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Abstract: Super dense and distributed wireless sensor networks have become very popular with
the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M)
communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While
densely deployed wireless networks provide one of the most important and sustainable solutions to
improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be
designed to solve the channel congestion problem introduced by the high dynamics of competing
nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention
problem using a novel normalized channel contention analysis model which provides information on
how to tune the contention window according to the state of channel contention. We then proposed
an adaptive channel contention window tuning algorithm in which the contention window tuning
rate is set dynamically based on the estimated channel contention level. Simulation results show
that our proposed adaptive channel access algorithm based on fast contention window tuning can
achieve more than 95% of the theoretical optimal throughput and 0.97 of fairness index especially in
dynamic and dense networks.
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1. Introduction

Distributed Wireless Sensor Networks (WSNs) play an important role of monitoring and sensing
wide-range of environmental parameters in the current and future surveillance systems. Thanks to the
tremendous range of applications that they can enable, distributed WSNs become an essential part of
5G networks where Internet of Things (IoT), Machine-to-Machine (M2M) and Vehicular-to-Vehicular
(V2V) networks are the promising new applications. As a result, distributed WSNs will become
extremely dense in the future. Highly dense wireless sensors need to be deployed in order to sense
environmental parameters as a part of the smart cities [1,2]. Highly dense development of sensors
is also essential to support applications, such as the high precise seismic exploration and pollution
monitoring [3,4], where there are up to thousands of wireless sensors accessing the channel dynamically
within an area of 1000 square meters.

How to design such highly dense and distributed wireless sensor network and more specifically
the channel access algorithm to support extremely large contending nodes accessing the channel are
new challenges. While the wireless sensors have become much denser, contention of accessing wireless
channels among neighboring nodes has increased exponentially and become very dynamic depending
on whether the neighboring nodes have data for transmission or not. The number of contending nodes
can vary from tens to hundreds. Furthermore, the number of contending nodes changes more quickly
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and frequently than the classic sensor networks. For example, a sudden change of contending nodes
from several to several hundreds may happen when there is an event happening in an area where
all the nodes have data to report. In super dense WSNs, new adaptive and efficient channel access
control protocol and algorithm are required to achieve efficient wireless channel access by avoiding
high congestion among the nodes.

In WSNs, contention based carrier sense multiple access with collision avoidance (CSMA/CA)
protocol is applied to enable the channel accessing by multiple nodes in a distributed way. According
to CSMA/CA, WSN nodes generate random backoff time based on the predefined contention window
size before accessing the channel. A well designed scheme to control the contention window size based
on the contending nodes nearby can efficiently solve the channel contention problem [5]. In this paper,
we focus on analyzing CSMA/CA based channel access and contention problem, and proposing a new
channel accessing algorithm which is adaptive to the dynamics of the contending nodes.

Binary Exponential Backoff (BEB) [6,7] has been widely used as the channel access protocol for
WSNs based on IEEE 802.15.4 Zigbee [8] or IEEE 802.11x WiFi [9,10]. By increasing the contention
window size exponentially after each successful channel access, BEB tries to schedule the nodes
accessing the channel in a distributed and efficient way. However, its performance decreases rapidly
when the number of contending nodes becomes very large. Previous work in [11] indicates that
more than 40% throughput is lost when the number of contending nodes reaches 60 for Zigbee/WiFi
based sensor networks. Others [12–15] proposed new backoff algorithms such as EIED and MILD
based on BEB in which contention window is tuned exponentially or linearly after each failure of
channel access attempt. The above proposed schemes have poor overall network performance in dense
networks for lack of the knowledge of channel congestion level when the number of contending nodes
becomes large.

Authors in [16,17] analyzed the relationship between different number of contending nodes and
their corresponding optimal contention window size, based on which a series of contention based
backoff algorithms were proposed in [18–20]. These algorithms firstly try to estimate the number of
nodes trying to access the channel simultaneously by continuously monitoring the channel state, and
then tune the contention window accordingly. It is not easy to estimate the exact number of contending
nodes on-the-fly especially in the super dense and dynamic networks where the number of contending
nodes changes dramatically from time to time. What is more, an accurate estimation always takes
longer time and ultra higher computation complexity, which is not affordable for low power and low
computing power nodes in WSNs.

Considering the problems above, the authors in [21] proved that the probability of an idle state
keeps constant when the network throughput approaches the theoretical upper bound of the channel.
As a result, lots of idle state sensing based algorithms were proposed [22–24]. Without estimating
the exact number of contending nodes, the proposed algorithms try to tune the contention window
according to whether the estimated channel state parameter is optimal or not. These methods can
effectively improve the network throughput when the number of contending nodes is very large.
However, the contention window tuning speed is not fast enough to cope with a situation where
there is a fast and dramatic change of the contending nodes. What is more, as the estimation results
are obtained based on a limited number of samples, large estimation error is inevitable. In idle state
sensing based algorithms, the contention window tuning rate is limited to small value only, otherwise
the contention window size will not be able to reach its optimum because of the inaccurate estimation.
A small tuning rate takes much longer period of time before the contention window can reach its
optimal. If the number of contending nodes changes faster than the contention window tuning rate,
network throughput will decline severely because the contention window is not always at its optimal
size. Considering the issues above, the following parameters are used in this paper to evaluate the
performance of backoff algorithms:

• Tuning Accuracy: defines how well the contention window of the backoff algorithm fits the
channel contention based on the contention levels and number of contending nodes.
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• Tuning Speed: defines how fast the backoff algorithm can tune the contention window to the
optimal size whenever there is a change of the number of contending nodes.

In this paper, a normalized channel contention analysis model is proposed considering the
property of dynamic channel contention. In this model, we introduce a series of transformations
to map channel conditions onto pre-defined reference cases. For each reference case, we can easily
calculate accurate indications about the contention window and its tuning strategy. We also prove the
accuracy of the model. In order to speed up the contention window tuning process without sacrificing
the tuning accuracy, we propose a contention window tuning scheme through adaptive tuning rate. In
this method, the tuning rate is calculated based on the gap between the current contention window
size and the channel contention level. When the gap is big, a large tuning step is applied to make sure
the contention window can quickly reach to its optimal to improve the turning speed, otherwise a
small tuning step is chosen to improve the tuning accuracy.

The rest of this paper is organized as follows. In Section 2 we setup and verify a normalized
channel contention analysis model. An adaptive contention window tuning scheme is proposed and
studied in Section 3. In Section 4, we study the performance of the proposed algorithm both in static
and dynamic settings of networks through simulations. In Section 5 we conclude this paper.

2. Normalized Channel Contention Analysis

According to the CSMA/CA protocol, a contending node can not access the channel directly by
sending data even when it senses a free channel. Instead, it will firstly need to wait for a random
interval decided by the contention window before it starts accessing the channel which is the key
part of the backoff algorithms. Channel contention analysis plays a key role in the design of backoff
algorithms since it helps to understand how to do the tuning of contention window and its impact
on the channel access in terms of throughput and fairness is huge. As specified by the previous
research, channel contention level indicates the average number of contending nodes which try to
send data through the wireless channel simultaneously in a given time slot (time slot: the unit time in
Zigbee/WiFi networks [9]). Therefore, the channel contention level can be represented by the number
of nodes that are contending to access the channel and their corresponding probability of accessing the
channel successfully in a given slot. By modeling the backoff process as a Markov chain, authors in [25]
defined the probability of successfully accessing the channel in the current slot as below Equation (1),

τ =
2

cw + 1
(1)

where cw is a node’s contention window size. The contention level then can be defined as a function of
the number of contending nodes n and the contention window size cw. We denote the contention level
as C(cw, n). (The detailed definition of the function C(cw, n) will be given in next subsection.)

We divide the process of backoff into two steps: the first step is about estimating the contention
level in current channel indicated by C(cw, n), and the second step is to calculate the contention window
so as to optimize the contention level where we model the selection of the contention window as a
matching process problem between cw, n and C(cw, n). Previous research [26] focuses on more ideal
settings where n and cw are perfectly matched without considering cases in highly dense networks
where C(cw, n) is far more complicated. The mismatched cases are very important in determining the
contention window tuning proceeding in highly dense networks in practice.

2.1. Model Construction

In order to deal with the mismatched cases, we introduce a correlation coefficient θ and define
it as θ = n/cw. Thus we have C(cw, n) = C(cw, θ · cw). We define C1(cw, θ) = C(cw, θ · cw).
The mappings between C1(cw, θ) and C(cw, n) are presented in Equation (2), where θ represents
a matching degree between the contention window size and the channel contention state decided by
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the number of contending nodes. In Equation (2), a is an arbitrary positive number, which indicates
the linear variety of cw and θ.{

C1(cw, a · θ) = C(cw, a · θ · cw) = C(cw, a · n)
C1(a · cw, θ) = C(a · cw, θ · (a · cw)) = C(a · cw, a · n) (2)

By combining the function of cw and θ in C1(cw, θ), we can notice that although channel contention
level changes as a function of θ, it may remain static if cw and n are increased and decreased accordingly.
We introduce a constant contention window size cwre f , so that C1(cw, θ) can be expressed as follows
Equation (3),

C1(cw, θ) = C1(cwre f , θ) + N(cw) (3)

In Equation (3), N(cw) was defined as the difference between C1(cw, θ) and C1(cwre f , θ).
If we can prove that N(cw) is small enough compared to the value of C1(cwre f , θ), C1 can be further
simplified as a function of one variable plus the noise. Moreover, if the noise is small enough, the
expression of C1 can be further simplified. We denote the simplified C1(cw, θ) as C2(θ). Mapping
C(cw, n) onto C2(θ) brings significant difference to the design of backoff algorithms.

Although the expression of C(cw, n) has been simplified, original C(cw, n) is still embedded
in C2(θ) which is important to improve the backoff algorithm. If the reference cases are properly
designed, we can significantly simplify the algorithm. The change of channel contention level will be
indicated by a deviation of θ. By utilizing its deviation degree, the contention window can be tuned
more efficiently in terms of throughput and speed. As some of the cases with different cw have the
same θ, we can dramatically reduce the complexity of the proposed algorithm which is important
in practice.

2.2. Model Verification

The validity of the proposed model can be evaluated through |N(cw)| which is the absolute
deviation of the mapping as in Equation (3). The upper bound of |N(cw)| can be calculated as
Equation (4)

|N(cw)| = |C1(cw, θ)− C1(cwre f , θ)|

= |
∫ cw

cwre f

∂C1(t, θ)

∂t
dt| ≤ |cw− cwre f | ·max{|∂C1(t, θ)

∂t
|, t ∈ [cwre f , cw]} (4)

According to work in [11,27,28], the contention of accessing the channel can be modeled as a
discrete time stochastic process that includes three states: idle slot state, successful packet transmission
state including RTS/CTS/DATA/ACK and failed transmission state indicated by a failed RTS. The
probabilities of the above states are three basic parameters in CSMA/CA based channel access schemes.
They can be used to indicate the contention level in channel. Other channel parameters can be
calculated based on the three parameters above. Thus evaluating |N(cw)| based on C1(cw, θ) equals to
evaluating |N(cw)| based on the three basic states.

Next we will focus on calculating the upper bound of |N(cw)| for the three cases where channel
contention level is determined by the probability of idle slot state, the probability of successful
transmission state, and the probability of failed transmission state accordingly.

2.2.1. Case 1: Channel Contention Level Depends on the Probability of Idle Slot State

An idle slot state will appear if there is no node having data for transmission. Thus the probability
of an idle slot state can be expressed as Equation (5) below.

PIdle(n, τ) = (1− τ)n (5)
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By substituting n = θ · cw and Equation (1) to Equation (5), the probability of an idle
channel becomes:

PI(cw, θ) = (
cw− 1
cw + 1

)θ·cw (6)

We can have the first-order partial derivative of PI(cw, θ):

∂PI(cw, θ)

∂cw
= PI(cw, θ) · (θ · ln cw− 1

cw + 1
+

2θ · cw
cw2 − 1

) (7)

In order to estimate ∂PI(cw, θ)/∂cw, we continue to calculate the second-order partial derivative
of PI(cw, θ).

Let

X(cw, θ) = θ · ln cw− 1
cw + 1

+
2θ · cw
cw2 − 1

(8)

and

∂X(cw, θ)

∂cw
=

−4θ

(cw2 − 1)2 (9)

Thus

∂PI(cw, θ)

∂cw
= PI(cw, θ) · X(cw, θ) (10)

Then we can have

∂2PI(cw, θ)

∂cw2 = PI(cw, θ) · [X(cw, θ)2 +
−4θ

(cw2 − 1)2 ] (11)

Obviously, ∂X(cw, θ)/∂cw < 0 which means that X(cw, θ) decreases as a function of cw.
As limcw→+∞ X(cw, θ) = 0 for every θ, we have X(cw, θ) > 0. Since PI(cw, θ) ∈ [0, 1], we can
have ∂PI(cw, θ)/∂cw > 0.

We define

Xa(cw, θ) =

√
−∂X(cw, θ)

∂cw
=

2
√

θ

cw2 − 1
(12)

We then have

∂Xa(cw, θ)

∂cw
=
−4
√

θ · cw
(cw2 − 1)2 (13)

Now we can combine Equation (11) with Equation (12) and we can get

∂2PI(cw, θ)

∂cw2 = PI(cw, θ) · [X(cw, θ) + Xa(cw, θ)] · [X(cw, θ)− Xa(cw, θ)] (14)

From Equations (9) and (13), we can get ∂[X(cw, θ) + Xa(cw, θ)]/∂cw < 0 and
∂[X(cw, θ)− Xa(cw, θ)]/∂cw > 0. By combining the conditions limcw→+∞[X(cw, θ)± Xa(cw, θ)] = 0,
we have X(cw, θ) + Xa(cw, θ) > 0 and X(cw, θ)− Xa(cw, θ) < 0. For PI(cw, θ) ∈ [0, 1], we can get
∂2PI(cw, θ)/∂cw2 < 0.
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From the above we can see that ∂PI(cw, θ)/∂cw monotonously approaches 0 with respect to cw.
Therefore, for any cw > cwre f we have

max{|∂PI(t, θ)

∂t
|, t ∈ [cwre f , cw]} = |

∂PI(cwre f , θ)

∂cwre f
| (15)

Thus according to Equation (4), we can have the upper bound of N(cw) in Equation (16) for any
cw > cwre f as below,

|N(cw)| ≤ (cw− cwre f ) · |
∂PI(cwre f , θ)

∂cwre f
| (16)

2.2.2. Case 2: Channel Contention Level in the Successful Transmission State

For this case, the successful transmission in a given slot happens when there is only one node
having data for transmission and the rest nodes do not have data. Thus the probability of successful
transmission state can be expressed as:

Psuccess(n, τ) = nτ(1− τ)n−1 (17)

By substituting n = θ · cw and Equation (1) to Equation (17), we can have the next expression:

PS(cw, θ) =
2θ · cw
cw− 1

· ( cw− 1
cw + 1

)θ·cw (18)

By defining

Y(cw, θ) =
−1

cw · (cw− 1)
(19)

We can have

∂Y(cw, θ)

∂cw
=

2cw− 1
cw2 · (cw− 1)2 (20)

and then we have

∂PS(cw, θ)

∂cw
= PS(cw, θ) · [X(cw, θ) + Y(cw, θ)] (21)

Thus we can have

∂2PS(cw, θ)

∂cw2 = PS(cw, θ) · {[X(cw, θ) + Y(cw, θ)]2 +
∂X(cw, θ)

∂cw
+

∂Y(cw, θ)

∂cw
} (22)

It is obvious that ∂X(cw, θ)/∂cw + ∂Y(cw, θ)/∂cw > 0. Since PS(cw, θ) ∈ [0, 1], we have
∂2PS(cw, θ)/∂cw2 > 0. As ∂X(cw, θ)/∂cw + ∂Y(cw, θ)/∂cw > 0, and limcw→+∞[X(cw, θ) + Y(cw, θ)] = 0,
we have ∂PS(cw, θ)/∂cw < 0.

Based on the above, we can conclude that PS(cw, θ) monotonously approaches 0 with respect
to cw. Therefore, for any cw > cwre f , we have

max{|∂PS(t, θ)

∂t
|, t ∈ [cwre f , cw]} = |

∂PS(cwre f , θ)

∂cwre f
| (23)

According to Equation (4), for any cw > cwre f we can get the upper bound of N(cw) according to
Equation (24) below,
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|N(cw)| ≤ (cw− cwre f ) · |
∂PS(cwre f , θ)

∂cwre f
| (24)

2.2.3. Case 3: Channel Contention Level in the Conflicting Transmission State

Since the idle slot state, successful packet transmission state and conflicting packet transmission
state are the only three possible states while accessing the channel, the probability of conflicting packet
transmission state PC(cw, θ) and its corresponding first-order partial derivative can be calculated as
Equations (25) and (26) as below accordingly:

PC(cw, θ) = 1− PI(cw, θ)− PS(cw, θ) (25)

∂PC(cw, θ)

∂cw
= −∂PI(cw, θ)

∂cw
− ∂PS(cw, θ)

∂cw
(26)

According to Sections 2.2.1 and 2.2.2, we can have

∂PI(cw, θ)

∂cw
· ∂PS(cw, θ)

∂cw
< 0 (27)

Therefore, for any cw < cwre f we have

max{|∂PC(t, θ)

∂t
|, t ∈ [cwre f , cw]} = max{|∂PS(cw, θ)

∂cw
|, |∂PI(cw, θ)

∂cw
|} (28)

Thus according to Equation (4), we can calculate the upper bound of N(cw) as in Equation (29)
for any cw > cwre f .

|N(cw)| ≤ (cw− cwre f ) ·max{|
∂PI(cwre f , θ)

∂cwre f
|, |

∂PS(cwre f , θ)

∂cwre f
|} (29)

2.2.4. The Analysis of System Throughput

According to the above analysis of PI(cw, θ), PS(cw, θ) and PC(cw, θ), the system throughput
S(cw, θ) can be expressed as Equation (30) [25] as follows,

S(cw, θ) =
Ldata · PS(cw, θ)

TS · PS(cw, θ) + TC · PC(cw, θ) + TI · PI(cw, θ)
(30)

where Ldata is the average frame size at the physical layer, and TI , TS, TC are the average time durations
of the three states accordingly which can be estimated by PHY and MAC layers [9].

By separating the variable cw and θ and substituting Equation (25) to Equation (30), we have:

Sr(cw, θ) =
Ldata

TS − TC + TC · [P−1
S (cw, θ)− η · PI(cw, θ) · P−1

S (cw, θ)]
, η = 1− TI

TC
(31)

We then define

Λ(cw, θ) = P−1
S (cw, θ)− η · PI(cw, θ) · P−1

S (cw, θ) (32)

According to Equations (6)–(9) and (18)–(20), we can get the first-order and second-order partial
derivatives of Λ(cw, θ) as shown in Equations (33) and (34) below.

∂Λ(cw, θ)

∂cw
= − 1

PS(cw, θ)
· (X(cw, θ) + Y(cw, θ)− η · PI(cw, θ) ·Y(cw, θ)) > 0 (33)
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∂2Λ(cw, θ)

∂cw2 =
1

PS(cw, θ)
· [(X(cw, θ) + Y(cw, θ))2 − (

∂X(cw, θ)

∂cw
+

∂Y(cw, θ)

∂cw
)

− η · PI(cw, θ) · (Y(cw, θ)2 − ∂Y(cw, θ)

∂cw
)] < 0

(34)

Therefore we can have ∂S(cw, θ)/∂cw < 0 and ∂2S(cw, θ)/∂cw2 > 0. We can conclude that
∂S(cw, θ)/∂cw monotonously approaches 0 with respect to cw. Therefore, for any cw > cwre f we
can have

max{|∂S(t, θ)

∂t
|, t ∈ [cwre f , cw]} = |

∂S(cwre f , θ)

∂cwre f
| (35)

According to Equation (4), we can calculate the upper bound of N(cw) in Equation (36) for any
cw > cwre f .

|N(cw)| ≤ (cw− cwre f ) · |
∂S(cwre f , θ)

∂cwre f
| (36)

From the definition of Λ(cw, θ), we can see that Ldata and TS are independent of S(cw, θ).
Therefore, we set Ldata = 1KB for simplicity in the next section.

2.2.5. Model Evaluation

According to the above analysis, the upper bound of |N(cw)| is controlled by
Equations (16), (24), (29) and (36). We set the maximum contention window size cwmax = 10000
in this paper since this size is large enough even for super dense networks. According to the monotone
property of PI(cw, θ), PS(cw, θ), PC(cw, θ) and S(cw, θ), we have:

|N(cw)| ≤ |N(cwmax)| (37)

We can calculate the upper bound of |N(cw)| for cw ∈ [cwre f , cwmax] through
Equations (16), (24), (29) and (36) respectively.

In order to improve the estimation accuracy, we introduce sub-cases by cw = cwi, i = 0, 1, 2, ..., In

(In is a counter of the number of target sub-cases), and we have cwre f = cw0 < cw1 < cw2 < · · · <
cwIn < cwmax. Then |N(cw)|, cw ∈ [cwre f , cwmax] can be calculated according to Equation (38) below,

|N(cw)| ≤ |N(cwmax)| <
In−1

∑
i=0

(cwi+1 − cwi) · |
∂C1(cwi, θ)

∂cwi
|+ (cwmax − cwIn) · |

∂C1(cwIn , θ)

∂cwIn

| (38)

Figure 1 shows the logarithmic variance of ∂PI(cw, θ)/∂cw, ∂PS(cw, θ)/∂cw and ∂S(cw, θ)/∂cw
when cw changes from 32 to 700 and θ changes from 0 to 1. In the figure, we plotted the contours
of different orders of magnitude. The maximum contention window size on each contour has
been marked.

Based on both Figure 1 and Equation (38), we can calculate |N(cw)|. We take an example where
the channel contention level is indicated by the probability of an idle slot. By letting [cw0 = 32,
cw1 = 59, cw2 = 132, cw3 = 286, cw4 = 620], we can get |N(cw)| < 2.48× 10−4 from Equation (38) as
shown in Figure 1. Table 1 shows |N(cw)| in the case where we have cwre f = 32, 64, 128, 256. As for the
throughput, |N(cw)| is normalized by being divided by S(cwre f , θopt) which is the optimal throughput
in this case.
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Figure 1. The logarithmic variance of ∂PI(cw, θ)/∂cw, ∂PS(cw, θ)/∂cw and ∂S(cw, θ)/∂cw, when cw
changes from 32 to 700 and θ changes from 0 to 1.

Table 1. The certification results of |N(cw)| in the cases where channel contention level is indicated by
different channel parameters.

cwre f = 32 cwre f = 64 cwre f = 128 cwre f = 256

C1 = Pi 2.48× 10−4 9.20× 10−5 2.88× 10−5 1.32× 10−5

C1 = Ps 2.77× 10−2 1.80× 10−2 7.70× 10−3 4.10× 10−3

C1 = Pc 2.75× 10−2 1.79× 10−2 7.70× 10−3 4.10× 10−3

C1 = S 3.08% 2.06% 0.87% 0.46%

3. Adaptive Multi-Level Contention Window Tuning Algorithm

In the previous sections, we introduced normalized contention analysis model through which
every possible channel state is effectively mapped onto a reference case. In this section, we propose
a multi-level contention window tuning scheme with contention window tuning rate adaptively
adjusted based on the channel contention information.

3.1. Basic Contention Window Tuning under Normalized Model

As shown in Table 1, |N(cw)| in PI(cwre f , θ) is smaller than that in Ps(cwre f , θ) and Pc(cwre f , θ) in
the normalized model. Therefore, we estimate the probability of idle slot state to control the channel
contention in our proposed algorithm. As the estimation module with the sample size of hundreds
can only effectively distinguish the deviations which are larger than 10−3, |N(cw)| ≤ 2.48× 10−4 can
hardly be detected. Therefore, cwre f = 32 is applied in the following analysis.

We make CWMAX = 10, 000 as the maximum contention window size and CWMIN = 32 as
the minimum contention window size. The probability of the idle slot state of the channel at all
different contention level can be calculated through PI(cwre f , θ) = PI(cwre f , n/cw). Figure 2 shows
the relationship between graph of PI(cwre f , θ) and the normalized S(cwre f , θ) which is obtained by
S(cwre f , θ)/ max{S(cwre f , θ)}. As shown by the figure, a one-one mapping can be obtained between
the probability of an idle slot in channel and the normalized throughput.

30229



Sensors 2015, 15, 30221–30239

Version November 22, 2015 submitted to Sensors 11 of 22

contention in our proposed algorithm. As the estimation module with the sample size of hundreds can241

only effectively distinguish the deviations which are larger than 10−3, |N(cw)| ≤ 2.48×10−4 can hardly242

be detected. Therefore, cwref = 32 is applied in the following analysis.243

We make CWMAX = 10000 as the maximum contention window size and CWMIN = 32 as244

the minimum contention window size. The probability of the idle slot state of the channel at all245

different contention level can be calculated through PI(cwref , θ) = PI(cwref , n/cw). Fig. 2 shows246

the relationship between graph of PI(cwref , θ) and the normalized S(cwref , θ) which is obtained by247

S(cwref , θ)/ max{S(cwref , θ)}. As shown by the figure, a one-one mapping can be obtained between248

the probability of an idle slot in channel and the normalized throughput.249
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From the figure above, we can easily get θopt corresponding to the optimal overall throughput. The
probability of the idle slot state can be calculated using PI(cwre f , θopt). In order to achieve maximum
throughput, θ should stay at its optimal value, which can be fully indicated by PI(cwre f , θ). We denote
P̂I as the estimated PI(cwre f , θ). If we detect P̂i > PI(cwre f , θopt), we know a smaller cw is required to
pull the θ back to θopt, and likewise if we detect P̂I < PI(cwre f , θopt), then cw should be increased.

3.2. Adaptive Contention Window Tuning

As we know, the number of contending nodes may vary from tens to hundreds within a
short time period depending on if nodes have data for transmission. The dynamics of number
of contending nodes will deviate PI(cwre f , θ) from its optimal value. The contention window tuning
rate depends on the specific number of contending nodes and how fast it changes. If the number of
contending nodes changes slowly, we have enough time to tune the contention window to match
the current number of contending nodes. If a large number of contending nodes join the contention,
a much faster tuning process is required to make sure the contention window reaches the optimal
value on time. Unfortunately, these two situations can hardly be solved using one single contention
window tuning rate because a more refined tuning requires a smaller tuning rate, while a faster tuning
needs a larger turning rate. In order to solve the problem above, we propose an adaptive contention
window tuning strategy in which the contention window tuning rate can be set dynamically according
to the real-time channel contention level.

3.2.1. Algorithm Design

In the normalized model, a sudden increase of contending nodes can be represented by the
increase of θ through the mapping of θ = n/cw. Based on the one-to-one mapping in Figure 2, we can
see that the probability of an idle slot state is exactly determined by θ. It means that the amplitude of
changing in the number of contending nodes can be indicated by the variance of PI(cwre f , θ). Therefore,
contention window tuning rates can be determined in real-time adaptively based on P̂I .

In Figure 2, we can see the relationship between PI(cwre f , θ) and the corresponding overall
throughput by dotted lines in the cases where θ suddenly increases to 2 and 4 times of θopt, and then
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decreases to half and quarter of θopt. Just the same as the basic contention window tuning processing
during which we believe θ has increased when P̂I is smaller than Pi(cwre f , θopt), and θ has at least
doubled when the P̂I is smaller than PI(cwre f , 2 · θopt). Therefore, the contention window can be
increased again to make sure θ is approaching θopt faster. Similarly the contention window size should
be increased again if P̂I < PI(cwre f , 4 · θopt) happens. The similar rules will be applied so that if
P̂I > PI(cwre f , θopt/2) or P̂I > PI(cwre f , θopt/4) happens, the contention window should be decreased
by half each time.

Based on the discussions above, the M-Level contention window tuning algorithm with a
minimum tuning rate of γ is proposed in Algorithm 1. In this algorithm, the decisions on how to
change contention window size and tuning rate are made based on a pair of vectors: vector_inc[M] and
vector_dec[M]. Each vector divides the contention channel into M different contention levels according
to its M ordered elements using M thresholds of PI(cwre f , θ). As shown in Algorithm 1, the ordered
thresholds of PI(cwre f , θ) are defined as PI(cwre f , θopt · γi), i ∈ [0, M − 1] and PI(cwre f , θopt/γi), i ∈
[0, M− 1], which are pre-defined during the initialization period. A node running M-Level contention
window tuning algorithm will compare the P̂I with the elements of the vector. Once P̂I is smaller than
one of the elements in vector_inc[M], the contention window would be multiplied by γ. Likewise, if the
P̂I is larger than one of the elements in vector_dec[M], the contention window would be divided by γ.
Based on the above, the update of M contention window tuning rate can be specified as [γ, γ2, . . . , γM]

according to different channel contention levels.

Algorithm 1 A M-Level contention window tuning algorithm with a minimum tuning rate of γ.

Initialization
1: unsigned slot_cnt = 0, idle_slot_cnt = 0, k;
2: double cw = CW_MIN, vector_inc[M], vector_dec[M];
3: for k = 0; k < M; k ++ do

4: vector_inc[k] = PI(32, θ · γk);
5: vector_dec[k] = PI(32, θ/γk);
6: end for

Algorithm Body
1: while 1 do

2: if detecting an idle slot then

3: slot_cnt ++;
4: if the slot is over with idle then

5: idle_slot_cnt ++;
6: end if
7: end if
8: end while
9: while 1 do

10: if before generating a new backoff period then

11: if slot_cnt− idle_slot_cnt ≥ 5 then

12: for k = 0; k < M; k ++ do

13: if idle_slot_cnt/slot_cnt < vector_inc[k] then

14: cw = cw ∗ γ;
15: end if
16: if idle_slot_cnt/slot_cnt > vector_dec[k] then

17: cw = cw/γ;
18: end if
19: end for
20: slot_cnt = 0, idle_slot_cnt = 0;
21: end if
22: end if
23: end while
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3.2.2. The Selection of M

Through our proposed M-level contention window tuning algorithm, the contention window
tuning accuracy can be improved by adopting a small γ, and a high tuning rate can also be achieved
by applying large M. While the γ can be selected according to the need, the range of M is very limited.
It is because the algorithm is based on the assumption that the thresholds including vector_inc[k],
k ∈ [0, M − 1] and vector_dec[k], k ∈ [0, M − 1] can be represented by P̂I . When the thresholds are
very close to each other and the sample size which is used to calculate P̂I is very small, the difference
among thresholds is too small to matter. For example, when P̂I is calculated based on 10 samples
of the channel, the thresholds with the value of 0.71 and 0.74 could hardly be identified because the
resolution of P̂I is around 0.1 which is decided by the samples.

When selecting M, we should ensure the difference between neighboring thresholds is large
enough to be represented by the P̂I . As shown in Algorithm 1, P̂I is calculated based on the consecutive
idle slots. We firstly start with a special case where idle_slot_cnt = slot_cnt. In this case, P̂I = 1 which
means the channel is always be busy which is obviously it impossible. Therefore, in order to make P̂I
valid, P̂I should not be updated unless a busy slot is detected.

We consider another case where P̂I is used to update the contention window after each busy slot.
In this case, the sample size right before calculating P̂I can be interpreted as the estimation of the
average number of consecutive idle slots between two busy slots. As the probability of an idle channel
in a certain slot is a 0-1 distribution with probability of PI(cwre f , θ), the average number of consecutive
idle slots between two busy slots can be expressed as 1/PI(cwre f , θ). Therefore, we can calculate the
sample size of P̂I through Equation (39).

SS(θ) =

[
1

PI(cwre f , θ)

]
(39)

The sample size can be obtained based on θ, and the sample sizes of P̂I for all the
thresholds in vector_inc and vector_dec can be calculated using SS(vector_inc[k]), k ∈ [0, M− 1] and
SS(vector_dec[k]), k ∈ [0, M − 1]. If Equation (40) holds, PI(cwre f , vector_inc[k]), k ∈ [0, M − 1] and
PI(cwre f , vector_dec[k]), k ∈ [0, M− 1] can be totally differentiated because the numbers of consecutive
idle slots between two busy ones for different thresholds are quite different, and these differences
can be effectively indicated by P̂I after each busy slot. Obviously a maximal M can be derived from
Equations (39) and (40).{

|SS(vector_inc[u])− SS(vector_inc[v])| ≥ 1, u, v ∈ [0, M− 1]
|SS(vector_dec[u])− SS(vector_dec[v])| ≥ 1, u, v ∈ [0, M− 1]

(40)

In order to get larger M, we can limit the minimum number of busy slots before calculating
P̂I to 5 in this paper, and then we can have SS(θ) = [5/Pi(32, θ)]. According to the requirement in
Equation (40), Table 2 lists the maximal M for different γ.

Table 2. The maximal M and corresponding equivalent maximal contention window tuning rate (γmax)
in M-level contention window tuning algorithm for different γ ranging from 1.2 to 2.0.

γ 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
M 10 9 9 7 7 6 6 5 5

γmax 5.16 8.16 14.76 11.39 16.78 14.20 18.90 13.03 16.00

The contention window size will be updated if and only if the number of busy slots P̂I is larger
than 5 in our case. As the contention window tuning will only be triggered when a node is about
to access the channel, the number of busy slots represented by P̂I will be always larger than 5.
This can sufficiently ensure the differentiation of thresholds in M-level contention window tuning
algorithm. Now the M-level contention window tuning algorithm with parameters of M and γ as
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inputs can be fully constructed. In next section, we will focus on the performance evaluation of our
proposed algorithm.

4. Performance Evaluation of M-level Contention Window Tuning Algorithm

In this section, we study the performance of the proposed algorithm using OMNET++
simulator [29]. Some of the PHY and MAC layer parameters are listed in Table 3 based on the
IEEE 802.11b standard [9]. The reason for studying the performance based on IEEE 802.11b network is
that IEEE 802.11b supports longer distance than that of IEEE 802.15.4, so that the number of contending
nodes in IEEE 802.11 networks can be much larger than that in IEEE 802.15.4 networks. Since the
backoff processing is universal in all the IEEE 802.11x and IEEE 802.15.4 standards, the proposed
algorithm and its performance study work for all the backoff based medium access schemes in
IEEE 802.11x and 802.15.4 networks.

Table 3. PHY layer and MAC layer parameters used in simulation.

Parameters Value Parameters Value

Channel Bit Rate 11 Mbps Payload Length 1 KB

Slot Time(ST) 20 µs MAC Header 224 bit

SIFS 10 µs RTS 160 bit

DIFS 50 µs CTS 112 bit

PHY Header 192 µs ACK 112 bit

We apply two different types of networks in terms of node density: sparse networks where the
number of contending nodes is from 4 to 20, and the super dense networks where the number of
contending nodes can be up to 400. We firstly study the case when the number of contending nodes
remains static during the whole simulation period, and then consider the dynamic case where the
number of contending nodes changes as time goes.

4.1. Simulations in Sparse Networks

In this section, the throughput and fairness of the proposed algorithm are studied in sparse
networks where the number of contending nodes varies from 4 to 20. 8 groups of simulations are
conducted with different parameters for algorithms including BEB [6] and the idle sense algorithm [23],
which is a classical and efficient estimation-based algorithm. We choose different γ and M for our
proposed algorithm.

Figure 3 shows the results of the throughput while applying different backoff algorithms. In
the figure, the curve named opt is the result of S(cw, θopt) which is the optimum throughput that
CSMA/CA based networks can achieve theoretically. From the figure we can see that BEB is efficient
when the number of contending nodes is very small. However when number of contending nodes
increases, the throughput decreases rapidly. This is because BEB algorithm can not estimate the channel
contention accurately enough to fully utilize the channel when the channel contention becomes intense.
The throughput of idle sense algorithm decreases when the number of contending nodes is small.
This is because a smaller number of contending nodes has a shorter backoff time, so that a small
number of samples could be obtained during the backoff period. The limit on the number of samples
will lead to inaccurate estimates. The inaccurate estimates together with the unbalanced contention
window tuning rate in idle state normally will introduce errors to the contention window size. This
problem is effectively solved in our proposed algorithm. Two simulations of our proposed algorithm
with parameters of (γ = 1.2, M = 10) and (γ = 1.8, M = 6) are presented in the figure. In order
to evaluate their performance, we compare with the performance of the proposed algorithm with
settings of (γ = 1.2, M = 1) and (γ = 1.8, M = 1). We also found that the throughput with
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(γ = 1.2, M = 10) and (γ = 1.8, M = 6) is much lower than that of other cases. This is mainly
because inaccurate estimates result in even larger contention window deviation from the optimal size
in M-level tuning scheme. Nevertheless, the overall throughput of our proposed algorithm is very
close to the optimal value with a loss of no more than 1% for all the settings. We also studied the
throughput of with (γ = 1.210 = 5.19, M = 1) and (γ = 1.86 = 18.9, M = 1). From the figure, we can
see that larger contention window tuning rate decreases the throughput in sparse networks because
tuning of contention window size happens very frequently even when the number of contending nodes
changes slightly. Therefore, we can conclude that in order to achieve high throughput performance in
sparse networks, small contention window tuning rate is necessary.
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Figure 3. The normalized throughput performance of M-level contention window tuning algorithm
with different M and γ, idle sense algorithm and BEB for sparse deployed networks.

In estimate-based backoff algorithms, all nodes try to improve the channel utilization rate to
approach the optimal rate. However, during the process, the contention window size on each
contending node is different when network topology changes or estimate error occurs, and this
may remain for quite a long time. Therefore, the fairness among nodes is another key factor of
estimate-based backoff algorithms. In this paper, we apply the fairness index concept defined by
Jain [30] to evaluate the fairness of each algorithm. The fairness index is defined as:

FI =
(∑i THi)

2

n ·∑i TH2
i

(41)

in which n is the number of contending nodes, and THi is the throughput of node i. Based on the
Cauchy-Schwartz inequality, we obtain FI ≤ 1, and the equality holds if and only if all THi are equal.
Thus, the more FI approaches to 1, the better fairness the algorithm can achieve. Figure 4 shows the
fairness of the 8 sets of simulations we analyzed above. Fortunately all of them achieved remarkable
fairness which is above 0.995 where the number of contending nodes ranges from 4 to 20.
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Figure 4. The fairness performance of M-level contention window tuning algorithm with different M
and γ, idle sense algorithm and BEB for sparse deployed networks.

4.2. Performance in Super Dense Networks

In this section, the throughput and fairness are evaluated in super dense networks where the
number of contending nodes varies from 10 to 400. Because smaller contention window tuning rate is
required in sparse deployed networks and the throughput of BEB declines severely when the number
of contending nodes reaches 20, in this section we focus on the performance of idle sense algorithm and
our proposed algorithm with parameters of (γ = 1.2, M = 10), (γ = 1.8, M = 6), (γ = 1.2, M = 1)
and (γ = 1.8, M = 1).

Figure 5 shows the simulation results of network throughput of different backoff algorithms. The
curve named opt in the figure is the result of theoretical optimal throughput calculated by S(cw, θopt).
From the figure we can see that the throughput of simulation always oscillates around a certain level.
It is reasonable because the contention window size of each node may be enumerated, and it is only
optimal for some contending nodes. In other cases, the throughput slightly decreases because of the
deviation of contention window size from their optimal size. The throughput with (γ = 1.2, M = 1),
(γ = 1.8, M = 1), and that of the idle sense algorithm are all very close to the optimal value. The
throughput of M-level contention window tuning is almost equivalent to that of 1-level tuning case
and that of idle sense algorithm, and the overall differentiation is no more than 0.5%.

The fairness of different algorithms in super dense deployed networks is shown in Figure 6.
From the figure we can see that as the number of contending nodes increases, there is a significant
decline of the fairness in all the simulations. In sparse networks, smaller contention tuning rate
improves the throughput, however it has negative impact on the fairness. This is because differential
contention window sizes with different contending nodes are much easier to be increased during a
substantial change of contention window size through small amplitude adjustments. Therefore, the
fairness of idle sense algorithm decreases rapidly after the number of contending nodes is larger than 50.
However, the superiority of M-level contention window tuning algorithm is fully demonstrated in the
simulations. The fairness indexes for (γ = 1.2, M = 10), (γ = 1.8, M = 6) are larger than 0.97 even
when the number of contending nodes increases to 400.
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Figure 5. The normalized throughput performance of M-level contention window tuning algorithm
with different M and γ and idle sense algorithm for super dense deployed networks.
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Figure 6. The fairness performance of M-level contention window tuning algorithm with different
M and γ and idle sense algorithm for super dense deployed networks.

4.3. Simulations in Very Dynamic Super Dense Networks

According to the definition of θ in Section 2.1, a sudden change of the number of contending
nodes will make θ deviates from its optimal value. As shown in Figure 2, throughput declines with
respect to such deviations. Backoff algorithms detect such changes and try to make θ back to optimal
by tuning the contention window. Thus, the contention window tuning efficiency can be represented
by the time spent on.

30236



Sensors 2015, 15, 30221–30239

In this section we study the performance of our proposed algorithm in settings where the channel
contention changes frequently as the number of nodes contending the channel changes dramatically.
In the simulations, the number of contending nodes changes following steps of (4, 8, 4, 15, 4, 40, 4,
100, 4, 200, 4, 300, 4, 400 and 4) and each step lasts for 5 seconds. Figure 7 shows the dynamics of
throughput of different algorithms running the simulation above. From the figure we can see that the
throughput becomes extremely low when the number of contending nodes changes suddenly, and the
throughput gradually increases to the optimal value after a certain period of time with the help of the
proposed algorithm. When the number of contending nodes changes in small scale, all the algorithms
have similar performance. However when the number of contending nodes changes tremendously,
the throughput of BEB decrease very much. The idle sense algorithm has the slowest contention
window tuning speed because of its small contention window tuning rate as shown by the Figure.
Similar situation appears in our proposed algorithm with (γ = 1.2, M = 1). In the situation where the
number of contending nodes changes from 4 to 400, their adaptation time is more than 3 s. By applying
the larger γ = 1.8, the adaptation time is effectively reduced to around 2s. Our proposed M-level
tuning algorithm can reduce the adaptation time dramatically since a much larger contention window
tuning rate can be applied when the channel contention becomes much more intensive according
to our algorithm. From the figure we can see that for the situations where n ≤ 400, our proposed
algorithm with parameters of (γ = 1.2, M = 10) and (γ = 1.8, M = 6) has a very small adaptation
time smaller than 0.5 s.
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Figure 7. The normalized throughput performance of M-level contention window tuning algorithm
with different M and γ, idle sense algorithm and BEB when the number of contention nodes changes.

5. Conclusions

In this paper, an adaptive and efficient channel access method for super dense wireless sensor
networks was proposed. By constructing and verifying a normalized channel contention model, we
mapped the diverse channel parameters onto reference cases. Our proposed model significantly
reduces the complexity of channel contention analysis. Based on this normalized model, a multi-level
contention window tuning algorithm was proposed. By estimating the channel contention level based
on the deviation degree of the channel parameters from its optimal value, the contention window
tuning rate can be set dynamically and adaptively according to the number of contending nodes to
accelerate the contention window adaptation process.

To evaluate the performance of the proposed algorithm, we performed comprehensive simulations
in sparse networks, super dense networks and dynamic networks. Simulation results show that our
proposed algorithm can provide stable throughput and fairness performance close to the theoretical
throughput bound in networks with different node densities and dynamics. Our algorithm can also
achieve high contention window tuning speed in dynamic networks where the number of active nodes
changes rapidly.
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