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Abstract: The real-time recognition of absolute (or relative) position and orientation on a 

network of roads is a core technology for fully automated or driving-assisted vehicles. This 

paper presents an empirical investigation of the design, implementation, and evaluation of a 

self-positioning system based on a magnetic marker reference sensing method for an 

autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler 

(MSR) in the up-to-date estimation of the actual position was successfully enhanced by 

compensating for time delays in signal processing when detecting the vertical magnetic field 

(VMF) in an array of signals. In this study, the signal processing scheme was developed to 

minimize the effects of the distortion of measured signals when estimating the relative 

positional information based on magnetic signals obtained using the MSR. In other words, the 

center point in a 2D magnetic field contour plot corresponding to the actual position of 

magnetic markers was estimated by tracking the errors between pre-defined reference models 

and measured magnetic signals. The algorithm proposed in this study was validated by 

experimental measurements using a test vehicle on a pilot network of roads. From the results, 

the positioning error was found to be less than 0.04 m on average in an operational test. 

Keywords: localization; magnetic marker; magnetic sensing system (MSS); peak detection; 

vertical magnetic field (VMF) 
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1. Introduction 

Precise estimation techniques for the position and heading angle have been widely utilized for the 

automation of factories and port logistics systems. In particular, large commercial vehicle manufacturers 

(e.g., Mercedes Benz, BMW, Volvo, GM, etc.) and information technology (IT) companies (e.g., Apple, 

Google, etc.) are increasing their investment in the competitive information and communications technology 

(ICT) field, as the need for more reliable and cost-effective autonomous driving technologies increases. The 

final goal is to develop fully automated vehicles to provide passengers with demand-responsive, door to door 

(D2D) transportation services without time delays, even in harsh environments. To achieve this goal, the 

vehicle position must be exactly monitored in real-time during its autonomous operation. 

To date, numerous attempts have been made to develop reliable and robust tracking of vehicle position, 

which has been realized with the advancement in sensing techniques. Thus far, various sensor-fusion systems 

based on global positioning system (GPS) [1–4], optical devices (e.g., cameras, laser scanners) [4–6], and 

Magnetic Sensing System (MSS) [7–9] have been used as integrated modules both to increase reliability and 

robustness, and to exploit the advantages of each system. GPS is the most commonly used technique for 

identifying a vehicle’s absolute position in real-time; however, GPS is not usable in indoor environments (or 

its use is restricted because of interference caused by large concrete structures). Additionally, the 

visualization technique has recently attracted attention because of its ability to provide important information 

(including terrain and planimetric features) regarding the area around a vehicle. However, current 

visualization devices remain expensive, and the development of mapping algorithms adaptive to changes in 

operating conditions (e.g., obstacles, weather conditions, etc.) is a major impediment in most research. 

The absolute position is determined by directly identifying the vehicle’s absolute location (e.g., using 

GPS) or transforming the relative positional information obtained by a sensing device (e.g., using an MSS). 

In particular, magnetic-marker-based self-positioning systems have several advantages, as follows: 

independence of weather conditions, low maintenance requirements, and simple construction on existing 

road infrastructure [9]. Most importantly, these systems are most efficient when used on a planned path, and 

unlike other sensing technologies, their application is not limited by harsh environments including the inside 

the buildings or near-surface tunnels. The California Partners for Advanced Transit and Highways (PATH) 

program successfully demonstrated automatic guidance of a heavy-duty vehicle (e.g., a bus). [10] 

Additionally, the system’s technical and economic feasibility was proven by a successful trial of a personal 

rapid transit (PRT) system prototype (i.e., 2getthere), conducted in Masdar city in the UAE [11]. 

The absolute position of an autonomously operating vehicle is estimated from the relative position 

information of magnetic markers from a sensor module installed on the vehicle. The estimation accuracy 

in this method depends on the methodological robustness of the algorithm for minimization of the errors 

between the predicted values and the real positions. In general, the intensity distribution of the magnetic 

signals is characterized by a Gaussian function at the location corresponding to the center of the magnetic 

marker [9,12]; the local positions of magnetic markers can be estimated after passing the magnetic 

markers, using Hall-effect sensors inside the module that are distributed as a 1D discrete array. 

Therefore, estimation errors—resulting from the discrepancy in time and space between the detection 

time of the peak and the actual peak time—must arise. Therefore, signal processing to transform to the 

2D data format should be used to minimize the estimation errors. 
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In previous studies [7–9], automatic driving control systems were implemented using only 1D 

magnetic signals in the lateral direction collected from magnetic markers. This approach is applicable 

for low-velocity vehicles at very high sampling frequencies that can overcome errors due to time delays. 

However, the errors increase—becoming significant—as the vehicle speed increases. Additionally, it is 

impossible to reduce the sampling time to obtain more data during high-speed driving. Therefore, to 

address this issue, the development of high efficiency algorithms with low calculation loads and 

hardware (H/W) configuration is required. In general, the measured signals include noise, which leads 

to difficulties in peak detection. However, the elimination of noise using filters results in distortion  

(e.g., time shifts) of the signal. Therefore, the 2D positional information based on magnetic signals 

measured over time is required, both to compensate for the time delays and to overcome the limitations 

of the raw data—given in 1D for a specific time. 

In this study, the empirical investigation of the design, implementation of H/W and software (S/W), 

and assessment of the magnetic-marker-based positioning system was carried out for a Korean  

mini-tram PRT vehicle. In short, the magnetic sensing ruler (MSR) was developed to determine the 

absolute location of the vehicle by detecting the peak signal corresponding to the actual position of a 

magnetic marker from the array of signals. In this process, an additional algorithm to compensate for 

time delays in the signal processing to enhance accuracy despite noise was developed. The signal 

processing scheme proposed in this study was validated by experimental assessments using a test vehicle 

(i.e., a modified golf cart) on a pilot network of roads implemented on the grounds of the Korea Railroad 

Research Institute (KRRI). 

2. Magnetic Sensing Ruler 

2.1. Magnetic-Marker-Based Positioning System 

Cylindrical magnetic markers (15 mm in diameter and 30 mm in length) were buried underneath the 

ground along the test track. For the detection of magnetic fields emanating from the markers, the MSR 

is mounted on the rear bumper (e.g., approximately 0.08 m above the ground), parallel to the axle axis. 

As depicted in Figure 1, it is expected that the strengths of the magnetic signals detected using each 

sensor in the MSR have a Gaussian distribution around the center of the magnetic marker. The height of 

the peak is most prominent at the moment at which the MSR is passing directly above the magnetic 

marker. Thereafter, the strength of the signal gradually becomes weaker. 

The MSR periodically (e.g., approximately every 30 ms) measures the magnetic signals while the 

vehicle is autonomously driving on the road. During vehicle operation, the MSR has the role of 

determining the absolute location of the vehicle by detecting the peak signal corresponding to the actual 

position of a magnetic marker from the array of signals. The multi-sensor array is arranged with a 

constant gap (i.e., 48 mm) as shown in Figure 2. The strength of the magnetic signal measured by each 

sensor is collected and sent to the signal processor, which performs peak detection. 

The completely assembled MSR controller board was integrated with three modular boards—each of 

which has an array of seven Hall-effect sensors for ease of maintenance and design, and based on the 

width of the vehicle. The data collected by each modular board is sent to the signal processor (i.e.,  

an MCU) via RS-232 communication links at the time of request by a vehicle host computer, as shown 
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in Figure 3. The host computer performs both calculation of the absolute position and orientation of the 

vehicle, and actuation for autonomous driving. The position and orientation are identified by referring 

to real-time information regarding the vehicle status collected by the MSR and from other sensors such 

as gyroscopes, steering angle sensors, and wheel encoders. The signals measured by the gyroscope and 

the wheel encoders are used for estimating the posture variation of the vehicle by calculating the moving 

distance and the angular velocity based on the kinematic model during the sampling time. In addition, 

the steering angle sensor is dedicated for steering control in vehicle guidance. 

 

Figure 1. The array of magnetic signals as a series of Gaussian distribution functions in  

3D space. 

 

Figure 2. Simple schematic of multi-sensor array in the MSR. 

 

Figure 3. Design of MSR and data flow of magnetic signals. 
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2.2. Design and Fabrication of MSR 

AMI302 devices (procured from Aichi Steel, Tokai-shi, Aichi, Japan) were used for measurement of 

the magnetic field strength (MFS). These sensors provide 3D positional information by integrating the data 

from the orthogonal magneto-impedance (MI) sensing elements. The magnetic sensing modules—each 

with a seven-sensor array—were connected next to each other. The data collected by the 21 sensors in the 

MSR are sent to the main controller (i.e., the vehicle host computer) via the signal processing board  

(i.e., the MCU), as shown in Figure 3. The assembled MSR shown in Figure 4 was mounted on the rear 

bumper at a height of approximately 8 cm above the ground, parallel to the rear axle of the test vehicle 

(i.e., a modified golf cart). 

 
(a) 

 
(b) 

Figure 4. Fabrication and installation of magnetic sensing array: (a) Assembly of three 

modular boards; (b) MSR mounted on the vehicle. 

3. Peak Detection Algorithm 

In the magnetic-markers-based absolute position estimation method, it is very important to detect the 

center position of the magnetic markers on the road while driving. In general, the MFS measured by the MSR 

has the form of a Gaussian function at the location corresponding to the center of the magnetic marker. 

Because the sensors in the MSR are installed perpendicular to the driving direction of the vehicle—as shown 

in Figure 4a—the MFS obtained by the MSR has the form of 1D spatial data at a given time. Therefore, the 

center position of the magnetic marker can be determined by evaluating the variations in slope due to the 

attenuation of MFS immediately after passing a peak in the Gaussian distribution of the MFS. Therefore, a 

time discrepancy between peak detection (i.e., SYNC2 in Figure 5) and the actual peak occurrence (i.e., the 

red circle in Figure 5) arises, which necessitates compensation of time delays resulting from the signal 

processing time. For this purpose, the 1D spatial data series monitored over time is converted into 2D 
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positional data—as shown in Figure 6a—via the time-to-space transformation algorithm proposed in  

this study. 

 

Figure 5. Vehicle local Cartesian coordinate system to determine the relative position of the 

magnetic markers based on peak detection by the MFS. 

(a) (b) 

Figure 6. Distribution plot from MFS: (a) In 2D; (b) In 3D. 

The strengths of the magnetic field in 3D [Figure 6b] have a symmetric “bell curve” shape; the height 

of the curve’s peak depends on the distance between the sensors and the magnetic markers. The center 

point in the 2D positional information—depicted as a contour plot in Figure 6a—indicates the actual 

position of the magnetic marker on the planned path. Additionally, the 2D contour plot is obtained by 

analyzing the changes in the strength of the magnetic signals measured over time during operation of the 

vehicle. In this process, the time-domain 1D spatial data collected during travel between two magnetic 

markers are transformed into 2D spatial-domain data. 

3.1. Modeling of Vertical Magnetic Field 

Assuming that the sensor is directly above the magnet and that the distance to the magnet has a known 

value (e.g., 0.08 m), the reference Gaussian function (given in Figure 7a) for modeling of the vertical 

magnetic field (VMF) is mathematically expressed as follows: 
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where y is the lateral position in Figure 5, a is the maximum amplitude of the magnetic signal, b is the 

position of the center of the magnet, and c is the Gaussian RMS (root mean square) width. In a sample 

test, the values of a and c were found to be approximately 0.84 and 0.12, respectively, at a distance of 

0.08 m between the sensor and the magnetic marker. 

The point at which the errors between the reference model in Equation (1) and the measured values 

are minimized is defined as the center of the magnet. Figure 7b presents a comparison of the measured 

values using the MSR with the reference model; this comparison confirms that the measured data closely 

matches the Gaussian profile. In addition, we found that only sensors within a distance of 0.15 m (in 

radius) from the center of the magnet could detect the magnetic fields. The intervals between magnetic 

markers buried along the path are approximately 3 m for straight and 2 m for curved roads, respectively. 

Thus, the interference between magnetic fields from adjacent markers can be excluded in this study. 

(a) (b) 

Figure 7. Gaussian function to characterize the MFS at the center of the magnetic marker: 

(a) Mathematical definition of a Gaussian function; (b) 1D discrete data measured by the 

sensor array. 

3.2. Lateral Position (ymr) Estimation of Magnetic Markers 

The strength of the magnetic signal is measured by each sensor at every sampling time. The collected 

data sequence indicates the MFS at each sensor in the lateral direction (the y axis in Figure 5). The center 

of the VMF is determined by comparing the 1D discrete profile of the MFS around each sensor to the 

reference Gaussian model. That is, the location at which the difference is minimal is regarded as the 

position of the magnetic marker. Figure 8 presents the schematic procedure for signal processing to identify 

the position of the peak intensity (i.e., the location of a magnetic marker) in the lateral direction. The 

validity of the measured MFS is confirmed if the peak intensity is higher than the threshold level, which is 

determined by investigating the minimum level of MFS required for detection of the magnetic markers: 

( )max maxf F=  (2)

where F = [f1 f2 ··· fn], n is the number of the sensors, and fmax is the maximum value of the MFS. 
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Figure 8. Signal processing flow chart for peak detection in the y axis (lateral direction of MSR). 

Once the MFS data is detected by the MSR at a sampling time, the parameters a and c in Equation (1) 

can be determined so as to define the reference Gaussian profile based on the point at which the maximum 

intensity (fmax) is observed. Then, the similarity of the measured data set (F) to the reference model at a 

constant interval (e.g., dy = 0.005 mm) is evaluated for all sections of the MSR (Yc). The examination 

interval (dy) is determined by both calculation loads and system requirements, so as to increase the 

precision of position estimation: 

[ ] [ ]0 1 0c c c ckY y y y dy kdy= =   (3)

where k = (L/dy) − 1, where L denotes the total length of the MSR. 
To find the exact y position of the peak intensity, the center point of the reference Gaussian function 

is placed at each examination point while sweeping through the entire range of the MSR. Then, the 

discrete intensity data set (ܨఫഥ) is obtained as a function of the sensor position (Y):  

( )2

max 2
exp , 0,1, ,

2
cj

j

Y y
F f j k

σ

 − = − =
 
 

  
(4)

where Y = [p0 p1 ··· pn − 1] = [0 dp 2dp ··· (n − 1)dp] and dp denotes the distance (i.e., 0.048 mm) between 

sensors in the MSR. Finally, the relative position (ymr) of the peak from the center of the MSR is defined 

as the location (i.e., Equation (5)) at which the summation of errors (eyj) between ܨఫഥ at each examination 

point and F are at a minimum; its mathematical expression is given by Equation (6): 

( ) ( )min min, miny y yi Eε =  (5)

0 1
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yj j

with E e e e
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


 

min/ 2mr yy L i dy= − ×  

(6)

where iymin is the index of the examination point with minimum error (εymin). 

3.3. Longitudinal Position (xmr) Estimation of Magnetic Markers 

xmr represents the relative position of the magnetic marker from the MSR at a given sampling time 

(i.e., SYNC2 in Figure 5). The peak detection in the driving direction (x axis in Figure 5) is achieved by 

observing the attenuation of the MFS immediately after passing the peak point. The MFS profile  

(e.g., the Gaussian RMS width) in the x axis as a function of time varies with the speed of the vehicle. 

Therefore, to define the peak position in the driving direction, the 1D discrete data of the MFS collected 

over time should be transformed into 2D spatial data. To achieve the time-to-space transformation, the 

maximum peak intensity over time is monitored whenever the driving distance satisfies a specified value 
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(s). The value of s is calculated by integrating the moving distance with a speed vt during a sampling 

time (dt); it is pre-determined to obtain an adequate reference Gaussian profile based on both the vehicle 

speed and the detection range of the sensors, so as to obtain an effective MFS (e.g., the value of s was 

approximately 0.02 m in this study.). 

To define the reference Gaussian profile, the maximum intensity values (Fmax) at each distance 

interval (Dis) and the slope variations (Slop) between them are collected until the intensity is completely 

attenuated after the vertex of the MFS in the driving direction. Fmax is the set of maximum intensities at 

each VMF over time: 

( )( )max( ) maxf k F k=  (7)

( ) ( ) ( )max max max max
1F f k f k f k n = − −  (8)

( ) ( ) ( )1Dis s k s k s k n= − −    (9)

( ) ( ) ( )1Slop slop k slop k slop k n= − −   (10)

where slop(k) = f(k)max − f(k − 1)max, n is the total number of data acquired to define the reference 

Gaussian profile in the driving direction, and k is the discrete time index at each distance interval s(k). 

Peak detection is confirmed if the measured signal indicates success (VMF exceeds the threshold level) 

and the discrete derivative between VMF is changed to a negative slope.  

The parameters a and c in Equation (1) of the reference Gaussian profile in the driving direction  

(x axis in Figure 5) are determined based on the time at which VMF [f(k)max] is detected. Then, in a 

similar manner as for the lateral direction, the differences between the measured data and the reference 

Gaussian profile are evaluated to determine the exact location of the magnetic marker. To achieve this 

goal, Fmax is converted from a time domain representation to a space (i.e., sampling location) domain 

representation. Additionally, the maximum intensity value set (Fmax) is compared to the reference 

Gaussian profile [ܨത(ݔ௖௜)] whenever passing each an examination interval (Xc) over the cumulative 

moving distance (X) until the next sampling cycle. Finally, the exact position of the magnetic marker in 

the driving direction is found, because the location at which the summation of errors between ܨത(ݔ௖௜) at 

each examination point and Fmax are at the minimum. Figure 9 represents the schematic procedure for 

signal processing to identify the position of peak intensity in the driving direction: 
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(12)

where dx denotes the examination interval. In Figure 5, the relative position (xmr) of the peak in the 

driving direction from the MSR is determined using Equation (15): 

( ) ( )min min, minx x xi Eε =  (13)

[ ]
( )

0 1

max , 0,1, ,

x x x xn
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with E e e e

e F x F ih nwit
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= − =



 (14)
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minmr xx i dx= ×  (15)

where ixmin is the index number of the examination point with minimum error (εxmin). 

 

Figure 9. Signal processing flow chart for peak detection using compensation for time delays 

in the x axis (driving direction of the vehicle). 

3.4. Peak Detection using 2D Positional Information 

As mentioned previously, the 2-D positional information of the magnetic markers is given as the 

relative location (i.e., x and y values in Figure 5) of the VMF in both the driving and lateral directions of 

the vehicle’s local Cartesian coordinate system. Figure 10 represents the position estimation results for 

the magnetic markers, which is carried out using the approach proposed in this study. Figure 10a shows 

the comparison between the reference Gaussian profile and the measured MFS in the process of finding 

the lateral position (y) of the VMF. Time-to-space transformed signals and their comparison to the 

reference Gaussian profile in the driving direction are plotted in Figure 10b in which “0” in the x axis 

indicates the position of the MSR. We observed that the position of the magnetic marker was located 

behind the vehicle position, which could be correctly predicted by developing an algorithm to consider 

the time delays in measurements. Figure 10c is the summation of errors between the reference Gaussian 

profile and the measured signals at each examination point. The vertex in the 2D contour plot shown in 

Figure 10d indicates the detected location (*) of the magnetic marker in the vehicle’s local Cartesian 

coordinate system. 
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(c) (d) 

Figure 10. Results of peak detection using the algorithm for compensation of time delays: 

(a) Lateral position detection; (b) Longitudinal position detection; (c) Error calculations in 

longitudinal position detection; (d) Real-time detection of magnetic markers using 2D 

positional information. 

4. Localization Based on Magnetic Markers 

MFS data measured by the MSR is converted into relative positional information (xmr, ymr) with 

respect to the vehicle local coordinate frame using the VMF detection algorithm. Eventually, the absolute 

position of a vehicle in the world-fixed coordinate system is obtained through coordinate transformation 

to a global coordinate system based on relative positional data in the vehicle local coordinate system 

combined with an odometer reading via an extended Kalman filter (EKF). 

4.1. Odometry Model 

The modified golf cart was used as the test vehicle for experimental validation of the localization 

algorithm. The vehicle is equipped with four wheels, but a bicycle model (i.e., using two wheels) was 

applied to simplify the kinematic model of the test vehicle. Figure 11 shows the movement of a vehicle 

according to a kinematic model in the global coordinate system. We assume that there is no slippage 

between the wheel and the road surface, and that the vehicle position is represented by the middle point 

of the rear axle w2 with Cartesian coordinates ( xw2(k), yw2(k)) at time tk. θk is the vehicle heading angle at 

time tk. Assuming that the vehicle moves along a circular trajectory around a virtual center O (i.e., the 

dotted line in Figure 11) from tk to tk + 1, its position and orientation at time tk + 1 are given by: 

( ) ( ) ( )
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2 1 2
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 (16)

where Δd is the distance travelled during a sampling interval. 
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Figure 11. Schematic of vehicle kinematic model. 

4.1.1. System Model 

The system model is mathematically defined by a state vector Xk = [xw2(k) yw2(k) θk]T and an input vector 

uk = [Δdk Δθk]T as follows: 

( )1, , ,k k k k kX f X u γ σ−=  (17)

where γk and σk represent the system and input noise with covariance matrices Q and T, respectively. 

4.1.2. Measurement Model 

The measurement model, which is based on the detection of magnetic markers using an MSR mounted 

at the rear bumper, in parallel with the rear axle, as shown in Figure 12, is represented by Equation (18). 

Whenever the magnetic markers are detected by the MSR, the measurements of the distance lm and the 

angle φ to the detected position of a magnetic marker (xm, ym) from the central point (xw2, yw2, θ) of the 

rear-wheel axis (w2) are given by the following nonlinear vector function: 

( )
( ) ( )2 2
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w k m w k m
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(18)

Similarly, the nonlinear measurement model can be defined as follows: 
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2 2
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 (19)

where dx = Lr1w2 + xmr, dy = ymr, Lr1w2 is the distance from the central point of the MSR to the central 

point of the rear axle, the position (xmr, ymr) denotes the location of the magnetic marker with respect to 

the central point of the MSR, and vk is a zero-mean white noise vector with covariance matrix Rk. 
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Figure 12. Schematic of measurement model with respect to the central positions of the rear 

axle and MSR. 

4.2. Extended Kalman Filter (EKF) Algorithm 

The EKF is used for real-time estimation of the vehicle’s pose (i.e., position and orientation) based 

on convergence with the odometer data (e.g., gyroscope, steering angle, and wheel encoder) based on 

the measurement results using the MSR. The EKF predicts the future state of the system using two 

components: the time update equation and the measurement update equation. The time update and the 

measurement update are regarded as the prediction stage and the correction stage, respectively. 

4.2.1. Prediction Stage 

The future state of the system model f(·) and the state error covariance matrix Pk are predicted using 

the time update equations: 

( )1 , , 0, 0k k kX f X u− −
−=  (20)

1 1
T T

k k k k k k k kP A P A B T B Q−
− −= + +  (21)

where the system Ak and input Bk are the following Jacobian matrices of the partial differential of the 
system f(·) to Xk and uk: 
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4.2.2. Measurement Model 

The measurement update is computed only when the magnetic markers are successfully detected. The 

Kalman gain matrix Kk, state estimate Xk, and state error covariance Pk are calculated using the following 

measurement update equations: 
1T T

k k k k k kK P H H P H R
−− − = +   (24)

( )( )k k k k kX X K Z h X− −= + −  (25)

( )k k k kP I K H P−= −  (26)

where I is the identity matrix and Hk denotes the Jacobian matrix of the partial differential of h(·) for Xk: 

2 2

2 2
2 2

0

1

m m

m m
k

m m

m m

x x y y

l lh
H

y y x xx

l l

ω ω

ω ω

− − 
 ∂  = =
 − + − ∂ − 
 

 
(27)

5. Results and Discussion 

The operational experiments were conducted to verify the performance of the position estimation 

algorithm proposed in this study. The absolute positions of the test vehicle in autonomous operation 

were calculated based on the real-time measurements of the MFS using the MSR. From the results shown 

in Figure 13a, we found that 111 markers were successfully detected, and that only one marker was 

missed along the test route of approximately 237.96 m in length. The estimated positions of the detected 
magnetic markers on the planned path are shown in Figure 13a. The symbols “*” and “o” in Figure 13 

denote the estimated positions and the actual (or absolute) positions (i.e., the measured data) of the 

magnetic markers, respectively. The estimation errors were calculated based on the Euclidean distance 

between the two positions. In essence, the position values estimated by the MSR should coincide with 

the absolute position if the positions and orientations of a vehicle in operation are correctly calculated. 

However, in reality, errors between them inevitably exist, because of various factors such as measurement 

errors of the sensors (e.g., moving distance, angular velocity, and steering angle), shortcomings of the 

kinematic model (e.g., wheel slip), and signal processing errors (e.g., distortion of magnetic signals and delay 

by signal processing). The errors in this study were found to be approximately 0.035 m, on average, with a 

maximum error of 0.118 m. These results are comparable to those obtained in real-time kinematics (RTK) 

mode of GPS, in terms of precision (i.e., the several-centimeters level) [13]. As shown in Figure 13a, one of 

the magnetic markers resulted in an invalid detection because of its abnormally high error. Furthermore, the 

experimental operation at a longer test route is shown in Figure 13b, and 185 markers were successfully 

detected without missed markers in the entire test route of approximately 405 m in length. The maximum 

estimation error was 25 cm at a specific magnetic marker, but the average value was at a similar level as 

in the previous case (i.e., 4 cm). 
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(a) 

(b) 

Figure 13. Estimation results (i.e., comparison of estimated positions with absolute positions 

of magnetic markers and their estimation errors) in practical operation of 2 m/s on average for 

validation of the algorithm at different loops of the test route with a length of (a) 237.96 m and 

(b) 405 m, respectively.  

 
(a) 

 
(b) 

Figure 14. Comparison of estimation results in operation at: (a) Straight sections of the 

route; (b) Curved sections of the route. 
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Figure 14 presents the estimation results for operation on both straight and curved sections of the route. 

From the results, the MSR system developed in this study exhibited good performance, regardless of the 

curvature condition of the route. In particular, it was demonstrated that the positions of magnetic markers 

were successfully estimated, despite the existence of noise and distortion of the magnetic signals. 

Four different sections (i.e., A–D) shown in Figure 15a were defined to consider the effects by the 

detection errors of the magnetic markers. The magnetic markers were intentionally to be missed in these 

sections for realization of the detection errors. Figure 15c (i.e., section A) presents the results of the case 

where it was assumed that the 6 magnetic markers installed on the curved route with 2 m intervals are 

continuously missed. The real-time position and orientation of the vehicle is estimated by means of the 

dead-reckoning method based on a kinematic model while the vehicle is not detecting the magnetic 

markers. Also, in Figure 15d, it was assumed that the four continuous magnetic markers  

(i.e., section B) on the straight route are missed. In addition, Figure 15e,f present the case missed at every 

other magnetic marker at the straight route with 6 magnetic markers and at the s-shape curve with  

four continuous magnetic markers, respectively. From the simulation results, it was observed that the 

position estimation errors were slightly increased from 6.9 cm to 13.8 cm (maximum errors), as 

summarized in Table 1.  
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(c) (d) 

Figure 15. Cont. 
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(e) (f) 

Figure 15. Estimation results with consideration of detection errors at 4 different sections of 

the test route: (a) Comparison of estimated positions with absolute positions of magnetic 

markers; (b) Estimation errors; (c) Section A; (d) Section B; (e) Section C; (f) Section D. 

Table 1. Changes in estimation errors (cm) by considering detection failure of magnetic markers. 

Marker Index Experiment (Figure 13a) Simulation (with Assumption of Detection Failure)

a1 2.2 11 

b1 6.9 13.8 
c1 4.1 6.2 
c2 4.3 6.3 
c3 4.6 7.6 

d1 1.2 10 

6. Conclusions 

An empirical investigation of the design, implementation, and evaluation of an MSS for an 

autonomous vehicle was performed in this study. The MSR exhibited enhanced accuracy in position 

estimation of magnetic markers by incorporating an additional algorithm (i.e., conversion to 2-D 

positional information using a time-to-space transformation) for compensation of time delays caused by 

sampling interval and signal processing. The combination of odometer readings with measurement of 

magnetic signals using an EKF also proved to be reliable for vehicle self-localization with high precision; 

accuracies were comparable to those of the conventional differential global positioning system (DGPS). 

In the operational assessment using the test vehicle on the test track, the maximum estimation error was 

found to be only several centimeters. This approach will be further developed by repetitive operation at 

the system level using a prototype vehicle. This study aims at the development of the MSS suitable for 

urban transit systems such as a PRT vehicle, usually operated at speed of below 30 km/h. Additional 

investigations for extended application will hence be performed to secure the desired performance in 

high speed operation of a vehicle in the next step of this study. Besides this, a laser scanner will be 

combined with the MSS for prevention of collisions with forward obstacles for further advancement. 
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