of overtaking and obstacle avoidance. Figure 14 is a single lane experimental route
map. Similarly, high adhesion and low adhesion road experiments should be carried out. B1 “ 3.5 m,
S1 “ 50 m, S2 “ 30 m.
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Figure 14. Single change test road.

Dual antenna receiver can directly measure the vehicle sideslip angle. The dual antenna GPS
receiver measures vehicle centroid heading angle (Figure 15) and the centroid azimuth (Figure 16).
The difference between the heading angle and the centroid azimuth is the sideslip angle (Figure 17).
Two-stage Kalman filter algorithm is adopted for the vehicle sideslip angles fusion. It is demonstrated
as Figure 18. As in the figure shown, the sideslip angle curve is improved and it is smoother than
before the two-stage Kalman filter adaptation. The sideslip angles that are gauged using GPS/INS
are calibrated by the vehicle sideslip angles measured using the RT3102 sensor, shown as Figure 19.
From Figure 19, it can be found that the trends of those curves are highly similar.
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Figure 19. Vehicle sideslip angles curves calibration by RT3102 sensor. 

From the real experimental results, it could be found that combination use of the two-stage Kalman 

filter and vehicle dynamic model can well work out the problem that is caused by the loss of GPS signals 

and the cumulative error of INS signals in a vehicle stability test. This approach may well satisfy the 

actual time and preciseness demands in vehicle stability key parameters' measurement. 

6. Conclusions 

Vehicle driving state values acquisition that is demanded in the vehicle stability controlling is key 

technology and precondition for electrical controlling system. In order to meet the demand of vehicle 

electrical stability control for vital vehicle parameters measurement, reliability and preciseness are the 

goals. The work proposes a precise and robust approach for vehicle stability measurement based on 

GPS/INS. Based on the GPS velocity measurement technique, a robust and generic method of measuring 

and estimating speed, sideslip angle and the other vehicle state parameters is proposed. An objective 

fuzzy interpolation before Kalman algorithm is used for data synchronization. Employing the GPS and 

INS integration information, fused through a two-stage Kalman filter algorithm, can deal with the 

problems of GPS signal low update rate and loss. RT3102 instrument is used to verify the effect of 

GPS/INS measurement and estimation of vehicle state parameters under typical driving conditions. The 

experimental results showed that the method of GPS and INS measurement for vehicle stability key 

parameters is accurate and reliable, and the approach may satisfy the actual time and preciseness 

demands in vehicle stability key parameters’ measurement and design requirements of vehicle stability 

controller. 

Acknowledgments 

The Department of Education of Heilongjiang and China Association for Science and Technology 

provided the financial support for this work. This work is supported by the Research Projects under the 

Department of Education of Heilongjiang Grant No.12511453 and Overseas Research and Development 

Program under Grant No.10027. 

Author Contributions 

In this paper, Zhibin Miao wrote the abstract and Sections 1, 2, 4 and 6. He also did experiments and 

data analyses. Hongtian Zhang did simulation work and wrote Sections 3 and 5. The manuscript was 

finalized by Jinzhu Zhang. 

Figure 19. Vehicle sideslip angles curves calibration by RT3102 sensor.

From the real experimental results, it could be found that combination use of the two-stage
Kalman filter and vehicle dynamic model can well work out the problem that is caused by the loss of
GPS signals and the cumulative error of INS signals in a vehicle stability test. This approach may well
satisfy the actual time and preciseness demands in vehicle stability key parameters’ measurement.

6. Conclusions

Vehicle driving state values acquisition that is demanded in the vehicle stability controlling is
key technology and precondition for electrical controlling system. In order to meet the demand of
vehicle electrical stability control for vital vehicle parameters measurement, reliability and preciseness
are the goals. The work proposes a precise and robust approach for vehicle stability measurement
based on GPS/INS. Based on the GPS velocity measurement technique, a robust and generic method
of measuring and estimating speed, sideslip angle and the other vehicle state parameters is proposed.
An objective fuzzy interpolation before Kalman algorithm is used for data synchronization. Employing
the GPS and INS integration information, fused through a two-stage Kalman filter algorithm, can
deal with the problems of GPS signal low update rate and loss. RT3102 instrument is used to verify
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the effect of GPS/INS measurement and estimation of vehicle state parameters under typical driving
conditions. The experimental results showed that the method of GPS and INS measurement for vehicle
stability key parameters is accurate and reliable, and the approach may satisfy the actual time and
preciseness demands in vehicle stability key parameters’ measurement and design requirements of
vehicle stability controller.
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