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Abstract: Radar coincidence imaging (RCI) is a high-resolution staring imaging technique 

without the limitation of relative motion between target and radar. The sparsity-driven 

approaches are commonly used in RCI, while the prior knowledge of imaging models 

needs to be known accurately. However, as one of the major model errors, the gain-phase 

error exists generally, and may cause inaccuracies of the model and defocus the image. In 

the present report, the sparse auto-calibration method is proposed to compensate the gain-phase 

error in RCI. The method can determine the gain-phase error as part of the imaging 

process. It uses an iterative algorithm, which cycles through steps of target reconstruction 

and gain-phase error estimation, where orthogonal matching pursuit (OMP) and Newton’s 

method are used, respectively. Simulation results show that the proposed method can 

improve the imaging quality significantly and estimate the gain-phase error accurately. 

Keywords: radar coincidence imaging (RCI); sparse recovery; orthogonal matching 

pursuit (OMP); gain-phase error; auto-calibration 

 

1. Introduction 

Radar coincidence imaging (RCI), originated from the classical coincidence imaging in optical 

systems, is a novel staring imaging technique [1–3]. The RCI can realize high-resolution imaging 
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without the limit of the target relative motion, and operate under the observing geometry of  

forward-looking/staring, with significant potentials for resolution enhancement, interference and 

jamming suppression. In RCI, the time-space independent and stochastic waveforms are transmitted, 

thus the spatial variety of wavefront is increased. The scatterers within a beam then reflect different 

signals according to their respective locations, so the super-resolution within a beam emerges, 

compared with other imaging techniques. 

In RCI, sparse recovery is commonly used as the scatterers of targets are often distributed sparsely 

in some radar imaging applications. RCI can then be modeled as a linear inverse problem with a 

sparsity constraint in sparsity-driven approaches. Solving the problem depends on the perfect prior 

knowledge of the system. However, gain-phase errors among the transmitter-receiver pairs exists 

generally in RCI, which results in the dictionary mismatch and induces the performance to degrade 

significantly, since the imaging performance highly depends on presetting an appropriate sparsifying 

dictionary based on an accurate prior known model. 

Various studies have been presented on gain-phase errors, most of which are based on eigenstructure 

and concentrate on angle estimation in sensor array. In [4], a method for simultaneously estimating 

direction-of-arrival (DOA) and gain-phase error without the joint iteration is proposed. In [5], a 

method based on eigendecomposition of the Hadamard product of the covariance matrix and its 

conjugate is proposed for DOA with gain-phase error. Algorithms for joint angles and array gain-phase 

error estimation in bistatic multiple-input multiple-output (MIMO) radar based on reduced-dimension 

multiple signal classification (MUSIC) and based on trilinear decomposition are proposed in [6–8].  

In [9], an estimation of signal parameters via rotational invariance techniques (ESPRIT)-based method 

is presented to estimate the gain-phase errors of both transmission and reception arrays in bistatic 

MIMO radars. Similarly, an ESPRIT-like algorithm is proposed to realize angle estimation without any 

information of the gain and phase uncertainties [10]. In [11], two new estimation algorithms are 

proposed to estimate the gain and phase errors, i.e., estimation algorithm for the conventional data 

model (EACDM) and estimation algorithm for the improved data model (EAIDM). 

These methods are less sensitive to phase error [12] but lack adaptation to demanding scenarios 

with low signal-to-noise ratio (SNR), limited snapshots and spatially adjacent sources, just as their 

counterparts do in accurately calibrated arrays. Exploiting the sparseness previously, an adaptive 

sparse representation algorithm is proposed to improve the performance of source localization with 

respect to the gain/phase errors by dynamically calibrating the overcomplete basis and adaptively 

estimating the sparse solution [13]. Furthermore, from the Bayesian statistics perspective, a unified 

framework based on sparse Bayesian learning is formulated to realize array calibration and source 

DOA estimation, and a sparse Bayesian array calibration (SBAC) method is then proposed in [12]. 

Using variational Bayesian inference, an array auto-calibration sparse Bayesian learning (AASBL) 

algorithm in the full conjugate Bayesian framework is proposed to achieve DOA estimation with 

gain/phase errors in [14]. 

In the present report, we focus on the gain-phase error calibration in sparsity-driven RCI. Inspired 

by the sparsity-driven iterative method for joint synthetic aperture radar (SAR) imaging and phase 

error correction proposed in [15], we propose a sparse auto-calibration method for joint imaging and 

gain-phase error calibration on the sparse recovery framework. The method involves an iterative 

algorithm, each iteration of which consists of consecutive steps of target reconstruction and gain-phase 
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error estimation, where orthogonal matching pursuit (OMP) and Newton’s method are adopted, 

respectively. The proposed method can exactly reveal the behavior of the gain-phase errors  

without any approximations being required. Numerical simulations show that the method realizes  

the imaging robustly and achieves both high resolution and outstanding imaging quality in the 

presence of gain-phase error, furthermore, its implementation is simple and fast without changing the  

algorithm parameters. 

The rest of the report is organized as follows. In Section 2, the RCI model with gain-phase errors in 

the range-azimuth space is presented. Section 3 presents the sparse auto-calibration RCI method in 

detail. In Section 4, the performance of the proposed method is verified by numerical examples. 

Finally, Section 5 concludes the report. 

2. RCI Model with Gain-Phase Errors 

The RCI can be realized by a multitransmitter configuration to transmit time-independent and 

group-orthogonal waveforms [1]. Then, a monostatic radar with M  transmitters and one receiver is 

considered in the present report, each transmitter emits an independent stochastic waveform. Thus, the 

echo component of each scattering center can be extracted and then correlated to their respective 

positions to obtain the spatial distribution of scattering centers. 

The RCI geometry is illustrated in Figure 1. The imaging plane is a range-azimuth space. In 

sparsity-driven RCI, the continuous imaging plane is discretized to generate U  azimuth cells, V  range 
cells and associated cell size qD , RD . Thus the grid-cell number is K UV= . Denoted by kβ  the 

scattering coefficient of the scattering center exactly located at the pre-discretized -thk  grid-cell 
center, i.e., ( ),k k kRr = q , and 0kβ =  for the grid-cell without scattering center. 

As the backscattering of a radar target in the high-frequency region can be approximated as coming 

from a few dominant scattering centers [16], the target is assumed to be composed of a very limited 

amount of strong scattering centers. Then, the number of scattering centers is much smaller than that of 

grid-cells in the image plane, which means the RCI image is spatially sparse. 

 

Figure 1. RCI Geometry. 
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The echo is a linear combination of all the scatterers’ reflected waveforms from all the transmitters. 

Considering the phase error, the echo at the receiver can be expressed as 

( ) ( ) ( )
1
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M
j

k m m
k S

k

m
my t a e St t w tϕ

∈ =

= β − τ +  (1)

where ( )mSt t  is the signal emitted by the -thm  transmitter, ma  and mϕ  are the gain and phase errors 

between the -thm  transmitter and the receiver pair, respectively. ( )w t , an independent complex 

Gaussian random process, denotes the noise at the receiver. k
mτ  is the propagation delay corresponding 

to the -thm  transmitter and receiver with respect to the -thk  scatterer. In addition, the RCI formula 

needs a detecting signal [1], which is simply structured as 
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Thus, the echo can be expressed as the superposition of the detecting signals, i.e., 
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Î

b=å . After sampling the echo, the imaging equation can be given as follows 

( )
( )

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

1 1 1 1 2 1 11

2 2 1 2 2 2 22

1 2

         

, , ,

, , ,

, , ,

K

K

N N N N K NK

y t S t S t S t w t

y t S t S t S t w t

y t S t S t S t w t

y S β w
r r r
r r r

r r r

= +
é ù é ù é ùé ùbê ú ê ú ê úê ú
ê ú ê ú ê úê úbê ú ê ú ê úê ú= +ê ú ê ú ê úê ú
ê ú ê ú ê úê ú
ê ú ê ú ê úê úbê ú ê ú ê úë ûë û ë û ë û







     



 (3)

where N  is the number of samples, S  is the dictionary in sparse recovery framework, y , w  and β  

are the echo, noise and unknown scattering coefficient vector, respectively. Thus, the imaging model 

reduces to a familiar linear model used in most applications of sparse recovery. 

However, since the gain-phase error cannot be known accurately in practice, then S  can be 

rewritten as ( ),S a φ  involving the gain error a  and phase error φ , where [ ]1, ,
T

Ma aa =   and 

[ ]1, ,
T

Mφ= j j . Then, Equation (3) can be rewritten as 

( ),y S a φ β w= +  (4)

As a  and φ  are generally unknown, the true dictionary ( ),S a φ  is unknown and then β  could not 

be reconstructed directly based on the conventional sparse recovery algorithms. Therefore, a sparse 

auto-calibration method, which is presented in the following section, is proposed to solve the problem. 

3. Sparse Auto-Calibration RCI Method 

Conventional sparsity-driven radar imaging methods assume that the model thus contains no errors, 
and the dictionary ( ),S a φ  is precisely known. The generally existing gain-phase errors would destroy 

the structure of the dictionary and lead to the direct use of sparse recovery methods failing. Then, for 

RCI with gain-phase errors, besides the target reconstruction, the gain-phase errors also need to be 
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estimated. In the present report, a nonquadratic regularization-based method is proposed to solve the 

problem of joint target reconstruction and error estimation with the following cost function [15] 

( ) ( ) 2

12
, , ,J = − + λβ a φ y S a φ β β  (5)

where λ  is the regularization parameter, which specifies the strength of the contribution of the target 

regularization term into the solution. 

The target and the gain-phase error can be obtained as 

[ ] ( )
, ,

, , arg min , ,J=
β a φ

β a φ β a φ  (6)

By solving Equation (6), an alternating iterative minimization method is presented to realize the 

auto-calibration RCI with gain-phase error, based on the sparse recovery framework. The proposed 

method works by jointly reconstructing the target and estimating the gain-phase error. In the first step 

of each iteration, the cost function is minimized with respect to the target and the target is 

reconstructed for given gain-phase error. In the second step, the gain and phase errors are then 

estimated separately, using the target reconstruction results. Then, the estimated gain-phase error is 
used to update the dictionary ( ),S a φ , and the method passes to the next iteration. 

In addition, we terminate the method if 
2 21

2 2

i i i η+ − <β β β  or the maximum number of iterations 

maxI  is reached, where η  is a predetermined threshold and the superscript i  refers to the iteration. 

Based on the discussions above, the procedure of the method flow is outlined in Algorithm 1. 

Algorithm 1 Sparse auto-calibration radar coincidence imaging (RCI) method 
Input: y , ( ),= =S a 1 φ 0 , maxI , η  
Initialization: 0i = , a 1= , =φ 0  

Iteration: While continuing, if not converged, do 

Step 1: Target reconstruction ( )1 arg min , ,i i iJ+ =
β

β β a φ  

Step 2: Gain error estimation ( )1 1arg min , ,i i iJ+ +=
φ

a β a φ
 

Phase error estimation ( )1 1 +1arg min , ,i i iJ+ +=
φ

φ β a φ  

Step 3: Gain-phase error compensation, update ( )1 1,i iS a φ+ +  

Step 4: Let 1i i= +  and check for convergence: 
2 21

2 2

i i i η+ − <β β β  or maxi I=  

end while 

Output: Reconstructed scattering coefficient vector 

In the aforementioned method, Steps 1 and 2 are the major steps of the method. Thus, we provide 

the details of Steps 1 and 2. 

3.1. Target Reconstruction 

In Step 1, the target is reconstructed when the gain-phase error is given. It can be denoted as: 
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1

12
arg min ,i i i+ = − + λ

β
β y S a φ β β  (7)

It can be seen that Equation (7) is a standard form of compressive sensing-based or  

sparsity-driven imaging formula. This problem can be solved by some existing methods, such  

as convex relaxation methods (e.g., basis pursuit de-noising), greedy iterative methods (e.g., OMP), 

and non-convex minimization methods (e.g., sparse Bayesian learning). In our proposed method,  

OMP is used to reconstruct the target by conducting a greedy strategy that iteratively selects the  

basis vector, for its advantages of unrequirement of prior knowledge, low computational burden and  

implementation complexity. 

3.2. Gain-Phase Error Estimation 

The gain-phase errors ( ),a φ  should be considered as unknown deterministic parameters as they are 

not varying generally during the entire coherent processing interval. In Step 2, the gain and phase 

errors are estimated in an alternating manner. The gain error is estimated as 

( ){ }2
1 1 1

12
arg min ,i i i i+ + += − + λ

a
a y S a φ β β  (8)

Since 1

1

i+λ β  is a constant, Equation (8) can be rewritten as 

( ){ }2
1 1

2
arg min ,i i i+ += −

a
a y S a φ β  (9)

Define ( ) ( ) 21

2
, , if += −a φ y S a φ β  as the objective function. Clearly, Equation (9) is a nonlinear 

least-squares problem, which is not tractable to obtain the closed-form expression for updating 1i+a . 

We instead use Newton’s method [17] to solve the problem, which proceeds in a direction of descent 

to locate the minimum after a number of iterations and reveals the behavior of gain error with no 

approximation being required. Denoting by ia  the parameter estimation at the -thi  iteration, the 

updated 1i+a  estimate is then computed as 

( ) ( )
1

1 2 , ,i i i i i i
a af fa a a φ a φ

-
+ é ù é ù= -  ê ú ê úë û ë û  (10)

where ( ),i i
a f a φ  and ( )2 ,i i

a f a φ  represent the gradient and Hessian with respect to the gain error, 

respectively. After derivation and simplification, we have 
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H
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( ) ( )( ) ( )( )2 2 ,Re, ,i i i
H
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( ) 1,i i i+−= y S a φ βw (13)

( ) ( ) ( )1 ,, , , ,i i i i
M
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where ( )Re   denotes the real part, ( ) 1,i i ia
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
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The phase error is estimated as 

( ){ }2
1 +1 1 1
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arg min ,i i i i+ + += − + λ

φ
φ y S a φ β β

 
(15)

Using the same way as the updated 1ia + , the updated 1i+φ  estimate is then computed as 
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where ( )diag   is the diagonalization operation, ( )Im   denotes the imaginary part. Like the definition 

of ( ),m
i ib a φ , ( )+1,m

i iad φ  is defined as ( )+1 1,m m
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3.3. Discussions 

In this part, more discussions are made to provide further insight into the proposed sparse  

auto-calibration RCI method. 

In fact, from the Bayesian perspective, solving Equation (6) can be regarded as a maximum a 

posteriori (MAP) estimation [18]. The noise is assumed as a complex Gaussian random process, thus 

the likelihood model can be written as 

( ) ( ) 22
2 2 2

1 1
exp ,

2 2

N

p    σ = − −   πσ σ   
y y S a φ β

 
(20)

where 2σ  denotes the noise variance. Taking the sparse prior into consideration, we assign β  a widely 

used Laplace prior to induce sparsity. 
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1
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2

K K

k
k

p β
=
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where e  is the scale parameter of Laplace distribution. In the Bayesian framework, we have 

( ) ( ) ( )
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2
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y β β
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s e
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where the normalized factor ( )2 ,p y s e  is defined as ( ) ( ) ( )2 2, = ,p p p dy y β β βs e s eò  . Then, the 

MAP estimator is given by 
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Substitute Equations (20) and (21) into Equation (23), then we have 
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(24)

where 2=2l es  is the regularization parameter. Then, the MAP estimator can be realized by solving the 

optimization problem described in Equation (24) which is the same as Equation (6). 

It is shown in Equation (24) that the regularization parameter l  is proportional to the noise power. 

In the regularization-based algorithm, the parameter should be estimated, which is difficult in practical 

applications, as both the noise variance and scale parameter cannot be accessed easily. In the present 

report, OMP is used to reconstruct the target. Hence, Problem (7) is solved without the estimation of 

the regularization parameter. 

Next, we show the convergence of the proposed method. For mathematical convenience, we define 
the sequence ( ), ,i i i

iJ J= β a φ , which is the cost function value of the -thi  iteration. As described in 

Equation (6), the alternating iterative method minimizes the cost function ( ), ,J β a φ . Thus 

( )1 arg min , ,i i iJ+ =
β

β β a φ
 (25)

( )1 1arg min , ,i i iJ+ +=
φ

a β a φ (26)

( )1 1 +1arg min , ,i i iJ+ +=
φ

φ β a φ
 

(27)

Then, we can deduce that 

( ) ( )1, , , ,i i i i i iJ J i+ ≤ ∀β a φ β a φ , (28)

( ) ( )1 1 1, , , ,i i i i i iJ J i+ + +≤ ∀β a φ β a φ , (29)

( ) ( )1 +1 1 1 +1, , , ,i i i i i iJ J i+ + +≤ ∀β a φ β a φ , (30)

From Equations (28)–(30), the difference +1i iJ J−  is deduced as 
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            + , , , ,

            + , , , ,
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+ + +

+ + +

+

 − − 
 − 
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≤

β a φ β a φ

β a φ β a φ

β a φ β a φ  
(31) 

As shown in Equation (31), the sequence iJ  is decreasing and converges. Furthermore, the 

proposed method consists of two types of iterative procedure. For the target reconstruction step, the 

conventional OMP is used. The OMP algorithm is an iterative process and its convergence is analyzed 

in many literatures. For the gain-phase error estimation step, it is an unconstrained optimization 
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problem which is solved by the Newton’s method whose convergence is guaranteed by the property of 

Newton method [19]. Consequently, the method is convergent in terms of the cost function. 

In general, the proposed method may converge to a local or global minimum, which is connected 
with the choice of the starting point. Then, we initialize the gain-phase error with =a 1  and =φ 0 , 

which means that the initial gain-phase error is zero. In addition, β  should be initialized before the 

iterations. In the present report, the conventional OMP is conducted to obtain the initialization of β . 

4. Numerical Simulations 

In this section, simulations are carried out to verify the proposed sparse auto-calibration RCI 

method. An X-band RCI radar system with carrier frequency of 10GHz is considered. The transmitters 

are configured as a uniform linear array with 8M =  and inter-element spacing 0.5 md = .  

The transmitters emit independent frequency-hopping waveforms with the bandwidth of 500 MHz.  

A range-azimuth imaging plane, covering 8 m × 0.08 rad, is discretized to 40 × 40 grid-cells. The gain 
and phase errors are randomly varying at [0.7  1.3],  and [−45°,45°], respectively. We initialize =a 1 , 

=φ 0 , max =200I  and η = 10−3. For the scattering coefficient vector β , we use the conventional OMP 

as our initialization of the proposed method. 

4.1. Illustrative Example 

To illuminate the validity of the proposed method, we conduct a numerical simulation where the 

OMP algorithm is implemented as a comparison. Further, there are supposed to be seven ideal point 

scatterers in the imaging plane. Figure 2 shows the RCI results. Figure 2a is for the OMP algorithm. It 

can be seen that the image is defocused, many spurious scatterers exist, and the signal energy spills 

over the imaging plane because of the gain-phase error. Figure 2b is for our proposed method, where 

the target is reconstructed accurately due to the gain-phase error compensation. Therefore, the 

proposed method exhibits significant performance improvement. 

 

Figure 2. RCI results. (a) OMP; (b) Sparse auto-calibration method. 

Then, we show the auto-calibration performance in Figure 3. It is clearly shown that both the gain 

and phase errors are estimated accurately. Figure 3c,d show the relative imaging error (RIE) and 

residual error with respect to the number of iterations. The RIE is defined as 
2 2

10 0 0 22
20 log −β β β


, 
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where β


 and 0β  denote the reconstructed and true value of β , respectively. Residual error is defined 

as ( ),−y S a φ β


, which is the model error after target reconstruction and error compensation. As 

shown in Figure 3c,d, the RIE and residual error reduce rapidly to a small value and change slightly 

after about 60 iterations, which means that the target is reconstructed perfectly and the model error is 

compensated accurately. 

 

Figure 3. Auto-calibration performance. (a) Estimated and true gain error; (b) Estimated 

and true phase error; (c) RIE versus the number of iterations; (d) Residual error versus the 

number of iterations. 

4.2. Performance under Different SNRs 

Note that the above simulation is conducted without noise. Then, we test RIEs under different 

SNRs, for the proposed method and conventional OMP algorithm, the result is shown in Figure 4. As 

shown in the figure, the imaging quality is improved significantly as the SNR increases, which means 

the proposed method is sensitive to noise. While compared with OMP, the proposed method improves 

the imaging performance by more than 8 dB from the RIE perspective. 

For the proposed sparse auto-calibration RCI method, both the target reconstruction and gain-phase 

error estimation are sensitive to noise. It is shown in Figure 4 that the performance of target 

reconstruction, which uses an OMP algorithm, degrades considerably when the noise power increases. 

Meanwhile, we show the normalized mean square error (NMSE) for gain-phase error estimation under 

different SNRs in Figure 5, and conclude that decreasing SNR would impair the gain-phase error 

estimation performance dramatically. Hence, the gain-phase error would not be compensated perfectly 

in the presence of noise, which worsens the reconstruction performance. Thus, the ways of increasing 
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the SNR should be implemented in practical applications, for example, improving the power of the 

transmitting signal. 

 

Figure 4. RIE versus SNR. 

  

Figure 5. Gain-phase error estimation performance for various SNRs. (a) NMSE for gain 

error estimation versus SNR; (b) NMSE for phase error estimation versus SNR. 

4.3. Performance under Different Target Scenes 

The proposed sparse auto-calibration method is based on the assumption that the target is sparse, 

which means that the scatterers are widely separated and fewer than the grid-cells. Thus, the 

reconstruction performance may be affected by the target, more precisely, the sparsity of target. In this 

part, the numerical simulations are designed to test the performance under different target scenes 

which are shown in Figure 6a–c. 

It can be concluded from Figure 6 that the proposed method achieves much sparser and focused 

images, making it of much practical significance in improving the image quality. Comparing with the 

results obtained by OMP, the spurious scatterers in the bottom three images are much less, and the 

three targets are identified clearly. However, the images become blurred as the complexity of targets 

increases. On the one hand, the less sparse target would make the target reconstruction more difficult, 

as it is based on the prior knowledge of sparsity. On the other hand, the gain-error estimation 

performance is also affected, since this iteration lies on the perfect reconstructed scattering coefficient 

vector as shown in Equations (11)–(14) and (16)–(19). 
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Figure 6. RCI results for different target scenes. (a–c) Three different target scenes;  

(d–f) Imaging results of OMP for the three target scenes; (g–i) Imaging results of the 

proposed method for the three target scenes. 

5. Conclusions 

This report has proposed a sparse auto-calibration method to realize the gain-phase error calibration 

in sparsity-driven RCI. The proposed method can jointly reconstruct the target and estimate the  

gain-phase error. It uses an alternating iterative algorithm, which cycles through steps of target 

reconstruction and gain-phase error estimation and compensation. For the two steps, OMP algorithm 

and Newton’s method are used, respectively. The proposed method can estimate the gain-phase error 

accurately and improve the reconstruction performance significantly. Numerical experiments have 

been presented to show the effectiveness and outstanding imaging performance of the method, which 

shows the potential for the method to be applied in a practical RCI system. Although only the case of 

RCI is considered, the proposed method in the present report can be extended to other imaging radar 

systems, such as generalized MIMO radar imaging and passive radar imaging. 

However, in the presented report, Problem (7) is solved by OMP without the estimation of the 

regularization parameter. To estimate the regularization parameter is difficult in practical applications 

but can be performed in the sparse Bayesian learning (SBL) framework. When SBL is introduced, the 
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individual Gaussian prior is assigned to β , then ( )2 ,p y s e  shown in Equation (22) can be derived in 

closed form, and the Bayesian analysis can be completed. Involving Bayesian analysis, all the 

necessary parameters can be estimated. For the classical Newton’s method, calculating the Hessian 

numerically involves a large amount of computation, and it is not easy to prove the invertibility of 

Hessian. To solve the problems, the quasi-Newton method can be used where the Hessian and its 

inverse matrix can be approximated using an appropriate updating technique. Moreover, the scatterers 

are assumed be sparse and widely separated to guarantee the imaging, which limits the resolution. 

These problems are open issues that are beyond the scope of this report and will be investigated deeply 

in our future work. 
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