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Abstract: This research proposes an accurate vehicular positioning system which can achieve
lane-level performance in urban canyons. Multiple passive sensors, which include Global
Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated
in the proposed system. As the main source for the localization, the GNSS technique suffers
from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper
proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS
technique reduces the multipath and NLOS effects by using the 3D building map. In addition,
the inertial sensor can describe the vehicle motion, but has a drift problem as time increases.
This paper develops vision-based lane detection, which is firstly used for controlling the drift of
the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane
detection function, and further reduce the lateral positioning error in the proposed localization
system. We evaluate the integrated localization system in the challenging city urban scenario.
The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean
positioning error.

Keywords: vehicle self-localization; sensor integration; 3D map; GNSS; inertial sensor; vision; lane
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1. Introduction

Vehicle self-localization in urban environment is a challenging but significant topic for
autonomous driving and driving assistance. Both motion planning and vehicle cooperation need
accurate localization. Localization methods can be categorized into two types based on the sensors
used: passive sensor-based and active sensor-based. Passive sensors such as Global Navigation
Satellite System (GNSS) receivers and vision sensors collect signals, radiation, or light from the
environment, while the active sensors have transmitters, which can send out light waves, electrons
or signals. The reflection bounced off the target will be collected by the active sensor. Velodyne, a
type of Light Detection and Ranging (LIDAR) sensor is a representative active sensor for vehicle
self-localization [1–7]. Active sensor-based localization has a weakness from a practical point of
view—the price of these sensors is currently very high. Although we expect that the cost of these
sensors will be reduced in the near future, they suffer from another critical problem, which is the
high energy consumption. Therefore, it is necessary to consider low-cost solutions such as GNSS
receivers, cameras and inertial sensors—i.e., passive sensors—as an alternative or compensation.
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Global Positioning System (GPS) is the main information source in vehicle navigation, which
was indicated from the famous Defense Advanced Research Projects Agency (DARPA) GRAND
CHALLENGE [8]. Under ideal conditions, namely eight GPS satellites or more in the open sky
field, the error standard deviation of the differential mode GPS positioning is approximate 0.3 m [9].
However, vehicles often run in urban areas, in which GNSS positioning performance is severely
degraded due to Non-Line-Of-Sight (NLOS) and multipath effects. These effects may lead to a 100 m
positioning error in the city urban environment [10]. Various GNSS technologies were proposed
to mitigate the NLOS and multipath effects [11]. Recently, building information was considered
to analyze the effects of NLOS and multipath. Marais et al., proposed to exclude the satellites
located in non-sky regions for localization using the omnidirectional fisheye camera [12]. In addition,
3D building model, shadow mapping, and omnidirectional infrared (IR) cameras were employed
for excluding the unhealthy signals and mitigating the effects of NLOS and multipath [13–15].
However, the exclusion of satellites will cause the distortion of Horizontal Dilution of Precision
(HDOP). Another famous urban positioning method is shadow matching. This method evaluates the
satellite visibility using city building models, and compares the predicted satellite visibility with the
visibility measurement to reduce the positioning error [16–18]. In order to mitigate the NLOS and
multipath effects while reducing the HDOP distortion, we proposed a candidate distribution based
positioning method using a 3D building map (3D-GNSS) [19–21]. 3D-GNSS takes the advantage of 3D
building map to rectify the pseudorange error caused by NLOS and multiple effects. The developed
3D-GNSS has been evaluated for pedestrian applications. The result demonstrated 3D-GNSS can
obtain high positioning accuracy in urban canyons.

Following the idea of the integration of GPS and inertial navigation systems [22–26], we
integrated inertial sensors and 3D-GNSS for vehicle applications as well [27,28]. The evaluation
result indicated the inertial sensor can smooth the positioning trajectory, however, the combination of
3D-GNSS and inertial sensors still cannot satisfy the sub-meter accuracy requirement of autonomous
driving [29,30]. Moreover, the inertial sensor can output accurate heading direction information
during a short time period, but the drift will become obvious as time increases.

In addition to the inertial sensor and GNSS positioning, sensing techniques were also widely
used for positioning. The most famous one is Simultaneous Localization and Mapping (SLAM).
SLAM is considered as a problem of constructing or updating a map while at the same time tracking
the vehicle position in the map. Optical sensors used may be a Velodyne Laser Scanner [2,4,31],
camera [32–34] or the fusion of both [35]. However, SLAM may display error accumulation
problems [4], because the localization and mapping are conducted simultaneously. Therefore, the
two-step method which firstly constructs an accurate map off-line, and then matches the observation
with the constant map for the localization on-line, is more preferred than SLAM. Lane markings are
distinctive objects on road surfaces. From the mid-1980s, lane detection from camera sensors has
received considerable attention. Those researches mainly focused on recognizing the lane markings
on the road surface, but not localization [36–40]. Tao et al., presented a localization method that built
a map of the lane markings in a first stage, then the system conducted a map-matching process for
improving the stand-alone GPS positioning error [41,42]. Schreiber et al., developed a vision-based
localization system using a stereo camera and a highly accurate map containing curbs and road
markings [43]. Norman et al., focused on the intersection scenario, and converted the map data to
an image in a camera frame [44]. Nedevschi et al., also developed an intersection localization system
based on the alignment of visual landmarks perceived by an onboard stereo vision system, using the
information from an extended digital map [29]. Christopher et al., proposed to use a lane detection
system for improving the localization performance when GPS suffers an outage [45]. Young et al.,
developed an algorithm aimed at counting the sequence number of the occupied lanes based on
multiple-lane detection, which were used for improving lateral localization [46]. In addition, the stop
line detection function was employed to reduce the longitudinal error in localization as well [47,48].
All of these researches proposed to use the sensing technology to improve the positioning accuracy.
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Different with those related works, this paper focuses on the problem of vehicle self-localization
in the most challenging environment, a city urban environment, and improves the positioning
performance from two aspects: both GNSS positioning technology and sensor integration. The main
contribution of this paper is to propose a multiple passive sensor-based localization system for
the lane-level localization, which integrates the innovative 3D-GNSS positioning technique with an
inertial sensor and onboard monocular camera. The flowchart of the proposed system is shown in
Figure 1. In the integrated system, 3D-GNSS provides the global positioning result. The motion
of vehicle is described via speedometer data from a Control Area Network bus, and heading
direction from the Inertial Measurement Unit (IMU). The vision-based lane detection is firstly used
for controlling the drift of the IMU. Moreover, the lane keeping and lane changing behaviors are
obtained from the lane detection function. These behaviors describe the relative movement of the
vehicle, which can further improve the lateral positioning error. Finally, we use a partite filter to
integrate this information and the 2D lane marking map.
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Figure 1. Flowchart of the proposed localization system.

Our previous works [19–21] focused on the development and evaluation of 3D-GNSS for
pedestrian applications. In addition, we only combined 3D-GNSS and inertial sensors for improving
the localization performance in our previous works [27,28]. This paper further improves the
localization performance by additionally integrating vision-based lane detection. This paper is an
extension of the work presented in our conference paper [49]. Compared to the conference work, an
idea of heading direction rectification is additionally described and evaluated, and more experimental
results and discussion are presented in this paper as well.

We organize the remainder of the paper as follows: the 3D-GNSS positioning method and
vision-based lane detection are presented in Sections 2 and 3 respectively. The drift rectification
method for an inertial sensor is described in Section 4. Section 5 explains the integration algorithm.
The experimental results are demonstrated in Section 6. Finally, we will end the paper in Section 7
with conclusions and proposals of future work.

2. 3D-GNSS

The integrated localization system considers the GNSS positioning result as the main
information source. Generally speaking, GNSS positioning provides an estimation for localization,
and the role of other sensors is to optimize the position around the GNSS result. A more
accurate GNSS result makes it easier for the integrated system to achieve lane-level performance.
Therefore, the performance of the GNSS positioning technique should be improved first. The satellite
positioning techniques suffer from NLOS and multipath effects in urban canyons, as shown in
Figure 2. This paper proposes to utilize 3D-GNSS to reduce both the multipath and NLOS effects.
We briefly describe the idea of 3D-GNSS in this section, while the details of 3D-GNSS have been
published in our previous works [19–21].
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Figure 3a shows the flowchart of 3D-GNSS method. In order to analyze and correct the
pseudorange error caused by multipath and NLOS, a 3D building map is needed. 3D-GNSS
recognizes the reflected path of satellite signals using ray-tracing, and further estimates the reflection
delay. Theoretically, the pseudorange simulation at the position of receiver should be the same as
the pseudorange measurement. Thus, 3D-GNSS employs the candidate distribution algorithm to
rectify the positioning error. Firstly, a set of position hypothesis, named candidates, are distributed
around the previous positioning result and the position given by conventional GNSS receiver.
Next, 3D-GNSS generates the pseudorange simulation from each candidate position using the ray
tracing, as shown in Figure 3b.
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Figure 2. (a) Multipath effect [19]; (b) NLOS effect [19].
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There are three types of satellite conditions. The LOS signal is not affected by the buildings,
and does not include the reflection delay. In the NLOS case, as shown in Figure 2b, the reflection
delay is equal to the difference between the direct path and the reflection path. However, the third
condition is more ambiguous, which is the multipath effect shown in Figure 2a. This research assumes
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that the signal in the multipath condition is about 6 dB weaker than the LOS signal, and the strobe
correlator [50] with 0.2 chip spacing is adopted in the commercial receiver based on the experience.
The research uses these principles to estimate the pseudorange delay in the multiple path condition.
By using ray tracing, both the satellite condition and the reflection delay can be estimated.

The 3D-GNSS technique additionally checks the consistency of the satellite conditions by
considering the signal strength. If the satellite conditions estimated using the signal strength
conflict with the result from ray tracing, then the 3D-GNSS excludes the satellite from the following
process. The probability of each position hypothesis is evaluated based on the similarity between
the pseudorange measurement and the pseudorange simulation. Figure 3c indicates the different
likelihood values of candidates using different colors. It is easy to see that the candidates around
the ground truth position have higher weighting. The black dots are the invalid candidates, whose
pseudorange similarity exceeds the defined threshold in this research of 10 m.

Finally, the 3D-GNSS provides the final rectified result by weighted averaging the positions of
all the valid candidates. In this paper, we adopt the multiple satellite systems in 3D-GNSS, which
includes not only GPS, but also GLObal NAvigation Satellite System (GLONASS) and Quasi Zenith
Satellite System (QZSS).

3. Lane Detection from Monocular Camera

The lane detection method used in this research is highly inspired by Aly’s work [38].
However, different from the lane detection research described in [38], this research does not focus on
the lane detection itself, but rather employs the vision-based lane detection to improve the accuracy
of localization.

3.1. Inverse Perspective Mapping (IPM)

Before the lane detection, a top view of the road surface is generated, which is named Inverse
Perspective Mapping (IPM). This has two advantages: the first one is that the perspective effect can
be eliminated from the images, which makes the lanes become parallel [38]. The other one is that the
road surface is represented in meters by the IPM. Thus, the prior information about the lane markings
can be used easily.

In order to generate the IPM, a flat road is assumed. In addition, for conducting this
transformation, camera intrinsic parameters and camera extrinsic parameters are also used. As shown
in Figure 4a, an image coordinate {Fi} = {u, v}, a camera coordinate {Fc} = {Xc, Yc, Zc} and a world
coordinate {Fw} = {Xw, Yw, Zw} are defined, respectively. The world coordinate is centered at the
optical center of the camera, and Zw is perpendicular to the road surface. The camera coordinate Xc

axis is assumed to stay in the world coordinate Xw-Yw plane. It means that the systems has a pitch
angle α and yaw angle β for the optical axis, but the roll angle is zero. In addition, focal length of
camera is (fu, fv), and optical center is (cu, cv). h is the height of the camera coordinate above the road
plane. Thus, any point in the image coordinate can be projected to the road plane by the homogeneous
transformation [38]:
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where Equation (1) represents the transformation from the camera coordinate to the image coordinate,
and Equation (2) is the transformation from the world coordinate to the camera coordinate.
Therefore, any point on the ground can be projected back to the image coordinate. Figure 4b shows an
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original image from onboard camera, and the region of interest (ROI) is marked by the red rectangle.
Figure 4c visualizes the IPM image of the ROI, where the line boundaries of the lane become parallel.Sensors 2015, 15, page–page 
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Figure 4. (a) Definition of the coordinate systems; (b) Original image from onboard camera; (c) IPM
of the rectangle area in (b).

3.2. Lane Detection

For enhancing lane marking and reducing other disturbances, the IPM image is firstly smoothed
by a Gaussian filter along the vertical direction, and then filtered by a second-derivative of Gaussian
for the horizontal direction. The algorithm considers 2.5% pixels as the road marking and thresholds
the filtered IPM [38], as shown in Figure 5a. In addition, the lane detection is limited in a rectangular
area centered at the vehicle center. The width along the lateral direction is 7 m (two-lane width), and
the farthest distance along the heading direction is 30 m. Figure 5b shows the lane detection ROI.
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Figure 5. Lane detection [49], (a) Filtered IPM; (b) Lane detection ROI; (c) Hough transformation
result of (b); (d) Rough area of the first line; (e) Result from RANSAC for the first line detection in (d);
(f) Hypothesized area of the second line; (g) RANSAC result for the second line detection in (f).

One lane consists of two line boundaries. Therefore, the lane detection problem is converted
into a line detection one in the ROI. The line detection algorithm consistz of a Hough transform
to locate the rough areas of lines, followed by a Random Sample Consensus (RANSAC) fitting to
optimize the line detection results [38]. In fact, the two lines are represented by two local maxima

30204



Sensors 2015, 15, 30199–30220

in the Hough transform result, which is visualized in Figure 5c. Thus, the rough area of the first
line is located by finding the global maximum in Hough transform space, as indicated by the red
rectangle in Figure 5d. After that, the RANSAC line fitting is conducted in the red rectangle for
detecting the first line. Figure 5e shows the result from RANSAC line fitting. In this paper, the lane
width is assumed as 3.5 m. The hypothesized area of the second line can be determined based on
this assumption. Then the RANSAC line fitting is used for the line detection again. Figure 5f,g
demonstrate the hypothesized area of the second line and the result of the RANSAC line fitting,
respectively. Thus, the position of the vehicle relative to the two line boundaries can be estimated.

3.3. Lane Keeping and Lane Changing Detection

One lane is represented by two line boundaries on the road surface. After the line boundaries are
detected, we employ the particle filter to track each line. The purpose of the line tracking is to detect
the lane keeping and changing behaviors. Figure 6 shows the line detection and tracking results in a
lane changing process from frame t to t + 2k. In Figure 6, the blue rectangle is the ROI of lane detection,
the red color lines are the detected lines. The attached number, e.g., “Line-1”, “Line-2” and “Line-3”,
indicate the tracking results. The small green rectangle at the bottom of images denotes our vehicle
position. From frame t to t + k, the Line-2 becomes close to the center of the vehicle, which is indicated
in the Figure 6a,b. As time increases, the Line-2 gradually appears at the left side of the vehicle, as
shown in Figure 6c. In this process, the position of the tracked Line-2 changes from the right side to
the left side of the vehicle, which indicates the vehicle performs right-direction lane changing.
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Figure 7 shows the lane keeping scenario. The green rectangle denotes our vehicle position, 

which is located between Line-1 and Line-2 during the driving period. In Figure 7a–c, Line-1 always 

appears at the left and Line-2 always appears at the right side of the vehicle. Unlike the lane changing 

scenario, there is no line cross from one side to the other side of the vehicle in this period. Based on 

the relative position of the vehicle and the tracked lines, the lane keeping can be detected. This 

information will be used in the following integration. 

 

Figure 7. Detection of the lane keeping scenario; (a), (b) and (c) are the line detection and tracking 
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Figure 6. Detection of lane changing scenario; (a), (b) and (c) are line detection and tracking results at
different frames. The blue rectangle is the ROI of lane detection, the red color lines are the detected
lines. The attached number, e.g., “Line-1”, “Line-2” and “Line-3”, indicates the tracking results.
The green rectangle shows the vehicle position.

Figure 7 shows the lane keeping scenario. The green rectangle denotes our vehicle position,
which is located between Line-1 and Line-2 during the driving period. In Figure 7a–c, Line-1 always
appears at the left and Line-2 always appears at the right side of the vehicle. Unlike the lane
changing scenario, there is no line cross from one side to the other side of the vehicle in this period.
Based on the relative position of the vehicle and the tracked lines, the lane keeping can be detected.
This information will be used in the following integration.
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Figure 7. Detection of the lane keeping scenario; (a), (b) and (c) are the line detection and tracking
results at different frames. The blue rectangle is the ROI of lane detection, the red color lines are
the detected lines. The attached numbers, e.g., “Line-1” and “Line-2”, indicate the tracking results.
The green rectangle shows the vehicle position.

4. Heading Direction Rectification for an Inertial Sensor

In this research, an Inertial Measurement Unit (IMU) sensor is employed to detect the heading
direction of the vehicle. The IMU sensor outputs the acceleration, the angle rate and the value of
angle along each axis. According to the IMU sensor specification, the pitch and roll angles are the
difference from the body of the IMU sensor to the horizontal plane perpendicular to the gravity
direction. In addition, the yaw angle is the accumulated angle changes since the sensor is reset or
connected. Suppose that the heading direction has been calibrated relative to the true north direction,
the vehicle velocity can be calculated by following equations:

»

—

–

Vnorth´east
0

Valtitude

fi

ffi

fl

“

»

—

–

cosω 0 sinω
0 1 0

´sinω 0 cosω

fi

ffi

fl

»

—

–

1 0 0
0 cosλ ´sinλ
0 sinλ cosλ

fi

ffi

fl

»

—

–

VCAN
0
0

fi

ffi

fl

(3)

»

—

–

Vnorth
Veast

Valtitude

fi

ffi

fl

“

»

—

–

cosθ ´sinθ 0
sinθ cosθ 0

0 0 1

fi

ffi

fl

»

—

–

Vnorth´east
0

Valtitude

fi

ffi

fl

(4)

where, λ and ω are the roll and pitch angle of the IMU, respectively. θ is the heading direction from
the true north direction. The vehicle velocity VCAN can be represented by Vnorth´east, and Valtitude in
Equation (3). The speed Vnorth´east is further decomposed by Equation (4). Because we conducted the
experiments in a flat area, the simplified North-East plane is adopted for the positioning. The GNSS
positioning result at first epoch is defined as the original point of the North-East plane. The movement
of the vehicle can be calculated by Equation (5):

Xk “

«

xnorth,k
xeast,k

ff

“

«

xnorth,k´1
xeast,k´1

ff

` ∆t

«

Vnorth,k´1
Veast,k´1

ff

“

«

xnorth,k´1
xeast,k´1

ff

` ∆t

«

Vnorth´east,k´1 ¨ cosθk´1
Vnorth´east,k´1 ¨ sinθk´1

ff

(5)

where, pxnorth,k, xeast,kq denotes the vehicle position at time k. Figure 8 shows the trajectory generated
from Equations (5). The trajectory is indicated by blue points and the ground truth is shown by cyan
line. It is clear to see that the blue points are parallel with the ground truth at the beginning, but it is
drifting with the increase of time.
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where,   and   are the roll and pitch angle of the IMU, respectively.   is the heading direction 

from the true north direction. The vehicle velocity CANV  can be represented by north eastV  , and altitudeV  

in Equation (3). The speed north eastV   is further decomposed by Equation (4). Because we conducted 
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GNSS positioning result at first epoch is defined as the original point of the North-East plane. The 

movement of the vehicle can be calculated by Equation (5): 

, , 1 , 1 , 1 , 1 1

, , 1 , 1 , 1 , 1 1

cos

sin

north k north k north k north k north east k k

k
east k east k east k east k north east k k

x x V x V
t t

x x V x V





     

     

         
               

         
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occupied lane, which could be estimated from the 2D lane marking map. Otherwise, the heading 

direction is accumulated by the yaw angle rate provided by IMU sensor. This idea is formulized  

as follows: 
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,otherwise
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k

k IMU

k k

 
  

  
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Figure 8. Drift effect of IMU sensor.

This paper proposes to use the vision based lane detection to control the drift effect. When the
lane keeping manner is detected, the vehicle heading direction is rectified as the direction of the
occupied lane, which could be estimated from the 2D lane marking map. Otherwise, the heading
direction is accumulated by the yaw angle rate provided by IMU sensor. This idea is formulized
as follows:

θk “

#

θlane
k ,lane keeping

θk´1 ` ∆θIMU
k ,otherwise

(6)

where, θk is the heading direction at time k, θlane
k is the lane direction obtained from 2D lane marking

map. ∆θIMU
k denotes the angle changing obtained from IMU sensor.

5. Integrated Localization of 3D-GNSS, Inertial Sensor and Lane Detection

In this research, multiple passive sensors are simultaneously adopted for positioning. 3D-GNSS,
inertial sensor and lane detection are integrated in the particle filter. The particle filter is a
nonparametric version of the Bayes filter, and has widely been applied. The particle filter represents

a posterior using a set of particles
!

xi
k “ px

i
k,north, xi

k,eastq
)n

i“1
, xi

k is the two dimensional positioning,
and i is the particle index, k is the time, n means the number of the particles. Each particle has an
importance weight wi

k. The vehicle position is recursively estimated by the following steps [51]:

1. Prediction: Create the particles
 

xi
k, wi

k
(n

i“1 for time k based on the previous set of particles
!

xi
k´1, wi

k´1

)n

i“1
and the control value uk, based on the propagation model in Equation (5).

2. Correction: an weight of each particle in
 

xi
k, wi

k
(n

i“1 is evaluated with the new observation zk,
according to certain observation model wi

k “ ppzk|xi
kq. In this paper, zk includes two observation

Gk for 3D-GNSS positioning result and Vk for lane detection result.
3. Resampling: the particle set

 

xi
k, wi

k
(n

i“1 will be resampled based on the importance weight.

Figure 9 demonstrates the process of the weight evaluation for one particle. The yellow point
is the particle i. The distance between the GNSS positioning result and the particle i is consist of
the longitudinal distance Di,k

GNSS,longitudinal and the lateral distance Di,k
GNSS,lateral by referring to the

direction of the occupied lane. Therefore, the probability computed thanks to 3D-GNSS measurement
ppGk|xi

kq is represented as follows:

ppGk|x
i
kq “ exp

¨

˚

˚

˝

´

ˆ

´

Di,k
GNSS,lateral

¯2
`

´

Di,k
GNSS,longitudinal

¯2
˙

σ2
GNSS

˛

‹

‹

‚

(7)

ppGk|x
i
kq “ ppGk,lateral|x

i
kq ¨ ppGk,longitudinal|x

i
kq (8)
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ppGk,lateral|x
i
kq “ exp

¨

˚

˝

´

´

Di,k
GNSS,lateral

¯2

σ2
GNSS

˛

‹

‚

(9)

ppGk,longitudinal|x
i
kq “ exp

¨

˚

˝

´

´

Di,k
GNSS,longitudinal

¯2

σ2
GNSS

˛

‹

‚

(10)
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where, k  is the heading direction at time k, lane

k  is the lane direction obtained from 2D lane 
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Figure 9 demonstrates the process of the weight evaluation for one particle. The yellow point is 

the particle i. The distance between the GNSS positioning result and the particle i is consist of the 
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GNSS lateralD  by referring to the direction 

of the occupied lane. Therefore, the probability computed thanks to 3D-GNSS measurement 
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Figure 9. Distance estimation for a particle.

This paper set the value of σ2
GNSS as nine square meters, which is tuned empirically. Figure 10a

demonstrated the probability of the particles estimated from the GNSS measurement. The particles
around of the GNSS position have high weighting.

This research optimizes the probability of the particles using the vision-based lane detection.
The lane detection provides the distance from the vehicle center to right and left lines

´

Dk
right, Dk

le f t

¯

.

In addition, the distance from each particle to right and left lines
´

Di,k
lane,right, Di,k

lane,le f t

¯

can be
estimated from the prepared 2D lane marking map, as shown in Figure 9. The probability computed
thanks to lane detection measurement ppVk|xi

kq can be calculated as follows:

ppVk|x
i
kq “

1
2

´

ppVk,le f t|x
i
kq ` ppVk,right|x

i
kq
¯

(11)

ppVk,j|x
i
kq “ exp

¨

˚

˝

´

´

Di,k
lane,j ´Dk

j

¯2

σ2
lane

˛

‹

‚

, pj P tright, le f tuq (12)

where, probability ppVk,right|xi
kq and ppVk,le f t|xi

kq correspond to the right line and left line, respectively.
This paper empirically sets the variance σ2

lane as 0.25 m2. Figure 10b visualizes the probability ppVk|xi
kq

estimated from the measurement of the lane detection. When the lane keeping is detected, the
particles outside the occupied lane of the previous result, will be excluded in the calculation, and
visualized as black dots in Figure 10b. The particles around the lane center have higher probability,
because the vehicle runs along the lane center in experiments. It is important to note that the
lane detection can sense the lateral position. It cannot perceive the position difference along the
longitudinal direction. Therefore, we propose to integrate ppVk|xi

kq into ppGk,lateral|xi
kq. Thus, the

integrated probability is represented as:

ppGk, Vk|x
i
kq “

´

p1´ γq ¨ ppGk,lateral|x
i
kq ` γ ¨ ppVk|x

i
kq
¯

¨ ppGk,longitudinal|x
i
kq (13)

where, γ is the importance weight of the lane detection measurement, which is set as 0.5 empirically.
Figure 10c visualizes the integrated probability of all particles by different colors. Comparing to
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Figure 10a, the high weighting particles are not around of GNSS positioning result, but appear in
the correct lane. ppVk|xi

kq in Equation (13) leads to this improvement. In addition, when the system
detects lane changing, the operation for the particle exclusion follows the lane changing direction.
Figure 10d demonstrates the valid particles corresponding to the lane detection measurement in the
the lane changing case.
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Figure 10. Particle probability evaluation. 
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Figure 10. Particle probability evaluation.

6. Experiments

We chose the Hitotsubashi area in Tokyo for experiments due to the tall building density.
Figure 11 shows the developed 3D map for 3D-GNSS and 2D map for integration. We used two
kinds of data to construct the 3D map. The first one is the 2-dimensional building footprint, which
is provided by Japan Geospatial Information Authority. The other one is the Digital Surface Model
(DSM) data, obtained from Aero Asahi Corporation. The DSM data includes the height information
of the building [20]. The 2D map is generated from high resolution aerial images provided by
NTT-geospace.
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Figure 11. 2D and 3D Maps used in this research. 

In the experiment, a u-blox EVK-M8 GNSS model, a commercial level receiver was adopted. It 

is produced by u-blox Company (Thalwil, Switzerland), and can receive signals from multiple-GNSS 

(GPS, GLONASS, and QZSS). We placed the u-blox receiver on the top of our vehicle to collect 

pseudorange measurements. In addition, an IMU sensor (AMU-3002A Lite, Silicon Sensing, 

Amagasaki-shi, Hyogo Prefecture, Japan) and speedometer recorder were used to measure the angle 

attitude and the vehicle velocity, respectively. Moreover, an onboard camera was installed in the 

vehicle, which captured the front view images when driving. These images are the input of the lane 

detection algorithm. In addition, we manually distinguished the ground truth trajectory of our 

vehicle from these images, and manually decided the occupied lane for the result evaluation. The 
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Figure 11. 2D and 3D Maps used in this research.

In the experiment, a u-blox EVK-M8 GNSS model, a commercial level receiver was adopted. It
is produced by u-blox Company (Thalwil, Switzerland), and can receive signals from multiple-GNSS
(GPS, GLONASS, and QZSS). We placed the u-blox receiver on the top of our vehicle to collect
pseudorange measurements. In addition, an IMU sensor (AMU-3002A Lite, Silicon Sensing,
Amagasaki-shi, Hyogo Prefecture, Japan) and speedometer recorder were used to measure the angle
attitude and the vehicle velocity, respectively. Moreover, an onboard camera was installed in the
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vehicle, which captured the front view images when driving. These images are the input of the
lane detection algorithm. In addition, we manually distinguished the ground truth trajectory of
our vehicle from these images, and manually decided the occupied lane for the result evaluation.
The driving distance is approximate 1500 m in each test.

In the vehicle self-localization, it is more important to distinguish which lane the vehicle is in
compared to the positioning accuracy. Therefore, both the lateral error and the correct lane rate are
employed to estimate the performance of the localization system. Figure 12 shows the definition of the
lateral error and the heading direction error. The lateral error ErrorP

k is the minimum distance from Pk
to the ground truth. The heading direction error Errorθk is the direction difference from the estimated
trajectory to the ground truth trajectory. The heading direction error is used for the evaluation of the
heading direction rectification.
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6.1. Evaluation for Lane Detection

This section evaluates the lane detection by comparing the estimated lane with the hand-labeled
ground truth. The cases of correction detection, partial non-detection, completed non-detection and
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Figure 13. Examples of correct detections, (a) column shows images captured from camera; (b) column 

is IPM image and indicates the ground truth using yellow lines; (c) column shows lane detection 

result, where the blue rectangle is the ROI for lane detection and the red line is the detection result. 

 

Figure 14. Examples of non-detection for one of lane boundaries, (a) column shows images captured 

from camera; (b) column is IPM image and indicates the ground truth using yellow line; (c) column 

shows lane detection result, where the blue rectangle is the ROI for lane detection and the red line is 

the detection result. 

 

Figure 15. Examples of non-detection of both boundaries, (a) column shows images captured from 

camera; (b) column is IPM image and indicates the ground truth using yellow line; (c) column shows 

lane detection result, where the blue rectangle is the ROI for lane detection. 
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Figure 13. Examples of correct detections, (a) column shows images captured from camera; (b) column
is IPM image and indicates the ground truth using yellow lines; (c) column shows lane detection
result, where the blue rectangle is the ROI for lane detection and the red line is the detection result.
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Figure 14. Examples of non-detection for one of lane boundaries, (a) column shows images captured
from camera; (b) column is IPM image and indicates the ground truth using yellow line; (c) column
shows lane detection result, where the blue rectangle is the ROI for lane detection and the red line is
the detection result.
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Figure 15. Examples of non-detection of both boundaries, (a) column shows images captured from
camera; (b) column is IPM image and indicates the ground truth using yellow line; (c) column shows
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Figure 16. An example of false detection, (a) shows images captured from camera; (b) is IPM image 

and indicates the ground truth using yellow line; (c) shows lane detection result, where the blue 

rectangle is the region of interest (ROI) for lane detection and the red line is the detection result. 

As shown in Figure 13, the developed lane detection can locate the lane boundary in different 
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accurately. The second and the third rows demonstrate that there are many other vehicles around 

our vehicle in the experiments. Because the occupied lane is visible, the lane detection still works for 
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right lane boundary is occluded by the front vehicle. The body of the vehicle presents a line feature, 

which causes the false detection. 

The quantitative evaluation of the lane detection is illustrated in Table 1. The total number of 

frames including lanes is 5920. The developed lane detection algorithm can detect lanes in 95.3% of 

the frames. About 4.7% of the frames are complete non-detection ones, where the non-detection happens 

around curved road areas and on roads including unclear lane markings, such as Figure 15. In the 

detections, 99.6% of the frames are correct, such as the cases of Figures 13 and 14. Only 0.4% are false 

detections, such as the case of Figure 16. Table 1 indicates that the lane detection displays high reliability. 

Table 1. Quantitative evaluation of lane detection. 

 
Frames Including 

Lane (F) 

Detection (D) (Figures 

13, 14 and 16) 

Non-Detection 

(ND) (Figure 15) 

Correct Detection  

(CD) (Figures 13 and 14) 

False Detection 

(FD) (Figure 16) 

The number 
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6.2. Evaluation for Heading Direction Rectification 

As presented in Section 4, the IMU sensor suffers from the drift problem. The drift effect will 

generate errors in the propagation of particles. This paper proposes to rectify the heading direction, 

when lane keeping happens. Two types of heading direction errors in one experiment are plotted in 

Figure 17. The green line indicates the error of the IMU sensor, and the yellow line shows the error 

after the proposed rectification. The positive value means the difference in the counterclockwise 
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Figure 16. An example of false detection, (a) shows images captured from camera; (b) is IPM image
and indicates the ground truth using yellow line; (c) shows lane detection result, where the blue
rectangle is the region of interest (ROI) for lane detection and the red line is the detection result.

As shown in Figure 13, the developed lane detection can locate the lane boundary in different
scenarios. The first row of Figure 13 shows a lane changing case, the crossed line is detected
accurately. The second and the third rows demonstrate that there are many other vehicles around
our vehicle in the experiments. Because the occupied lane is visible, the lane detection still works
for finding the occupied lane. However, this kind of urban environment is challenging for detecting
other lanes, because of the occlusions.
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Figure 14 shows two examples of partial non-detection. In the two examples, the right lane
boundaries are not detected and the left boundaries are correctly detected. The reasons are the
occlusion of other vehicles in the first example, and the degradation of the lane markings in the second
example. This case is not serious for the localization system. In the case of partial non-detection, the
detected lane boundaries can still be used for integration. In the quantitative evaluation, the cases of
Figures 13 and 14 are considered as correct detections.

The complete non-detection means both left and right boundaries cannot be detected as shown
in Figure 15. In the first example, the reason for the non-detection is the unclear lane marking
on the road surface. In the second example, the lost detection of the left boundary is because the
detection algorithm excludes the line, which does not cross the bottom of the ROI. The reason for
the right boundary is that there are so few pixels of the line in the ROI. In the case of the completed
non-detection, the localization system uses the GNSS positioning result for integration because of the
lack of lane detection results. In addition, Figure 16 shows an example of false detection. A part of the
right lane boundary is occluded by the front vehicle. The body of the vehicle presents a line feature,
which causes the false detection.

The quantitative evaluation of the lane detection is illustrated in Table 1. The total number of
frames including lanes is 5920. The developed lane detection algorithm can detect lanes in 95.3%
of the frames. About 4.7% of the frames are complete non-detection ones, where the non-detection
happens around curved road areas and on roads including unclear lane markings, such as Figure 15.
In the detections, 99.6% of the frames are correct, such as the cases of Figures 13 and 14. Only 0.4%
are false detections, such as the case of Figure 16. Table 1 indicates that the lane detection displays
high reliability.

Table 1. Quantitative evaluation of lane detection.

Frames Including
Lane (F)

Detection (D)
(Figures 13, 14 and 16)

Non-Detection
(ND) (Figure 15)

Correct Detection (CD)
(Figures 13 and 14)

False Detection
(FD) (Figure 16)

The number
of frames 5920 5642 278 5619 23

Detection
rate / 95.3% (D/F) 4.7% (ND/F) 99.6% (CD/D) 0.4% (FD/D)

6.2. Evaluation for Heading Direction Rectification

As presented in Section 4, the IMU sensor suffers from the drift problem. The drift effect will
generate errors in the propagation of particles. This paper proposes to rectify the heading direction,
when lane keeping happens. Two types of heading direction errors in one experiment are plotted in
Figure 17. The green line indicates the error of the IMU sensor, and the yellow line shows the error
after the proposed rectification. The positive value means the difference in the counterclockwise
direction. It is clear to see that the heading direction of the IMU sensor has about 5˝ drift by the
end of the experiment. The error of the rectified heading direction changes around zero. This result
proves that the vision-based lane detection can solve the drift problem. Actually, the experiment
demonstrated in Figure 17 corresponds to the one discussed in Figure 8. In order to make the
effectiveness of heading rectification more comprehensive, we plot the inertial trajectory using the
rectified heading direction in Figure 18. After the rectification, the inertial trajectory is parallel to the
ground truth trajectory. In Figure 17, the areas denoted as 1 to 6 are the turning areas, which are also
indicated in Figure 18. The large error is caused by unconfident ground truth trajectory, because it is
difficult to manually describe the accurate curve of the turning trajectory.
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integration. Figure 19a shows the positioning results of WLS-GNSS and WLS-GNSS-based 
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integration in the same test are shown in Figure 19b, using red dots and yellow dots. The ground 

truth is represented by the cyan line. In Figure 19a, the purple dots corresponding to the WLS-GNSS 

result are randomly spread over a wide area. On the contrary, the 3D-GNSS is much more accurate 

compared to the WLS-GNSS. Moreover, the 3D-GNSS-based integration also indicates better 

performance than WLS-GNSS-based integration, which can be understood by comparing the green 

dots and yellow dots in Figure 19c. Except for the GNSS positioning method, the two integration 

systems use the same algorithm. This proves that the more accurate the GNSS method is, the higher 

performance the integrated system has. 
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Figure 17. Effectiveness of the heading direction rectification.
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Figure 18. Inertial trajectory after heading rectification in the experiment of Figure 8.

6.3. Evaluation for Localization

In this section, we focus on the evaluation of the positioning performance. In order to understand
the benefit of the proposed 3D-GNSS in urban canyon environments, this paper compares the
Weighted Least Square (WLS) GNSS-based integration and the proposed 3D-GNSS-based integration.
Figure 19a shows the positioning results of WLS-GNSS and WLS-GNSS-based integration using
purple dots and green dots, respectively. The 3D-GNSS and 3D-GNSS-based integration in the same
test are shown in Figure 19b, using red dots and yellow dots. The ground truth is represented by the
cyan line. In Figure 19a, the purple dots corresponding to the WLS-GNSS result are randomly spread
over a wide area. On the contrary, the 3D-GNSS is much more accurate compared to the WLS-GNSS.
Moreover, the 3D-GNSS-based integration also indicates better performance than WLS-GNSS-based
integration, which can be understood by comparing the green dots and yellow dots in Figure 19c.
Except for the GNSS positioning method, the two integration systems use the same algorithm.
This proves that the more accurate the GNSS method is, the higher performance the integrated
system has.
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Figure 19. Positioning results of WLS-GNSS, 3D-GNSS and integration systems. 

To explain the reason for the improvement in the 3D-GNSS method, the satellite conditions in 

this experiment are illustrated in Figure 20. In the experiment, the GNSS receiver can receive the 

signals from nine satellites on average. About five of the satellites are in LOS condition, and other 

satellites are NLOS. In the conventional WLS, the NLOS signal is used directly. Thus, the 

pseudorange error of the NLOS signal will lead to the positioning error. In the proposed 3D-GNSS 

positioning method, the 3D map information is adopted for distinguishing NLOS and multipath 

effects, and correcting the pseudorange errors. Therefore, the 3D-GNSS achieves better performance. 

It also provides an accurate basis for the integrated localization system. 

 

(a) WLS-GNSS and WLS-GNSS based integration 

(b) 3D-GNSS and 3D-GNSS based integration 

(c) WLS-GNSS based integration and 3D-GNSS based integration 

Figure 19. Positioning results of WLS-GNSS, 3D-GNSS and integration systems.

To explain the reason for the improvement in the 3D-GNSS method, the satellite conditions in
this experiment are illustrated in Figure 20. In the experiment, the GNSS receiver can receive the
signals from nine satellites on average. About five of the satellites are in LOS condition, and other
satellites are NLOS. In the conventional WLS, the NLOS signal is used directly. Thus, the pseudorange
error of the NLOS signal will lead to the positioning error. In the proposed 3D-GNSS positioning
method, the 3D map information is adopted for distinguishing NLOS and multipath effects, and
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correcting the pseudorange errors. Therefore, the 3D-GNSS achieves better performance. It also
provides an accurate basis for the integrated localization system.Sensors 2015, 15, page–page 

16 

 

Figure 20. Condition of satellites in the experiment of Figure 19. Purple points indicate the number of 

LOS satellites from the ground truth position. Orange points are the number of satellites using  

3D-GNSS (LOS + NLOS). 

We repeat three tests along the driving route. Table 2 shows the quantitative comparison based 

on the multiple tests. The comparison includes “WLS-GNSS”, “WLS-GNSS&IMU&Speedometer 

integration”, “WLS-GNSS&IMU&Speedometer&Lane detection integration”, “3D-GNSS”,  

“3D-GNSS&IMU&Speedometer integration”, and “3D-GNSS&IMU&Speedometer&Lane detection 

integration”. WLS-GNSS&IMU&Speedometer integration and 3D-GNSS&IMU&Speedometer 

integration exclude the lane detection function. As demonstrated in Table 2, the 3D-GNSS method 

also shows much better performance compared to WLS. About 63.2% of results are in the correct lane. 

Although 3D-GNSS cannot be directly used for vehicle self-localization, it has potential as the main 

source in the integration. After integrating with IMU and speedometer, the correct lane rate is 

increased and the mean error is improved to 1.2 m. Table 2 indicates the integration of GNSS, IMU, 

speedometer and lane detection has 93% correct lane rate and sub-meter accuracy. 

Table 2. Comparison of different positioning methods. 

Positioning Method 
Positioning Error 

Mean (m) 

Positioning Error Standard 

Deviation (m) 

Correct Lane 

Recognition Rate 

WLS-GNSS 7.53 10.06 12.9% 

WLS-GNSS&IMU&Speedometer integration 5.72 5.34 16.1% 

WLS-GNSS&IMU&Speedometer  

&Lane detection integration 
3.16 2.56 37.4% 

3D-GNSS 1.48 1.12 63.2% 

3D-GNSS&IMU&Speedometer integration 1.17 0.84 79.1% 

3D-GNSS&IMU&Speedometer& 

Lane detection integration 
0.75 0.76 93.0% 

To demonstrate the performance of the 3D-GNSS based integration, Figure 21 shows the 

positioning error of the three types of localization methods in the experiment that has been discussed 

in Figure 19. Obviously, the 3D-GNSS&IMU&Speedometer&lane detection integration has the best 

performance. Most of the time, the positioning error is maintained under 1.5 m, but there are some areas 

where the positioning error is larger than 1.5 m. Those areas are indicated in Figures 21 and 19b, 

correspondingly. The areas 1, 2, 3, 5, 6 and 7 in Figure 21 denote the intersections. In the intersections, 

the lane detection function does not work because of the lack of lane markings. Therefore, the 

positioning error cannot be reduced compared to 3D-GNSS&IMU&Speedometer integration. This 

result indicates that it is necessary to develop other road marking recognition functions for 

intersection areas, which is expected to improve the positioning error in those intersection areas. 

Area 4 is in the road link. This area is enlarged and shown in Figure 22. The vehicle enters this 

road link from epoch 196554. From the epoch 196554 to epoch 196557, 3D-GNSS results are in the 

incorrect lane (the left lane of the ground truth). At the same time, the camera detects lane keeping 

behavior. Therefore, the integrated localization system gives an incorrect positioning result, as 

indicated by the yellow dots. From epoch 196558, the 3D-GNSS appears in the correct lane, and the 

result of the integration gradually becomes correct because of the effect of the 3D-GNSS. The epochs 

from 196554 to 196557 correspond to the area 4 in Figures 21 and 19b. This case study explains the 

 

0

5

10

15

20

1 21 41 61 81 101 121 141 161 181 201 221

T
h

e 
n

u
m

b
er

 o
f 

sa
te

ll
it

es

Epoch index (1 Hz)

LOS LOS+NLOS

Figure 20. Condition of satellites in the experiment of Figure 19. Purple points indicate the number
of LOS satellites from the ground truth position. Orange points are the number of satellites using
3D-GNSS (LOS + NLOS).

We repeat three tests along the driving route. Table 2 shows the quantitative comparison based
on the multiple tests. The comparison includes “WLS-GNSS”, “WLS-GNSS&IMU&Speedometer
integration”, “WLS-GNSS&IMU&Speedometer&Lane detection integration”, “3D-GNSS”,
“3D-GNSS&IMU&Speedometer integration”, and “3D-GNSS&IMU&Speedometer&Lane detection
integration”. WLS-GNSS&IMU&Speedometer integration and 3D-GNSS&IMU&Speedometer
integration exclude the lane detection function. As demonstrated in Table 2, the 3D-GNSS method
also shows much better performance compared to WLS. About 63.2% of results are in the correct
lane. Although 3D-GNSS cannot be directly used for vehicle self-localization, it has potential as the
main source in the integration. After integrating with IMU and speedometer, the correct lane rate is
increased and the mean error is improved to 1.2 m. Table 2 indicates the integration of GNSS, IMU,
speedometer and lane detection has 93% correct lane rate and sub-meter accuracy.

Table 2. Comparison of different positioning methods.

Positioning Method Positioning Error
Mean (m)

Positioning Error
Standard Deviation (m)

Correct Lane
Recognition Rate

WLS-GNSS 7.53 10.06 12.9%

WLS-GNSS&IMU&Speedometer
integration 5.72 5.34 16.1%

WLS-GNSS&IMU&Speedometer
&Lane detection integration 3.16 2.56 37.4%

3D-GNSS 1.48 1.12 63.2%

3D-GNSS&IMU&Speedometer
integration 1.17 0.84 79.1%

3D-GNSS&IMU&Speedometer&
Lane detection integration 0.75 0.76 93.0%

To demonstrate the performance of the 3D-GNSS based integration, Figure 21 shows the
positioning error of the three types of localization methods in the experiment that has been discussed
in Figure 19. Obviously, the 3D-GNSS&IMU&Speedometer&lane detection integration has the best
performance. Most of the time, the positioning error is maintained under 1.5 m, but there are some
areas where the positioning error is larger than 1.5 m. Those areas are indicated in Figures 21
and 19b, correspondingly. The areas 1, 2, 3, 5, 6 and 7 in Figure 21 denote the intersections.
In the intersections, the lane detection function does not work because of the lack of lane markings.
Therefore, the positioning error cannot be reduced compared to 3D-GNSS&IMU&Speedometer
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integration. This result indicates that it is necessary to develop other road marking recognition
functions for intersection areas, which is expected to improve the positioning error in those
intersection areas.

Area 4 is in the road link. This area is enlarged and shown in Figure 22. The vehicle enters
this road link from epoch 196554. From the epoch 196554 to epoch 196557, 3D-GNSS results are
in the incorrect lane (the left lane of the ground truth). At the same time, the camera detects lane
keeping behavior. Therefore, the integrated localization system gives an incorrect positioning result,
as indicated by the yellow dots. From epoch 196558, the 3D-GNSS appears in the correct lane, and the
result of the integration gradually becomes correct because of the effect of the 3D-GNSS. The epochs
from 196554 to 196557 correspond to the area 4 in Figures 21 and 19b. This case study explains the
reason for the 7% failure in the occupied lane recognition. It is important to note that this case also
demonstrates that the positioning result can be corrected from an incorrect lane assignment by the
3D-GNSS after several epochs.
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Figure 22. Demonstration of the effect of the 3D-GNSS in the proposed integration.

Figure 23 shows another case, which can demonstrate the benefit of the lane detection. At the
epoch 196619 and epoch 196623, the 3D-GNSS&IMU&Speedometer integration (green dots) appears
in the incorrect lane because of the 3D-GNSS error. The lane detection increases the probability of
the particles being in the correct lane, which is explained in Figure 10. The lane detection reduces the
lateral positioning error by correctly adjusting the probability of particles, which is the reason for the
improvements indicated in Table 2 and Figure 21.
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7. Conclusions

This research extended our previous 3D-GNSS work for vehicle positioning in city environments.
As indicated in the experimental results, the innovative 3D-GNSS positioning technique achieved
1.5 m mean positioning error and a 63% lane recognition rate by reducing the multipath and NLOS
effects. However, it is still difficult to satisfy the sub-meter requirement by only using 3D-GNSS.
This paper proposed the integration of multiple on-board sensors, 3D-GNSS, inertial sensors and an
on-board monocular camera for improving the accuracy of vehicle positioning. In the integration
system, a lane detection algorithm is developed, in order to recognize the lane keeping/changing
behavior. Finally, the particle filter integrates the three sources, 3D-GNSS, vehicle motion and lane
detection for localization. In the integration, the drift problem of the inertial sensor is effectively
controlled by using lane detection. Moreover, the lane detection function provides an additional
measurement to optimize the positioning result along lateral direction. The experiments conducted
in the urban traffic environment have demonstrated that the proposed system achieved a 93% correct
lane recognition rate and sub-meter accuracy. In the near future, the sensing technology for the
intersection scenario will be considered to improve the localization accuracy. In addition, more
difficult scenarios will be discussed, such as under bridgea or in tunnels, where the GNSS signal
is in outage conditions.
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