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Abstract: Contour detection has been extensively investigated as a fundamental problem
in computer vision. In this study, a biologically-inspired candidate weighting framework is
proposed for the challenging task of detecting meaningful contours. In contrast to previous
models that detect contours from pixels, a modified superpixel generation processing is
proposed to generate a contour candidate set and then weigh the candidates by extracting
hierarchical visual cues. We extract the low-level visual local cues to weigh the contour
intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting
the contour grouping constraint. Experimental results tested on the BSDS benchmark
show that the proposed framework exhibits promising performances to capture meaningful

contours in complex scenes.
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1. Introduction

Contour detection has remained a fundamental problem in computer vision that has been intensively

studied in the past fifty years. It is a crucial step for many computer vision tasks, including object
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segmentation [1,2], shape-based object matching [3-6], detection and recognition [7-13], image
restoration [14—-16], recovery of intrinsic scene properties [17], etc. Unlike edges, which refer to
any abrupt change in local image features, such as luminance and color, contour represents changes
from object to background or one surface to another, which need deeper levels of image information
to detect.

A large number of methods have been proposed for edge or contour detection in recent decades.
Typical methods include local linear filters [18—21], active contours [22-24], learning or statistical
inference methods [25-31]. Due to the broad diversity and ambiguity of visual patterns in a natural
image, it remains a challenging task to automatically extract image contours with a computer accurately
and efficiently, even though much progress has been made.

However, the human vision system is able to acquire relative integration and structure from images
without any prior knowledge of objects. Research has shown that the brain does not directly obtain the
projected images on the retina presented by the external stimuli. Instead, it recognizes objects from
visual information that has been aggregated and specialized [32]. Neurons in lateral geniculate nucleus
(LGN) and primary visual cortex (V1 or striate cortex) respond to oriented luminance and chromatic
stimulation and extract relevant information from natural images that have specific characteristics
through this low-level processing. Additionally, the main function of the later visual cortex is to
perform the extraction and calculation of perceptual signals, in a way that dramatically reduces the
data volume, but retains the useful structural information of the objects. In a complex natural scene,
the components that have abundant and specific attributes are more prominent and are thus easier to
isolate from the background. This problem of extracting and integrating structural information is called
perceptual grouping. The process of perceptual grouping is often considered as being guided by the
middle-level Gestalt principle from the psychological perspective. In the Gestalt principle, the visual
system tends to group consistent image features into high-level structures through some rules, including
brightness and contrast similarity, good continuation, local proximity and curvature constancy. A series
of neurophysiological supporting evidence of these properties has been studied in [33-36] (see [37] for
a review). Inspired by these biological bases, many works for contour detection have been developed,
for example [38—48].

Almost all of these existing contour detection methods, either biologically-inspired models or
computational ones, are conducted on discrete pixels. However, discrete pixel-based methods extract
features of each pixel in its local patch regardless of whether or not similar pixels need to be computed
repeatedly. They often have a large computational cost and are more likely to generate discontinuous or
broken contours than the methods conducted in larger primitives, especially when suffering from noises.
Larger primitive conducting and a smaller search space are new trends of image processing or vision
tasks. Therefore, superpixel-based methods and candidate-based frameworks have become hotspots in
tasks such as object segmentation [49] or object detection [50] in recent years. However, there are few
contour detection algorithms based on these methods and frameworks.

In our work, we propose a biologically-inspired candidate weighting framework for contour detection.
To generate contour candidates for reducing the computation space, we introduce a modified superpixel
generation processing. Our basic assumption is that the contours of the meaningful objects align well

with superpixel boundaries. Based on that, the superpixel boundaries can be taken as contour candidates
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after segmenting the input image into superpixels. Therefore, the problem of detecting contours is
transformed into another one, weighing or estimating the probability of being an object contour of each
candidate. Then, we propose a biologically-inspired method of extracting hierarchical visual cues to
weight the candidates. The lower level of this hierarchical visual system responds to oriented luminance
and chromatic stimulation and is thus used to weight intrinsic properties of contours. The mid-level of
the hierarchical visual system groups perceptual signals by Gestalt principles, resulting in the contour
connection constraint. Our proposed method has been tested on the BSDS 300/500 benchmarks [1,26],
and experimental results exhibit promising performances.

The remainder of this paper is organized as follows. In Section 2, we present related work in contour
detection and the candidate-based framework. Then, we describe the details of our candidate-based
contour detection framework and biologically-inspired candidate weighting algorithm from hierarchical
visual cues in Section 3. In Section 4, we evaluate the performance of the proposed method on the BSDS
300 and 500 datasets [1,26]. Finally, we discuss our model and draw conclusions in Section 5.

2. Related Work

Contour detection and edge detection are classical problems in computer vision. There is an enormous
literature on these topics. It is hard for this paper to give a full survey on the topic, so only a small relevant
subset of works will be reviewed here.

The early approaches to contour detection relied on local measurements with linear filters.
Typical algorithms are Sobel [18], Robert [19], Prewitt [20] and Canny [21] edge detectors. All of
these method use local filters of a fixed scale and few orientations. Small and unimportant edges are
treated equally as meaningful contours in these detectors. This will lead to noisy contour maps, which
are hard to use for subsequent higher level processing. The key challenge is to enhance the weights of
stable and meaningful contours without enhancing gradients due to repeated or stochastic textures.

Therefore, over the years, many new approaches have been developed for contour detection.
Typically, Malik ef al. [1,26] defined gradient operators for multiple cues, such as brightness, color
and texture. A regression classifier is used to predict edge strength from these features. This is the
popular Pb algorithm [26], which learns to give each pixel in the image the probability of a contour at
that point. Then, multiple scales [51] and multiple features [52] have been incorporated into
learning-based contour detection algorithms. In the last five years, other learning methods were
proposed. Ren and Bo [30] used sparse coding and oriented gradients to learn dictionaries of
contour patches. Lim et al. [28] used random forest-based learning on image patches and achieved
state-of-the-art results. Their key idea is to use a dictionary of human-generated contours as features
for contours within a patch. Dollar and Zitnick [29] further combined random forests with structured
prediction to achieve real-time edge detection. However, the performances of most learning-based
methods are strongly dependent on the selection of training sets, which makes the methods inflexible
for an individual image. Furthermore, training a method on a dataset normally leads to a high
computational cost.

Besides, many non-learning-based algorithms have been proposed for boundary detection recently.

The research was focused on a global framework that minimized the global cost over all disjoint pairs
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of patches. For example, Felzenszwalb and McAllester [53] extracted salient contours by solving the
min-cover problem. Arbelaez et al. [1] embedded the local Pb measure [26] into a spectral clustering
framework. Isola et al. [54] measured rarity based on pointwise mutual information. They also obtained
good results, although the computation cost is exhausted.

Another line is the success of biologically-inspired methods. From neuro-physiological perspectives,
it has been widely believed that the neurons in V1 are exquisitely sensitive to oriented bars or edges
in the classical receptive field (CRF). Subsequently, extensive neuro-physiological findings indicate that
a peripheral region beyond CRF, known as non-classical receptive field (non-CRF), can modulate the
spiking response of a V1 neuron to the stimuli placed within the CRE. The neuronal responses are
strongly inhibited when the stimuli within the CRF and non-CRF share similar features. Based on this
physiological mechanism, several biologically-inspired contour detection methods have been proposed
recently [38—47,55]. These methods modeled the orientation-selective excitation mechanism of CRF
with orientated Gabor or derivate Gaussian filters, with rare exceptions. For surroundings inhibition,
many studies proposed different models, like [32,47,55-57], and used another strategy of the visual
system to cope with complex scenes in the last five years. For instance, multiple scales [32] and
multiple visual features [55] were integrated. In addition, an efficient color boundary detection
framework was proposed by simulating the biological mechanisms of color information processing and
color-opponent mechanisms along the retina-LGN-cortex visual pathway [48]. From the psychophysical
perspective, psychologists formulated Gestalt rules for perceptually-significant image structure during
contour grouping, such as “proximity”, “good continuity”, “closure”, efc. Gestalt-based contour
grouping or detection algorithms have also been studied recently. In [58,59], an optimal Bayesian
model was employed to investigate the inferential power of three classical Gestalt cues: proximity, good
continuation and luminance similarity for contour grouping. Hess et al. [37] discussed the mechanism
of contour integration from psychophysical and neurophysiological perspectives and summarized some
computational models. In [60], a novel higher order CRF model was proposed to address the contour
closure effect through local connectedness approximation. Han et al. [61] proposed a fuzzy connection
facilitation model to achieve the enhancement of contour response and the connection of discontinuous
contour. These biologically-inspired methods also achieved good results.

The above methods commonly use pixel-level measurements to create contours. However, these
methods often lead to noisy and broken contours, which are costly and less likely to be useful for
further processing. Superpixels provide a convenient primitive and have become increasingly popular for
use in computer vision applications. A series of superpixel generating algorithms have been proposed.
One major category is graph-based approaches, like [62—65]. These approaches treat each pixel as a node
in a graph and use edge weights between two nodes to measure the similarity between neighboring pixels.
Superpixels are created by minimizing a cost function defined over the graph. Another major category is
gradient ascent-based algorithms [66—71]. These kinds of algorithms start from a rough initial clustering
of pixels, then use gradient ascent methods iteratively refining the clusters until some convergence
criterion is met to form superpixels. In addition, candidate-based frameworks have emerged as a new
mechanism to reduce computation costs in vision tasks. For example, objectness-based bounding box
candidates have been applied for object detection [50]. Object hypotheses have been represented as

figure-ground segmentation proposed in [72] and used as a basis of salient object segmentation [49].
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However, to the best of our knowledge, similar algorithms or frameworks have been rarely used to
detect contours.

In our work, a biologically-inspired candidate weighting (BICW) framework is proposed for contour
detection. We introduce a modified superpixel generation processing to obtain contour candidates and
then weigh the candidates by multiple biological cues.

3. Method of Biologically-Inspired Candidate Weighting Framework for Contour Detection

In this section, we will describe our contour detection framework. A detailed flowchart is shown in
Figure 1. Firstly, in Section 3.1, a modified superpixel generation processing with a multi-scale strategy
is introduced to get a set of contour candidates. Then, we propose our biologically-inspired method for
weighting the contour candidates from hierarchical visual cues in Section 3.2.
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Figure 1. Flowchart of our contour detection framework. (a) Input image;
(b1-b3) transformed images of different scales (0y, 0, 02); (c1-¢3) contour candidates
generated by our modified simple linear iterative clustering (SLIC) processing. We perform
SLIC with four different initials in each scale. To facilitate the expression, we draw
the candidates on four images in each scale, which together form the candidate set;
(d1) Zoomed-in region for the demonstration; (d2) contrast energy extracted with low-level
cues; (d3) inherent curvature constancy extracted with mid-level cues; L2 labeled by the
blue line indicates the candidate with good inherent curvature constancy, which is more
likely to be a true contour, while L3 labeled by a red line indicates poor inherent curvature
constancy; (d4) continuation extracted with mid-level cues. A true contour candidate tends to
connect to its co-linear neighbor, but is independent from the vertical one. For example, L6
is more likely to link with L2, but L4 is slightly related to L2; (dS) Similarity extracted with
mid-level cues. Connection-probability attenuates with the increasing of contrast difference,
for example L2 and L6 labeled by blue-dotted circles yield a higher connection-probability
than L5 and L7 labeled by red-dotted circles; (e) Weighted candidates on an image at each
scale; (f) final output.
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3.1. Generation of Contour Candidates

Our first step is to generate contour candidates by the superpixel generation algorithm. A modified
simple linear iterative clustering (SLIC) [66] algorithm is used to obtain the superpixels from the input
image. Superpixel boundaries are subsequently obtained as contour candidates. The computations of
this method are not intended as a model of biological visual processing. However, these computations
are intended to provide closed and continuous edges, which seems to be more in line with the Gestalt
principles than a biologically-inspired edge detection algorithm that uses a derivative Gaussian filter or
classical hand-designed methods, such as a Canny detector.

SLIC is an adaptation of K-means for superpixel generation, which is faster and more memory
efficient than existing superpixel generation methods. SLIC also exhibits state-of-the-art boundary
adherence. In this method, the & cluster centers sampled on a regular grid space with S pixels are
initialized separately, where S is the grid interval and & is defined as K = N/S?. Each pixel is then
iteratively associated with the nearest cluster center measured by the 5D Euclidean distance in the labzy
space, whose search region is limited to 25 x 25 around the center.

If the assumption that the contour of the meaningful objects aligns well with superpixel boundaries
is valid, in other words, if the boundary recall is sufficiently high, superpixel boundaries can be taken
as contour candidates. The boundary recall of SLIC has been discussed in [66]. Its experiment showed
that the boundary recall increased with the number of superpixels, and SLIC demonstrated an optimum
performance. We can see from the SLIC algorithm calculation process shown above that the only
parameter of SLIC is the desired number of approximately equally-sized superpixels k£, which determines
the initial clustering centers in the initialization step and the cluster searching scope in the assignment
step. In our work, we make a modification of the original SLIC processing. Instead of changing % of
the original SLIC to get better performance, we separately process SLIC with different initial cluster
centers. We change the initial cluster center with some offsets and generate a series of superpixels
sp with different initial centers. Therefore, the contour candidate set at the o; scale can be obtained
as follows:

Bg, = {Bw]. = boundaries of superpizel iy and iy | i1,12 € Spq,, i1 =+ ig} (D)

We experimentally validated the completeness of the candidate set generated from this method, which
will be explained in detail later in Section 4. Therefore, contour detection can be simplified as another
problem of weighting candidates with the probability of being the object contour from hierarchical
visual cues.

The advantage of our modified superpixel generation method is that the weight of stable edges, which
are more likely to be a contour, can be increased. In Figure 2, we can see that stable edges are still the
boundaries of superpixels when the initial cluster centers are different. By contrast, the unstable edges
are easily altered. In our method, the pixels of stable edges occur multiple times as different candidates.
When we sum the weights of each candidate to get the final probability of being a true contour, the pixels
of the stable edges yield higher weights than those of the unstable edges.

The contour candidates are derived from superpixel boundaries, which are formed by the adjacent
superpixels. Thus, we only need to extract features of each contour candidate from adjacent superpixels.
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In previous work, the features of each pixel are extracted in its local patch. Similar pixels in its
neighborhood will be computed repeatedly. Compared to the previous approach, our method can reduce
many repeated calculations brought by these similar pixels and weaken the influence of noises, because
pixels are grouped into perceptually-meaningful atomic regions by using our superpixel-based candidate
generation method.

I
I
i

TEHTIT

-
0 e e

Figure 2. Contour candidates generated by original SLIC and our modified SLIC. (a) Input

image; (b) ground truth; (¢) contour candidates generated by original SLIC; (d) contour
candidates generated by our modified SLIC, superimposed on all of the contour candidates
over this image; (e) Pixels appear only once in contour candidates; many of them are clutter
or meaningless textures; (f)—(h) Pixels appear more than once, twice and three times; pixels
of meaningful contour are preserved to be candidates with different initials.

The information obtained at different scales is different, so the resulting contours are also different.
At a small scale, information, including contours and some textures, is mostly retained. The main
contours of the target object are retained at a larger scale, but some details may be missing. Salient and
meaningful contours are more likely to be retained at different scales, which is called continuity at scales.
To handle the scale problem and to use the continuity property to obtain more meaningful contours, we

generate contour candidates and weigh them at s 4 1 different scales. In previous work, the convolution
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kernel [32,51] or measure scope [1] is changed to obtain images of multiple scales, but the image size is
unchanged. Different from previous work, we obtain the transforming image of different scales through
Gaussian pyramid down-sampling transformation on account of the time and space cost. The modified
candidate generation operation is then performed on transformed images of each scale. The total contour
candidate set is expressed as follows:

B = By, U By, U---U By, (2)

In this work, we consider weights at three scales (s = 2), where 0y = 20( and 02 = 40y.
Here, only integer multiple scales are considered to avoid interpolation during Gaussian pyramid
down-sampling transformation.

3.2. Extraction of Hierarchical Cues

The human visual system has evolved to extract relevant information hierarchically from natural
images with specific characteristics. First, neurons in primary visual cortex (V1 or striate cortex) respond
to oriented luminance and chromatic stimulation, which is expressed as a low-level visual process. Then,
the mid-level process performs some kind of grouping operation in both V1 and later visual areas.
This process provides a bridge between low-level local information and high-level concepts, such as
object- and scene-level information. The rules of contour grouping are also formulated by the Gestalt
“law” in the psychological perspective [37]. In this work, we propose a hierarchical cue extraction
method that extracts low-level visual local cues to weigh contour intrinsic properties and mid-level
visual cues based on Gestalt principles to weigh the contour grouping constraint, as described in
this subsection.

3.2.1. Low-Level Cues

Local luminance and chromatic information are important visual low-level cue features to understand
natural scenes. In this work, the contour intrinsic property is weighted with luminance and chromatic
contrast. We measure the luminance and chromatic cues from the input color image using the CIELAB
color space, which is a good expression for both luminance and chromaticity. For the luminance cue
of each superpixel, we compute a histogram of L* values. For the chromatic cue, it presents additional
challenges for estimation because the pixel values are in the 2D space (a* and 0*). The joint approach is
far more expensive computationally than the marginal one due to the additional dimension in histograms.
One might expect that the joint color distribution using the 2D histogram contains more visual perceptual
information than the marginal one. However, their performances do not remarkably differ, since the a*
and b* axes in the CIELAB color space are designed to mimic the blue-yellow and green-red color
opponency, which is found in the human visual cortex [73]. Following the method in [26], we compute
the marginal color values for a¢* and b*, rather than compute the joint ones. We make a histogram of the

values of each channel (L*, a*, b*) of each superpixel with Ny, N, and N,, bins, respectively:
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L=[Li,Ly,...,Ln,|" (3)
a = [alaa27"'7aNa]T (4)
b=1[bi,ba,...,0n]" (3)

Here, we set N, = 16, N, = 8 and NV, = 8 according to [26].

As shown in Figure 1d2, the histogram vectors between adjacent superpixels on the sides of
a meaningful contour (positive candidate) are quite different, while vectors between negative ones
are similar. We use these vectors to compute the contrast energy of the contour candidate between
superpixels and additional mid-level cues. The contrast energy of the contour candidate B; formed by
the adjacent superpixels 7; and 7, is expressed by the weighted sum of the distances between superpixels

71 and 75 based on luminance and chromatic cues, described as follows:
E(B;) = E(ir,iz) = Y _ otede(in, ia) (6)

where ¢ indexes feature channels (luminance L*, chromatic a* and b*), and «, indicates the relative
contribution of each color channel. d.(i1, i2) is the x? distance between histograms of superpixel ¢; and

1o in channel c.
3.2.2. Mid-Level Cues

For the mid-level visual process, the visual system groups local edge information into contours guided
by the Gestalt principles. In the Gestalt principle, the visual system tends to group consistent image
features into high-level structures through some rules, including brightness and contrast similarity, good
continuation, local proximity and curvature constancy. Thus, on the basis of these rules, we propose
a model for weighting the grouping constraint of contour candidates by computing the connection
probabilities with the adjacent candidates.

Although our contour candidates yield an accurate representation for the image, these candidates do
not provide an optimal basis for contour grouping, as they would be jagged and noisy to some extent.
On the other hand, a contour candidate is less likely to be a contour if it is jagged or sensitive to noises,
which does not conform to the “curvature constancy” rules. To avoid these problems and to measure
the inherent curvature changes of a contour candidate B;, we fit it to a straight-line L; and evaluate the
inherent curvature constancy of the contour candidate as follows:

Par-auro(B) = 7 )
where [; is the length of the fitting line L; and b; is the number of pixels of contour candidate B;. Figure 3
presents an example of the effect of the inherent constancy constraint.

According to the rules of continuity, a true contour candidate tends to be connected to its neighbors if
they are aligned along a linear or co-circular path. In previous work [41,58,59], the co-circularity rule is
encoded with the direction of a pixel and its neighboring ones and the angle of the line connecting these

pixels. However, the angle of the line connection in our work is redundant and difficult to formulate
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because continuation and proximity have been concerned to some extent in our contour candidate
generation method. Thus, we encode a continuation connection probability with the differences in the
direction of the fitting straight lines L; and L; of contour candidates B; and B;:

Pcont(Bi7 BJ) = ]_ — sin (|9$ — 9j|+) (8)

where |0; — 6;|7 = min (|0; — 0;|, 7 — |6; — 0;]); 6;,0; are the directions of L; and L;, respectively.
Note that when |0; — ;|* increases, these two candidates tend to be vertical and have less impact on
each other, that is to say the continuation connection probability P.(B;, B;) is small.

_,Ti \{\/r* L Y
R RS
AT
7 [ { v ‘
(@) (b)

Figure 3. Inherent curvature constancy. (a) Contrast energy of the contour candidates
computed by low-level cues, using the gray image to represent the contrast energy of
each candidate; (b) fitted straight line of each candidate with the contrast energy weight;
(c) inherent curvature constancy evaluation of each candidate; clutter textures tend to be
jagged and have small evaluation values; (d) modulated weight after inherent curvature
constancy evaluation; note that clutter textures marked by red circles have been suppressed

obviously compared to (a).

For similarity, the connection-probability function should be attenuated with the increasing of contrast

difference. Thus, we define the similarity connection probability between contour candidate B; and B;

dzon ras (B17B>
Psim(BiaBj) = €Xp < : 2%2 : )

where the standard deviation & establishes the sensitivity of the connection probability with

as follows:

€))

contrast difference. Contrast difference and low-level feature difference are calculated using the

following equation:
dcontrast<BiaBj) = E(ilviQ) - E(j17j2> (10)

3.2.3. Combination of Hierarchical Cues

Combined with these elements, the weight of being a contour for candidate B; is defined as the

combination of contrast energy and the grouping constraint of its neighboring candidates:

W(Bz) - Pin—curv(Bi) + Z Pcont(Bia Bj) : Psim(Bia B]) : E(B]) (11)

BjEN(Bi,ry)
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where N(B;,r,) denotes a set of neighborhood contour candidates that partially or totally fall on the
discs of radius r, centered at the terminal points of B;. r, should be set as a small value to establish the
good continuity of the neighbor candidates adjacent to ;. In this work, we set r, = 5 pixels.

Then, the final output of each pixel of the image is the combination of the weights of each candidate
computed from hierarchical cues over all scales:

W=>"Y B, IP(W(b; o)) (12)
j=0 i
where 3., indicates the relative contribution of each scale and IP(-) denotes the inverse Gaussian

pyramids processing to transform the contour candidates at 0; to the original scale 0.

4. Tests and Results

In this section, we evaluate the performance of our model on a popular Berkeley Segmentation Dataset
(BSD300 and BSD500) provided by Malik et al. [1,26]. This dataset has been frequently used as a
benchmark of contour detection algorithms. Each image in the dataset was labeled by 5~10 human
subjects. We first evaluated our superpixel-based contour candidate generation method; then, we further
tested the performance of our algorithm and compared it to other state-of-the-art algorithms.

To compare the algorithms conveniently, we took the sum of weights of contour candidates over each
pixel as the probability of being a true contour after an operation of non-maxima suppression [1,26].
We also computed the so-called F-measure [26],

2PR
F = 13
P+ R (13

where P and R represent the precision and recall, respectively, which have been widely used to evaluate
the performance of edge detectors [26]. Precision reflects the probability that the detected edge is valid,
and recall denotes the probability that the ground truth edge is detected.

4.1. Evaluation of the Superpixel-Based Contour Candidate

A basic assumption of our method is that superpixel boundaries adhere well to the contours of
meaningful objects. If this assumption is valid, then the superpixel boundaries can be taken as contour
candidates. Boundary recall is a standard measure of boundary adherence [66], and this parameter
measures the fraction of the ground truth edges that falls within at least m pixels of a superpixel boundary
(m = 2 according to [66]). A high boundary recall indicates that very few true edges are missed.
Experiments in [66] had discussed the boundary recall changes of original SLIC with increasing numbers
of superpixels. We further evaluated our modified SLIC processing on the BSDS dataset [1]. Figure 4a
shows the boundary recall with different numbers of superpixels generated by the original SLIC and
our modified approach. We can see from Figure 4a that the boundary recall increased with the number
of superpixels. Our modified SLIC demonstrated a better performance than the original SLIC. When
the number of superpixels reached 4000, the boundary recall was 0.98, which experimentally verified
the completion of our candidate generation method. Note that the boundary recall already reached 0.96
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when the number of superpixels is 2000. That is, the doubled number of superpixels only brings a 0.02
increase of boundary recall. To ensure subsequent calculation efficiency without evidently reducing the
boundary recall, we set the number of superpixels as 2000. Correspondingly, we perform SLIC with four
initial centers of different offsets ( (0,0), (0,5/2), (5/2,0), (S/2,5/2) ) relative to the initial centers of
the original method and set the number of approximately equally-sized superpixels as £ = 500 for each
initial center (the initial grid interval S is 16 for approximation correspondingly).

We further evaluated the performance of our superpixel-based candidate generation method on
BSDS500. Here, we only use low-level cues (luminance and color) to weigh the candidates at the
original scale. Figure 4b illustrates a comparison based on the precision-recall (PR)curve with our
method under different initial grid intervals and the previously proposed method Pb [26]. When
the initial grid interval S was set as 16, our method yielded good results (F = 0.66), close to
Pb [26] (F = 0.67), which uses texture, as well as luminance and color and requires a training
process. In addition, the method with the small initial interval showed better performance in the
part with high recall, while that with a large initial interval exhibited better performance in the part
with high precision. Therefore, we can use multiscale strategies to improve the effectiveness of
our algorithm.

[ —e— 8(9641, F=0.63) [~~~ 17 NI
04l 12 (4116, F=0.65) NN
—b— 16 (2192, F=0.66) ‘ Y
0.3F 24 (948, F=0.66) [~~~ fom e
Il | || ——82(352 F=0.65) ! ! o)
b S S —&— Modified SLIC || 48 (211, F=0.61) | :

. | | | —e—sLic 0.1} —=—64 (116, F=0.59) |-———d- -~ _______
! ! ! : — : ‘ —S—Pb (F=0.67) | |
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Numbers of superpixels Recall
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Figure 4. (a) Plot of the boundary recall w.r.t. the number of superpixels; (b) P-Rcurve
comparison with our method under different initial grid intervals and Pb [26] ; values inside

those parentheses of the legend are the number of superpixels corresponding to the initial

Precision

Boundary recall

,,,,,,,,,,,,,,,,,,,,,,,

Nl

0.4%
0

grid interval and its F-scores.

4.2. Experimental Evaluation of Our BICW Algorithm

The parameters involved in our model are summarized in Table 1. The parameters mainly come
from three aspects: low-level cue computation, mid-level cue computation and multi-scale combination.
We experimentally analyzed these parameters. To ensure the integrity of the evaluation, we only
employed the training set (200 images) of the BSDS500 dataset [1] for parameter setting during the
optimization phase and then benchmarked our method on the test set (200 images). We use the
expectation maximization (EM) algorithm to tune these parameters. Our algorithm achieves an optimal
performance (F' = 0.68 on the training set of BSDS500 [1]) with the settings shown in Table 1. Figure 5
provides a performance measure with the changing of parameters in our model.
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Table 1. Parameters involved in our model.

Parameter Description Equation  Setting
&L, Kg, Xp Low-level: Relative contribution of each color channel (6) 1,0.5,1
S Mid-level: Sensitivity of connection probability with contrast 9 1/16
Boos Boys Poo Scales: Relative contribution of each scale (12) 1,1,0.5

For the parameters of low-level computation, as shown in Figure 5a, we set oc;, = 1 for normalization
and discuss the performance with the changing of «, (seven values within [0 3]) and «; (seven values
within [0 3]). The corresponding parameters of the optimal performance were o, = 0.5 and o, = 1.
Besides «, = 0, the F-scores decrease with the increasing of «, at the same «;. The contribution of
each color channel is also shown in Figure 5d. The channel a* exhibited the poorest performance, so that
the the contribution of a* was smaller than that of other channels. The information from channel a* is
often missing, which leads to a sharp drop of the recall. Therefore, the relative contribution of channel
a* is reasonably smaller than that of other channels. We also compared our LAB-based luminance
and chromatic information extraction method with the color-opponent-based method proposed by [74].
We extracted the red-green (R-G), red-cyan (R-C), yellow-blue (B-Y) and white-black (Wh-BI) color
opponent channels instead of lab channels in the computation of low-level cues and perform the
subsequent computations. The achieved performance was similar to the ones computed with LAB
channels with marginal color values for a* and b*. This is mainly because CIELAB is also a kind of
color-opponent space with dimension L* for lightness (luminance) and a* and b* for the color-opponent
dimensions. In this work, we use CIELAB for simplification.
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Figure 5. Performance tests with the parameters in our model. (a) Performance with the
changing of low-level cue parameters; (b) performance with the changing of mid-level cue
parameters; (¢) performance with the changing of the relative contribution of each scale;
(d) P-R curves of L*a*b*-based and color opponent-based methods; (e) P-R curves of each
scale; (f) P-R curves of the performance of each part in our algorithm.
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For the parameters of mid-level cues, the corresponding parameter of the optimal performance was
d = 1/16, as shown in Figure 5b. For the parameters of scales, 3, = 1 was set to achieve normalization
and to discuss the performance with the changes in 35, (seven values within [0 3]) and 3, (seven values
within [0 3]). When 35, = 1 and 3,5, = 0.5, we get an optimal performance. We also examined the
performance of each scale and combination of each scale, whose P-R curves were shown in Figure Se.
Most of the information was retained at the smallest scale of §(, and the details were mostly preserved,
so the performance of 9 is better for the measure of recall. Since only the main contours were retained
at the scale 8, (48y), the recall of this scale drops sharply. Scale &, performs better for precision, as
both details and main contours are retained well. We used the weighted sum approach to aggregate the
results of different scales. With this method, the main outlines emerging at various scales are applied to
generate higher impact, leading to higher performance than that of the single scale.

The performance of each part in our algorithm is shown in Figure 5f. The blue curve in Figure 5f
shows the performance of our candidate-based contour detection framework without weighting by visual
cues. The weights are just the occurrence of pixels in the contour candidate set. It actually represents the
performance of our modified superpixel-based contour candidate generation method. The red and black
curve indicate the performance of our algorithm weighted by low-level and mid-level visual cues.

In the following step, these parameter settings were fixed in different scenes when the proposed
method is compared to other models. Figure 6 illustrates the P-R curve-based comparison of our
BICW with the typical learning method Pb [26] and two state-of-the-art biologically-inspired methods,
CO [55] and MCI [48], on the datasets of BSDS300 [26] and BSDS500 [1]. Figure 6 reveals that
the proposed model outperforms the Pb [26] method, but employs less information (it does not use
texture information). In addition, our model also outperforms CO [55] and MCI [48], which are
state-of-the-art biologically-inspired models proposed within the last three years. Figure 7 presents
qualitative comparisons on some images.
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Figure 6. (a) The overall performance of the P-R curve on BSDS300 [26]; (b) the overall
performance of the P-R curve on BSDS500 [1].

Table 2 lists further comparisons with other state-of-the-art biologically-inspired or non-learning
methods on BSDS300 [26] and BSDS500 [1]. The state-of-the-art algorithm gPb [1] achieved a

higher F-measure (F = 0.70) than our model. This method is particularly time consuming because of
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the complex texture calculations and globalization with spectral clustering. In the gPb [1] algorithm,
the computation is conducted by placing a circular disc in each pixel split into two half-discs with a
diameter at a certain angle. The measure of the boundary strength is computed in each pixel (more
than 150,000 pixels) with eight orientations. In our method, the contour candidates are reduced to
30,000. The mean computation time to compute one contour map with gPb [1] is 191 s, while our
algorithms only takes 13 s (the computer used here is Intel Core 2, 2.5 GHZ with 8.0 G RAM).
Our method is a littler slower than CO [48] and SCO [75]. Note that, CO [48] and SCO [75] only
perform at a single scale, because their extension into multi-scale space did not yet produce clear
performance improvements [48,75]. The computation time of our method is promising as a multi-scale
method. Therefore, this result indicated that our model yields a good trade-off between performance and
complexity. In addition, our proposed method is very suitable for parallel computing, which is a future

direction to optimize our model.

(a) ® (@ (@ (©) (F)
Figure 7. (a) Image; (b) human; (¢) Pb [26]; (d) CO [48]; (e) MCI [55]; (f) ours.

Another point worth noticing is that [76] pointed out that the BSDS benchmark [1,26] has potential
pitfalls. Psychophysical experiments in a previous work [76] showed that several “weak” boundary labels
are unreliable and may contaminate the benchmark. They pointed out that the current benchmarking
protocol encourages an algorithm to bias towards those problematic “weak’” boundary labels. Although
a consensus to define a new standard has yet to be obtained, new directions have been proposed to focus
on the new problem of strong boundary detection. These boundaries are more likely to be meaningful
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contours. For example, as shown in Figure 3, cluttered edges of the ornamentson the legs were also
labeled as boundaries by specific subjects. These “weak” boundaries are suppressed by our method.
Figure 7 gives several typical examples, which clearly demonstrate that our algorithm is consistent with

the strong boundaries of the consensus labels.

Table 2. Quantitative comparison of various models on the BSDS300 [26] and
BSDS500 [1] images with the F-score.

Methods F-Score on BSDS300 F-Score on BSDS500 Time (s)

Pb (2004) [26] 0.65 0.67 51.00
gPb (2012) [1] 0.70 0.71 191.15
CO (2013) [48] 0.64 0.65 6.51
MCI (2014) [55] 0.62 0.64 48.60
SCO (2015) [75] 0.66 0.67 7.68
Ours 0.67 0.68 13.13

5. Conclusions

In this study, a BICW framework that uses superpixel-based candidates and hierarchical visual
cues is proposed to detect meaningful contours. In contrast to previous models with pixel-based
contour detection, a modified superpixel generation processing has been introduced to generate a
contour candidate set. The candidates are then weighted by integrating the information from multiple
biologically-inspired cues. We extract the low-level visual local cues on the basis of the contrast energy
to weigh the contour intrinsic property. Gestalt principle-based mid-level visual cues, namely curvature
consistency, continuation and similarity, are integrated to weigh the contour grouping constraint. The
final output is generated by considering information at multiple scales.

The main contribution of the work could be summarized as follows. (1) A candidate weighting
framework is designed for the task of contour detection. To our knowledge, this is the first attempt
to build a contour candidate set of a line segment rather than a candidate set of pixels using the
superpixel-based method. Other visual features could be easily integrated into this unified framework
in the future; (2) A model based on biologically-inspired cues is designed to weigh the candidates. Our
model is distinguished mainly by how to use and integrate the multiple visual cues for weighing the
candidates; (3) The final output is generated by integrating the information at multiple scales. This
strategy employs the property that salient and meaningful contours are more likely to be retained at
different scales. The weights of the meaningful contours are boosted when they are integrated from
multiple scales; (4) The result shows that our model achieves a good trade-off between performance
and efficiency. The method is also very suitable for parallel computing, which is a future direction
for optimization.

To summarize, we propose a biologically-inspired framework for contour detection using
superpixel-based candidates and hierarchical visual cues. Experimental results based on the BSDS
benchmark show that the proposed framework exhibits promising performances in terms of capturing

meaningful contours in complex scenes.
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