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Abstract: Tracking multiple moving targets from a video plays an important role in many
vision-based robotic applications. In this paper, we propose an improved Gaussian mixture
probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and
accurately track multiple moving targets from a video. First, an entropy-based birth intensity
estimation method is incorporated to eliminate the false positives caused by noisy video data. Then,
a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in
close movement. For targets without occlusion, a weight matrix that contains all updated weights
between the predicted target states and the measurements is constructed, and a simple, but effective
method based on total weight and predicted target state is proposed to search the ambiguous
weights in the weight matrix. The ambiguous weights are then penalized according to the fused
target features that include spatial-colour appearance, histogram of oriented gradient and target area
and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can
correctly track the targets in close movement without occlusion. For targets with occlusion, a robust
game-theoretical method is used. Finally, the experiments conducted on various video scenarios
validate the effectiveness of the proposed penalization method and show the superior performance
of our tracker over the state of the art.

Keywords: robot vision; video targets tracking; probability hypothesis density; weight penalization;
multi-feature fusion

1. Introduction

Tracking targets in video is an ever-increasing field of research with a wide spectrum of
applications in vision-based robotic intelligence, including robot navigation, intelligent surveillance,
human behaviour understanding, human-robot interactions, and so on. Despite many excellent
research works [1–5] having been explored, an effective and accurate solution to the problem
remains challenging.

Recently, the random finite set approach for target tracking [6–17] has attracted considerable
attention. The probability hypothesis density (PHD) filter [6] uses the first-order statistical moment
of the multi-target posterior density, providing a computationally-tractable alternative to data
association. However, it is generally intractable due to the “curse of dimensionality” in numerical
integration. The Gaussian mixture PHD filter (GM-PHD) [7] does not suffer from this problem,
because its posterior intensity function can be propagated analytically in time.
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Although the GM-PHD filter originates from radar tracking [7–10], recently, it has been widely
explored for visual tracking [11–17]. For simplicity, the GM-PHD filter-based tracker is called
the GM-PHD tracker in this paper. For example, Pham et al. [11] used the GM-PHD tracker to
track multiple objects from colour images. They showed that the PHD was proportional to the
approximated density from colour likelihood. They also used this GM-PHD tracker to track 3D
locations of heads of people using multiple cameras [12]. Wu and Hu [13] combined the modified
detection method with the PHD filter to build a multi-target visual tracking framework. They first
generated observations by detecting the foreground objects and then estimated the target state using
a GM-PHD filter. Furthermore, Wu et al. [14] proposed an auction algorithm to calculate target
trajectories automatically. Zhou et al. [15] incorporated entropy distribution into the GM-PHD filter
to automatically and efficiently estimate the birth intensity and, finally, robustly tracked the newborn
video targets. Furthermore, they used game theory to handle the mutual occlusion problem and
proposed an integrated system to robustly track the multiple video targets [16]. Pollard et al. [17]
used a homographic transformation to compensate the camera motion and to combine geometric and
intensity-based criteria for object detection and combined the GMC-PHD filter to track the targets
from an aerial video.

Despite significant progress of the GM-PHD tracker, robust and reliable tracking of multiple
targets in video is still far from being solved, especially in noisy video data and tracking targets in
close movement.

To eliminate the noisy data in the video, the tracker should have the ability of accurately
determining the birth intensity of the newborn targets in the GM-PHD filter. Conventionally, the
birth intensity must cover the whole state space [18] when no prior localization information on the
newborn targets was available. Such a requirement entails a high computational cost and can easily
be interfered by clutters. To remedy this, Maggio et al. [19] assumed that the birth of a target occurred
in a limited space around the measurements. They drew the newborn particles from the centre of
the measurement set. However, the proposed method could easily be interfered by clutters and the
measurements originating from the survival targets. Recently, Zhou et al. [15] proposed an effective
method based on entropy distribution to automatically and correctly estimate the birth intensity.
They first initialized the birth intensity using the previously-obtained target states and measurements
and then updated it using the currently-obtained measurements. The entropy distribution was
incorporated to remove those noises that were irrelevant to the measurements, and the coverage rate
was computed to further eliminate the noises.

Generally, each measurement is assumed to correspond to one target and vice versa in
multi-target tracking. This so-called one-to-one assumption expresses that a target can only be
associated with one measurement. However, in the GM-PHD tracker, this one-to-one assumption
is violated whenever multiple measurements are close to one target. In other words, the efficiency
of the GM-PHD tracker may degrade when targets come near each other. To remedy this,
Yazdian-Dehkordi et al. proposed a competitive GM-PHD (CGM-PHD) tracker [20] and a penalized
GM-PHD (PGM-PHD) tracker [21] to refine the weights of the close moving targets in the update
step in the GM-PHD filter. However, they did not provide continuous trajectories for the targets. By
considering this point, Wang et al. [22] proposed a collaborative penalized GM-PHD (CPGM-PHD)
tracker, in which they utilized the track label of each Gaussian component to collaboratively penalize
the weights of those close moving targets with the same identity. However, the aforementioned
trackers are merely suitable for point target tracking, which may fail in video target tracking.
Compared to the simple point representations of the target state and the measurement in point target
tracking, the representations are more complicated in video target tracking. Both the location and the
size of video targets are considered for modelling the target state and the measurement. As video
targets move closely, the aforementioned trackers (GM-PHD tracker, CGM-PHD tracker, PGM-PHD
tracker and CPGM-PHD tracker) may track multiple targets with the same identity (shown as in
Figure 1a) or with switched identities (shown as in Figure 1b).
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As targets move close enough, mutual occlusion may occur. As a result, the measurements
originating from targets within the occlusion region will be merged into one measurement. Without
an occlusion handling method, the tracker may fail to track them. Because occlusion handling
is not the main contribution of this paper, we incorporate our previous reported game-theoretical
method [23] into the tracker to solve the mutual occlusion problem. In this paper, we propose
an improved GM-PHD tracker to robustly track targets in a video, especially to track targets in close
movement. The pipeline of the proposed tracker is shown in Figure 2, and the main contributions are
listed as follows.

(1) An improved GM-PHD tracker with multi-feature fusion-based weight penalization is
proposed to effectively track targets in a video, especially to track the targets in close movement.

(2) A weight matrix of all updated weights is constructed, and an effective ambiguous weights
determination method is proposed. The conventional trackers (the CGM-PHD, PGM-PHD and
CPGM-PHD trackers) only consider the total weight for ambiguous weights determination, which
is not applicable for Case 2. In contrast, we utilize the total weight and predicted target states
to effectively determine the ambiguous weights for Case 1 and Case 2, respectively. In this paper,
Case 1 is the case that one target is associated with multiple measurements; while Case 2 is the case
that one target is associated with one incorrect measurement. More details of Case 1 and Case 2 are
stated in Section 2.3.

(3) Multiple features that include spatial-colour appearance, histogram of oriented gradient and
target area are fused and incorporated into the tracker to penalize the ambiguous weights. By doing
so, the weights of the mismatched targets can be greatly reduced, and thus, the tracking accuracy
is improved.

(a)

(b)

Figure 1. Tracking targets in close movement with the conventional Gaussian mixture probability
hypothesis density (GM-PHD) tracker. (a) Mistracking two cells (Cells 1 and 2 in the left image) with
the same identity (Cell 1 in the right image); (b) mistracking two targets (Targets 1 and 4 in the left
image) with switched identities (Targets 4 and 1 in the right image).
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Figure 2. Pipeline of the proposed tracker.

The rest of this paper is organized as follows. Section 2 simply introduces the GM-PHD filter
and its drawbacks. Section 3 presents the proposed tracker in detail. Some experimental results are
discussed in Section 4, followed by concluding remarks in Section 5.

2. Problem Formulation

2.1. Target State and Measurement Representation

For an input image sequence, the kinematic state of a target i at time t is denoted by
xi

t = {li
t, vi

t, si
t}, where li

t = {li
x,t, li

y,t}, vi
t = {vi

x,t, vi
y,t} and si

t = {wi
t, hi

t} are the location, velocity
and bounding box size of the target, respectively; i = 1, · · · , Nt, and Nt denotes the number of
targets at time t. The measurement originating from a target j at time t is denoted by zj

t = {l
j
z,t, sj

z,t},
where j = 1, · · · , Nm,t, and Nm,t denotes the number of measurements at time t. The target state
set and measurement set at time t are denoted by Xt = {x1

t , · · · , xNt
t } and Zt = {z1

t , · · · , zNm,t
t },

respectively. The measurements are obtained by object detection, and any object detection method can
be used in our tracker. To show the robust performance of the proposed tracker, a simple background
subtraction algorithm [15] is utilized to obtain the measurements.

2.2. The GM-PHD Filter

The GM-PHD filter was first proposed by Vo and Ma [7] in 2006. It is a closed-form solution to the
PHD filter recursion, whose posterior intensity function is estimated by a sum of weighted Gaussian
components that can be propagated analytically in time. More details of the GM-PHD filter are in the
literature [7]. Generally, the GM-PHD filter can be implemented in the prediction and update steps.

Step 1: Prediction. Suppose that PHD Dt−1(xt−1) at time t − 1 has the form Dt−1(xt−1) =

∑
Jt−1
i=1 ω

(i)
t−1N(xt−1; m(i)

t−1, P(i)
t−1), then the predicted PHD Dt|t−1(xt) is given by:

Dt|t−1(xt) = γt(xt) + psv

Jt−1

∑
i=1

ω
(i)
t−1N(xt; m(i)

sv,t|t−1, P(i)
sv,t|t−1) (1)

where m(i)
sv,t|t−1 = Ft−1m(i)

t−1 and P(i)
sv,t|t−1 = Qt−1 + Ft−1P(i)

t−1FT
t−1. γt(xt) and psv denote the

probabilities of newborn targets and survival targets, respectively. N(·; m, P) denotes a Gaussian
component with the mean m and covariance P. Ft−1 is the motion transition matrix.
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Step 2: Update. The predicted PHD can be expressed as a Gaussian mixture Dt|t−1(xt) =

∑
Jt|t−1
i=1 ω

(i)
t|t−1N(xt; m(i)

t|t−1, P(i)
t|t−1), then the posterior PHD Dt(xt) at time t is given by:

Dt(xt) = (1− pd)Dt|t−1(xt) + ∑
zt∈Zt

Dg,t(xt; zt) (2)

Dg,t(xt; zt) =

Jt|t−1

∑
i=1

ω
(i)
g,t(zt)N(xt; m(i)

g,t(zt), P(i)
g,t(zt)) (3)

ω
(i)
g,t(zt) =

pdω
(i)
t|t−1N(zt; m(i)

h,t , P(i)
h,t)

λtct(zt) + pd

Jt|t−1

∑
i=1

ω
(i)
t|t−1N(zt; m(i)

h,t , P(i)
h,t)

(4)

where m(i)
g,t(zt) = m(i)

t|t−1 + K(zt − Htm
(i)
t|t−1), K = P(i)

t|t−1HT
t (HtP

(i)
t|t−1HT

t + Rt)−1, P(i)
g,t(zt) =

(I−KHt)P
(i)
t|t−1, m(i)

h,t = Htm
(i)
t|t−1, P(i)

h,t = HtP
(i)
t|t−1HT

t +Rt. pd is the detection probability. λt and ct(zt)

are the average rate and probability density of the spatial distribution of Poisson distributed clutters,
respectively. Ht and Rt are the measurement matrix and the covariance matrix of the measurement
noise, respectively.

To predict the newborn targets, we need to find the peak (the mean of Gaussian) of intensity
γt(xt), i.e., the position where the targets are most probable to appear. To automatically and accurately
estimate the birth intensity, our previous work [15] is utilized in this paper. Furthermore, we employ
the pruning and merging algorithms [7] to prune the irrelevant components and to merge the same
intensity components into one component. The peaks of the intensity are the points of the highest
local concentration of the expected number Nt of targets. Finally, we can estimate the target states
with Nt ordered mean with the largest weights.

2.3. Drawbacks of the GM-PHD Filter

The GM-PHD filter recursively propagates the first-order moment associated with the
multi-target posterior density to avoid the complicated data association problem and, consequently,
can be efficiently used in multiple video targets’ tracking. However, as targets come near each other,
multiple measurements may associate with one target or incorrect targets. Normally, each predicted
state x(i)t|t−1 of target i is associated with only one measurement zj

t originating from target i, which
means that the weight of the i-th predicted target updated by the jt-h measurement should be far
greater than those weights updated by other measurements. However, in the real-world scenarios,
two possible cases could violate this one-to-one association. As a result, the GM-PHD filter may track
multiple targets with the same identity or with switched identities. Figure 3 is a pictorial example of
the aforementioned two cases when tracking two targets in close movement.

Case 1: One predicted target (shown as target x1
t|t−1 in Figure 3a) may be associated with more

than one measurement (shown as the measurements z1
t and z2

t in Figure 3a). In such a case, there

are at least two updated weights for the same target (shown as ω̄
(1,1)
t and ω̄

(1,2)
t in Figure 3a), whose

values are far greater than other updated weights. ω̄
(i,j)
t is the normalized weight of target i updated

by measurement j. For simplicity, indices i and j are used to represent the i-th predicted target state
xi

t|t−1 and the j-th measurement zj
t, respectively. As a result, the GM-PHD tracker tracks Targets 1 and

2 with the same Identity 1 (shown as the right image in Figure 3a).
Case 2: one predicted target may be associated with another measurement that is not originated

from this target. As shown in Figure 3b, measurement z1
t should theoretically be associated with

Target 1, while measurement z2
t should be associated with Target 2. However, ω̄

(1,2)
t is actually greater

than ω̄
(1,1)
t , while ω̄

(2,1)
t is greater than ω̄

(2,2)
t . As a result, the GM-PHD tracker tracks Targets 1 and 2

with switched Identities 2 and 1, respectively (shown as the right image in Figure 3b).
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(a)

(b)

Figure 3. A pictorial example of tracking two targets in close movement. (a) Case 1: two targets with
the same identity; (b) Case 2: two targets with switched identities.

To improve the aforementioned drawbacks, an improved GM-PHD tracker with weight
penalization is proposed.

3. Improved GM-PHD Tracker with Weight Penalization

The way of improving the drawbacks is to penalize the weights of those targets that move closely.
First, a weight matrix that consists of all updated weights is constructed. Then, an ambiguous weight
is defined, and the corresponding methods for searching ambiguous weights are proposed. Finally,
multiple features are fused and incorporated into the tracker to penalize the ambiguous weights.

3.1. Weight Matrix Construction

Figure 4 is a symbolic representation of updated weights. For better clarification, the matrix that
includes the weights of all targets updated by all measurements is called the weight matrix (shown
as in Figure 4). In the weight matrix, the i-th row represents the weights of the i-th predicted target
updated by all measurements, while the j-th column represents the weights of all predicted targets
updated by the j-th measurement. Wi

j = ∑
Nm,t
j=1 ω̄

(i,j)
t in the figure is the total weight of the i-th row,
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while W j
i = ∑

Jt|t−1
i=1 ω̄

(i,j)
t is the total weight of the j-th column. Nm,t and Jt|t−1 are the numbers of

measurements and predicted target states, respectively.

ω̄
(i,j)
t =

pdω
(i)
t|t−1N(zj

t; m(i)
h,t , P(i)

h,t)

λtct(z
j
t) + pd ∑

Jt|t−1
i=1 ω

(i)
t|t−1N(zj

t; m(i)
h,t , P(i)

h,t)
(5)

Figure 4. Weight matrix: a symbolic representation of updated weights.

3.2. Ambiguous Weight Determination

As stated in Section 2.2, the peaks of the updated GM-PHD are the points of the highest
local concentration of the expected number Nt of targets. However, an incorrect estimate of the
multi-target state may be obtained when targets move in a close space (as explained in the cases
listed in Section 2.3). To remedy this, the incorrect weights should be penalized. In this paper, the
weights of those close moving targets are defined as the ambiguous weights. Before penalization,
the weight matrix should be analysed first to determine the ambiguous weights. In the CGM-PHD
tracker [20], PGM-PHD tracker [21] and CPGM-PHD tracker [22], the weight of target i is determined
as an ambiguous weight once the total weight Wi

j of the i-th row is greater than one. However, this

method is not applicable to Case 2 (as stated in Section 2.3) since the total weight Wi
j may be less than

one when targets approach each other. To remedy this, both the total weight Wi
j and the predicted

target states are utilized to determine the ambiguous weights of Case 1 and Case 2, respectively.

(1) Ambiguous weights’ determination for Case 1

Normally, as targets are all correctly associated, the total weights Wi
j should be approximate to

one according to Equation (5). However, when targets move closely and simultaneously, multiple
measurements are closer to one target i compared to the other targets; Gaussians in the i-th row in the
weight matrix related to these measurements may have large enough weights. As a result, the total
weights Wi

j may be greater than one. In other words, for a given weight matrix, if the total weight Wi
j

of the i-th row satisfies the following condition:

Wi
j > 1 (6)

this weight matrix is determined as an ambiguous weight matrix. The ambiguous weight matrix
shows the possibility that one or more ambiguous weights may be involved in this matrix. To further
determine the ambiguous weights, the expected targets’ number and weight index in the matrix
are used.

First, the expected number Nt of targets is calculated according to the method proposed
in Section 2.2.

Then, the first Nt largest weights in the ambiguous weight matrix are selected as the
ambiguous candidates.
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Finally, if more than one candidate is in the same row in the matrix, these candidates are
determined as the ambiguous weights. Otherwise, no ambiguous weights are involved. In other
words, if more than one candidate has the same row index i, the corresponding weights ω̄

(i,j)
t and

ω̄
(i,j′)
t are determined as the ambiguous weights. j′ 6= j and j′ ∈ {1, 2, · · · , Nm,t}. The related

measurements j and j′ are determined as the ambiguous measurements, which are prone to be

associated with the same target i. Consequently, the ambiguous weights ω̄
(i,j)
t and ω̄

(i,j′)
t should be

penalized. For example, the weights ω̄
(1,1)
t and ω̄

(1,2)
t in Figure 3a can be determined as the ambiguous

weights according to the proposed method.

(2) Ambiguous weights’ determination for Case 2

To determine the ambiguous weights for Case 2, those targets that move closely should be
determined first. Targets i and i′ are regarded as two close moving targets when:∥∥∥li

t|t−1 − li′
t|t−1

∥∥∥ <
∥∥∥si

t|t−1

∥∥∥+ ∥∥∥si′
t|t−1

∥∥∥ (7)

where li
t|t−1 (or li′

t|t−1) and si
t|t−1 (or si′

t|t−1) are the location and size of the predicted state xi
t|t−1 (or

xi′
t|t−1) of the target i (or i′), respectively. ‖·‖ represents the Euclidean norm.

Then, the ambiguous weights of Case 2 can be determined according to the measurements
originating from the close moving targets. For two close moving targets i and i′, if more than
one measurement satisfies the following condition, these weights ω̄

(i,j)
t can be regarded as the

ambiguous weights. ∥∥∥lj
z,t − li

t|t−1

∥∥∥ <
∥∥∥li

t|t−1 − li′
t|t−1

∥∥∥ (8)

where lj
z,t is the location of the j-th measurement zj

t.
After the ambiguous weights between the measurement j and the target i have been determined,

multiple features that include the spatial-colour appearance, histogram of oriented gradient and
target area are fused to penalize these ambiguous weights.

3.3. Multi-Feature Fusion

(1) Spatial-colour appearance

A colour histogram of a target is a representation of the distribution of colours inside this
target’s region in an image. Colour histogram-based appearances [24–27] are effective and efficient
at capturing the distribution characteristics of visual features inside the target regions for visual
tracking. In this section, a spatial constraint colour histogram appearance model (so-called
spatial-colour appearance model) is presented.

The appearance of a target i is modelled as a Gaussian mixture qi = qi(ω
i
k, µi

k, ∑i
k), representing

the colour distribution of a target’s pixels [24]. k = 1, · · · , K, and K is the number of Gaussian
components. The measure of the similarity Ps(i, j) between the measurement j and the target i is
then defined by:

Ps(i, j) = exp

 1
Nj

∑
Ωj

log

{
K

∑
k=1

ωi
kN(clj ; µi

k, ∑i
k)

} (9)

N
(
c; µ, ∑

)
=

exp
{
− 1

2 (c− µ)′ ∑−1(c− µ)
}

√
2π |∑|

(10)

where clj = (rlj , glj , Ilj) is the colour of the pixel located in lj within the support region Ωj of
the measurement j. Nj is the number of foreground pixels in Ωj. glj = Glj /(Rlj + Glj + Blj),
rlj = Rlj /(Rlj + Glj + Blj) and Ilj = (Rlj + Glj + Blj)/3. Figure 5 is a schematic diagram of the
colour distribution of the foreground pixels within a measurement’s region.
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Figure 5. A schematic diagram of the colour distributions of the foreground pixels and the support
region of the measurement j.

However, the aforementioned appearance model may fail when targets have similar colour
distributions. To remedy this, a Gaussian spatial constraint [26] is incorporated, and the measure
of the similarity is improved by:

Ps(i, j) = exp

 1
Nj

∑
Ωj

log

{
N(lj; li

t, ∑i
t)

K

∑
k=1

ωi
kN(clj ; µi

k, ∑i
k)

} (11)

where N(lj; li
t, ∑i

t) is the Gaussian spatial constraint of the locations of the foreground pixels, and
∑i

t = [(wi
t/2)2, 0; 0, (hi

t/2)2]. li
t = {li

x,t, li
y,t} and {wi

t, hi
t} are the location and size of bounding box of

the target i at time t, respectively.

(2) Histogram of oriented gradient [28]

The gradient G(x, y) and orientation O(x, y) of each pixel in the target region is calculated by:

G(x, y) =
√
[I(x + 1, y)− I(x− 1, y)]2 + [I(x, y + 1)− I(x, y− 1)]2 (12)

O(x, y) = arctan
{

I(x, y + 1)− I(x, y− 1)
I(x + 1, y)− I(x− 1, y)

}
(13)

where I(x, y) is the location of pixel in the image I.
The weighted oriented gradient histogram qi

h(u) of target i is formed by dividing the orientation
into 36 bins (10◦ each step).

qi
h(u) = C

ni

∑
r=1

k
(∥∥∥(li

r − li
0)/h

∥∥∥2
)

G(li
r)δ[b(l

i
r)− u] (14)

where u = 1, 2, · · · , 36, C = 1/ ∑ni
i=1 k(

∥∥li
r
∥∥2
) is a normalization function, ni is the number of pixels in

target i’s region, k(·) is an isotropic kernel profile, li
r is the location of pixel r, h is the bandwidth, δ is

the Kronecker delta function and b(li
r) associates the pixel r with the histogram bin.

The gradient of oriented histogram likelihood between the measurement j and the target i is
defined by:

Ph(i, j) =
1√

2πσh
exp

{
−d2

h[q
i
h(u), qj

h(u)]
2σh

}
(15)
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d2
h[q

i
h(u), qj

h(u)] =
√

1− ρ[qi
h(u), qj

h(u)] (16)

ρ[qi
h(u), qj

h(u)] =
36

∑
u=1

√
qi

h(u) · q
j
h(u) (17)

where σh is the Gaussian variance, which is set as 0.3 in our experiments.

(3) Target area

The degree of change between the areas of the target i and measurement j is defined by:

Pa(i, j) =
min{Si, Sj}
max{Si, Sj}

(18)

where Si and Sj represent the areas of target i and measurement j, respectively. It is reasonable to
state that the larger the Pa(i, j) is, the more possible it is that the measurement j is generated from the
target i, because the size of the same target changes slightly between two consecutive frames.

(4) Multi-feature fusion

In this paper, the aforementioned features are fused to robustly penalize the ambiguous weight
between the measurement j and the target i.

Pf (i, j) = (Ps(i, j) + Ph(i, j) + Pa(i, j))/3 (19)

Obviously, the larger the Pf (i, j) is, the more possibility there is that the measurement j is
generated from the target i. In fact, if a measurement j is truly generated from a target i, the Pf (i, j)
should approximately be one.

3.4. Weight Penalization

The ambiguous weight ω̄
(i,j)
t can be penalized according to the multi-feature fusion.

ω̄
(i,j)
t = ω̄

(i,j)
t · Pf (i, j) (20)

After all of the ambiguous weights have been penalized, all of the weights in the j-th column in
the weight matrix should be further normalized by:

ω̄
(i,j)
t = ω̄

(i,j)
t /W j

i (21)

where i = 1, · · · , Jt|t−1.

4. Experimental Evaluation

Our tracker can be employed for various scenarios, such as person tracking for human behaviour
surveillance and analysis, car tracking for traffic surveillance, human hand and object tracking for
human-object interactions, cell tracking for biomedical application, and so on.

In this section, we first evaluate our weight penalization method on several kinds of scenarios
that include synthetic image sequences, outdoor human surveillance and cell moving surveillance
scenarios by comparing to the state-of-the-art weight penalization methods. We then qualitatively
test the proposed tracker on three more challenging scenarios and quantitatively compare it to several
state-of-the-art trackers.

To quantitatively evaluate the tracking performance, the CLEAR MOTmetrics [23] is used.
This returns a precision score MOTP (multi-object tracking precision) and an accuracy score MOTA
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(multi-object tracking accuracy) that is composed of a miss rate (MR), a false positive rate (FPR) and
a mismatch rate (MMR).

MOTP =
∑i,t[S(gbi

t ∩ tbi
t)/S(gbi

t ∪ tbi
t)]

∑t ct
(22)

MOTA = 1− ∑t(mt + f pt + mmet)

∑t gt
(23)

where S(·) represents the area. gbi
t is the ground truth box, and tbi

t is the associated tracked box of the
target i for time t. ct is the number of matched targets for time t. mt, f pt, mmet and gt are the numbers
of misses, false positives, mismatches and ground truths, respectively, for time t.

4.1. Experimental Parameter Setup

Parameters of the tracker involved in the experiments are set as follows. Similarly as set in
our previous work [15], we have the state transition model as Ft = [I2, TI2, 02; 02, I2, 02; 02, 02, I2]

and Qt = δ2
v [T4I2/4, T3I2/2, 02; T3I2/2, T2I2, 02; 02, 02, T2I2], where 0n and In are the n× n zero and

identity matrices. T = 1 frame is the interval between two consecutive time steps. δv = 3 is the standard
deviation of the state noise. We also set the measurement model as Ht = [I2, 02, 02; 02, 02, I2] and
Rt = δ2

wI4, where δw = 2 is the standard deviation of the measurement noise. The values of residual
parameters involved in our tracker are set as: pd = 0.99, psv = 0.95, λt = 0.01, ct(zt) = (image area)−1

and σh = 0.3.

4.2. Evaluation of the Proposed Weight Penalization Method

We evaluate the proposed weight penalization method on three scenarios, including a synthetic
image sequence, an outdoor human surveillance scenario and a cell moving surveillance scenario.
Moreover, to demonstrate the effectiveness of the proposed method, it is also compared to the
conventional GM-PHD tracker [7] and the CPGM-PHD tracker [22].

(1) Qualitative analysis

Tracking on a synthetic image sequence: A synthetic image sequence is used to validate the
effectiveness of the proposed weight penalization method. Figures 6 and 7 show the tracking
results and the corresponding weight matrices obtained by the trackers, respectively. At t = 48,
all of the trackers can successfully track all of the targets (shown as in Figure 6a). At t = 49,
Targets 1 and 4 approach very close, as well as Targets 2 and 3. Without any weight penalization
method, the conventional GM-PHD tracker tracks Target 2 with the wrong Identity 3, while switching
the identities for Targets 1 and 4 (shown as in Figure 6b). According to the method proposed
in the CPGM-PHD tracker, two ambiguous weights for Case 1 are determined and rearranged
(shown as in Figure 7b), and the corresponding targets are tracked with correct identities (shown as
Targets 2 and 3 in Figure 6c). However, the CPGM-PHD tracker cannot correctly track the targets with
switched identities for Case 2 (shown as Targets 1 and 4 in Figure 6c). On the contrary, our tracker
determines the ambiguous weights for both Case 1 and Case 2 and penalizes the ambiguous weights
by fusing the multiple target features. By doing so, four ambiguous weights are determined to be
rearranged (shown as in Figure 7c), and all of the targets are tracked with correct identities (shown as
in Figure 6d). Figure 8 shows the trajectories of the tracked targets. The results demonstrate that the
trajectories obtained by our tracker are closer to the ground truth.

To show the effectiveness of multi-feature fusion, we also perform our tracker with a single
feature, such as the target area feature and the colour appearance feature. The tracking results
are shown as in Figure 6e,f. Since the target areas of two closely moving targets (Targets 2 and 3)
are almost the same, the difference between the measurements originating from them is negligible.
If we only use target area to penalize the weights, the tracker should perform just like a conventional
GM-PHD tracker (shown as Figure 6e). Although the areas of Targets 2 and 3 are almost the same,
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their appearances are totally different. Therefore, penalizing the weights with the colour appearance
feature can correctly track these two targets. However, many similarities occur in Targets 1 and 4,
which results in a mismatched result.

Tracking on an outdoor human surveillance scenario: An outdoor human surveillance sequence
is used to further evaluate the proposed weight penalization method. Figure 9 shows the tracking
results by the GM-PHD tracker, the CPGM-PHD tracker and our tracker, respectively. Without the
weight penalization method, the conventional GM-PHD tracker tracks the close moving targets with
the same identities at t = 89 (shown as two Target 1s in Figure 9a). Both the CPGM-PHD and proposed
trackers can successfully track the closely moving targets at t = 89 (shown as in Figure 9b,c). However,
both of the GM-PHD and CPGM-PHD trackers track the merged measurement as one single target,
as mutual occlusion occurs in targets at t = 90 (shown as Target 1 in Figure 9d,e). On the contrary,
our tracker can correctly track the targets in mutual occlusion (shown as Targets 1 and 5 in Figure 9f)
by incorporating the mutual occlusion handling method. Figure 10 demonstrates the trajectories of
the tracked targets. The GM-PHD tracker and CPGM-PHD tracker cannot correctly track the targets
in consecutive time steps and, thus, results in many mismatches. By contrast, the results obtained by
our tracker are closer to the ground truth and, thus, largely reduce the mismatches.

Tracking on a cell moving surveillance scenario: A cell moving surveillance sequence captured
from the phase contrast microscopy video is tested to evaluate the robustness of the proposed tracker.
The high density of the cell population makes cells move in a relatively close space. Without weight
penalization, the GM-PHD tracker may track the closely moving cells with the same identity. As
shown in the left image in Figure 11b, two cells are assigned with the same ID 27. On the contrary,
both trackers (the CPGM-PHD tracker and the proposed tracker) with the weight penalization
method can successfully track the cells with the correct identities (shown as the middle and right
images in Figure 11b). Nevertheless, our tracker can achieve more exact cell states. Moreover, our
tracker can successfully track the mitosis cell as a newborn cell (shown as in Figure 11c) because of
the incorporation of an effective birth intensity estimation method.

(a) (b) (c)

(d) (e) (f)

Figure 6. Tracking results on a synthetic image sequence. (a) Tracked targets at t = 48 by all of the
trackers; (b) tracked targets at t = 49 by the GM-PHD tracker; (c) tracked targets at t = 49 by the
collaborative penalized GM (CPGM)-PHD tracker; (d) tracked targets at t = 49 by our tracker with
multi-feature fusion; (e) tracked targets at t = 49 by our tracker with the target area feature; (f) tracked
targets at t = 49 by our tracker with the colour appearance feature.
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(a)

(b)

(c)

Figure 7. Updated weight matrices at t = 49 on a synthetic image sequence. (a) For the GM-PHD
tracker; (b) for the CPGM-PHD tracker; (c) for our tracker.

(a)

(b)

Figure 8. Cont.
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(c)

(d)

Figure 8. Tracking trajectories on a synthetic image sequence. (a) Ground truth; (b) for the GM-PHD
tracker; (c) for the CPGM-PHD tracker; (d) for our tracker.

(e) (f) (g)

(h) (i) (j)

Figure 9. Tracking results on an outdoor human surveillance scenario. (a,d) Tracked targets by the
GM-PHD tracker; (b,e) tracked targets by the CPGM-PHD tracker; (c,f) tracked targets by our tracker.
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(a)

(b)

(c)

(d)

Figure 10. Tracking trajectories on an outdoor human surveillance scenario. (a) Ground truth; (b) for
the GM-PHD tracker; (c) for the CPGM-PHD tracker; (d) for our tracker.
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(a)

(b)

(c)

Figure 11. Tracking results on a cell moving surveillance scenario. (a) Left: tracked targets at t = 54;
right: local tracked targets; (b) from left to right: tracked targets at t = 55 by the GM-PHD tracker, by
the CPGM-PHD tracker and by our tracker, respectively; (c) from left to right: tracked targets by our
tracker at t = 41 and t = 42, respectively.

(2) Quantitative analysis

We quantitatively evaluate the tracking performance according to the CLEAR MOT metrics.
Table 1 shows the corresponding tracking performance comparison of the GM-PHD tracker,
CPGM-PHD tracker and our tracker tested on the above-mentioned surveillance scenarios. The
results show that tracking with our tracker can achieve better scores, both in MOTP and MOTA, on the
tested sequences. Moreover, to show the effectiveness of the proposed weight penalization method
for tracking the closely moving targets, the mismatch rate is also compared (shown as in Table 2).
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By determining the ambiguous weights for two cases and incorporating multiple target features to
penalize the ambiguous weights, our tracker can reduce the mismatch rate and, thus, improve the
tracking accuracy.

Table 1. Tracking performance comparison of the GM-PHD tracker, CPGM-PHD tracker and our
tracker. MOTA, multi-object tracking accuracy; MOTP, multi-object tracking precision.

Tracker Performance Synthetic Images Outdoor Human Surveillance Cells Moving

GM-PHD MOTA 0.8586 0.6265 0.5128
tracker [7] MOTP 0.9266 0.8567 0.4283

CPGM-PHD MOTA 0.9863 0.7038 0.6842
tracker [22] MOTP 0.9536 0.8724 0.5581

Our MOTA 1 0.9348 0.7218
tracker MOTP 0.9675 0.9273 0.6065

Table 2. Mismatch rate (MMR: %) comparison of the GM-PHD tracker, CPGM-PHD tracker and
our tracker.

Tracker Synthetic Images Outdoor Human Surveillance Cells Moving

GM-PHD tracker 12.88 8.52 18.75
CPGM-PHD tracker 1.37 2.76 7.13

Our tracker 0 0.94 2.68

4.3. Evaluation of the Proposed Tracker

We first qualitatively evaluate our tracker on three more challenging surveillance scenarios,
including interactive person tracking for public surveillance, person and luggages tracking for
subway station surveillance of PETS2006 [29] and crowd person tracking for campus surveillance
of PETS2009 [30], and then quantitatively compare our tracker with the state-of-the-art trackers
according to the CLEAR MOT metrics. Moreover, the computational cost of our tracker on tested
surveillance scenarios is also presented and discussed.

(1) Qualitative and quantitative analysis

Figure 12 shows tracking results of our tracker tested on the above-mentioned three challenging
surveillance scenarios. In Figure 12a, three persons move closely and frequently interact with each
other. At t = 939, Person 1 and Person 2 get close, and occlusion occurs at t = 945. At t = 959, three
persons get close, and a long-term occlusion occurs among them. Although persons get close and
interact frequently, our tracker can successfully track all three persons with correct identities with
time due to the effective weight penalization and occlusion handling method. In Figure 12b, three
persons get close at t = 775, and serious occlusion occurs with almost the same appearance at t = 782.
With our multi-feature fusion scheme, as well as occlusion handling method, the persons involved
are accurately tracked. It is noted that when a person is moving with luggage in his or her hand, both
the person and luggage are tracked as one single target (shown as Targets 12 and 16 in Figure 12b).
However, when they are separated, they are tracked as two targets with different identities (shown
as Targets 21 and 27 in Figure 12b). In Figure 12c, a large number of persons and many interactions
are involved. For example, at t = 160 and t = 165, Persons 3, 9 and 12, as well as Persons 4 and
5 are walking together. Similarly, at t = 293, Persons 3 and 23, as well as Persons 5 and 18 get
close, and occlusions occur. Even though, our tracker still can effectively track those persons with
correct identities.

To show the superior performance of our tracker, it is quantitatively compared to the
state-of-the-art trackers according to the CLEAR MOT metrics. We compare the MOTA and MOTP
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scores of our tracker with the scores reported in [31–33] on the subway station surveillance scenario
of PETS2006, and the scores reported in [34–36] on the campus surveillance scenario of PETS2009,
respectively. The results in Tables 3 and 4 show that our tracker achieves a better MOTP score on
tracking precision and a comparable MOTA score on tracking accuracy. The reason for the lower
MOTA score than the score reported in [35] is that we implement object detection using a simple
background subtraction method. This simple method tends to generate a large number of noise in
variable environment. Although our tracker can eliminate a large number of noise, some noises may
still be tracked as the targets. To further achieve a high MOTA score, a more robust object detection
method should be incorporated.

Table 3. Tracking performance comparison on the subway station surveillance scenario of PETS2006.

GM-PHD Tracker [7] Tracker in [31] Tracker in [32] Tracker in [33] Our Tracker

MOTA 0.3440 0.9875 0.9221 0.9656 0.8861
MOTP 0.4286 0.5816 0.4980 0.5687 0.6346

Table 4. Tracking performance comparison on the campus surveillance scenario of PETS2009.

GM-PHD Tracker [7] Tracker in [34] Tracker in [35] Tracker in [36] Our Tracker

MOTA 0.4617 0.7591 0.8932 0.7977 0.8826
MOTP 0.4976 0.5382 0.5643 0.5634 0.6055

(a)

(b)

(c)

Figure 12. Tracking results of our tracker on three challenging surveillance scenarios. (a) Tracking
interactive persons for public surveillance; (b) tracking persons and luggage for subway station
surveillance; (c) tracking crowd persons for campus surveillance.

30257



Sensors 2015, 15, 30240–30260

(2) Computational cost

The proposed tracker is implemented in MATLAB using a computer with Inter(R) Core(TM)
i7-4600U CPU 2.10 GHz and 4 GB of memory. Without any code optimization, the average runtimes
of the tested surveillance videos are shown as in Figure 13. The majority of the runtimes are
consumed in game theory-based mutual occlusion handling, because it is a pixel-wise iteration
process. In addition, tracking a larger number of targets also increases the computational burden.
In cell moving surveillance, subway station surveillance and campus surveillance scenarios, a large
number of targets, as well as many occlusions are involved, which cost more computational time and
slow down the processing speed.

Figure 13. Processing time (unit: fps) of our tracker on the tested scenarios.

5. Conclusions

We have developed a robust GM-PHD tracker to track targets in close movement in video.
We incorporated an entropy-based birth intensity estimation method to effectively eliminate the false
positives caused by noises. Particularly, we presented a weight penalization method to accurately
track the targets in close movement.

The majority of the leading methods in the state of the art only considered ambiguous weight
penalization for Case 1. Besides, only the total weight was used for ambiguous weight determination.
However, both Case 1 and Case 2 could cause incorrect tracking. In this paper, we constructed
a weight matrix and used both the total weight and target state to determine the ambiguous weights
for both cases in the matrix. We then fused multiple target features, including the spatial-colour
appearance, histogram of oriented gradient and target area, to penalize the ambiguous weights. By
doing so, those weights between the target and the irrelevant measurements can be greatly penalized
and, thus, lead to an improved tracking accuracy with a low mismatch rate. Moreover, fusing
multiple features took advantage of single feature merit and leveraged the corresponding weights.

We experimentally validated our tracker on a variety of scenarios and qualitatively and
quantitatively compared our tracker to the conventional GM-PHD tracker, as well as the
state-of-the-art trackers. The results demonstrated that our tracker achieved an improvement in
precision and accuracy.
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However, the processing speed of our tracker was not fast enough, which limited the real-time
application. To remedy this, employing a more efficient occlusion handling method will be helpful
and will be explored in our future works.
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