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Abstract: An important class of complementary metal-oxide-semiconductor (CMOS) image
sensors are those where pixel responses are monotonic nonlinear functions of light stimuli.
This class includes various logarithmic architectures, which are easily capable of wide
dynamic range imaging, at video rates, but which are vulnerable to image quality issues.
To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses
must be calibrated and corrected due to mismatch and process variation during fabrication.
Unlike literature approaches, which employ circuit-based models of varying complexity,
this paper introduces a novel approach based on low-degree polynomials. Although each
pixel may have a highly nonlinear response, an approximately-linear FPN calibration
is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction
requires only arithmetic, and an optimal fixed-point implementation is readily derived,
subject to a user-specified number of bits per pixel. Using a monotonic spline, involving
cubic polynomials, photometric calibration is also possible without a circuit-based model,
and fixed-point photometric correction requires only a look-up table. The approach is
experimentally validated with a logarithmic CMOS image sensor and is compared to a
leading approach from the literature. The novel approach proves effective and efficient.

Keywords: logarithmic CMOS image sensor; fixed pattern noise; photometry; Taylor series;
polynomial regression; spline interpolation; fixed-point arithmetic; look-up table
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1. Introduction

CMOS image sensors suffer from mismatch and process variation during fabrication. Despite
identical circuit designs, each pixel on a die responds differently to light stimulus because of device
mismatch. This causes FPN in images of uniform or non-uniform stimuli. Moreover, process variation
from wafer to wafer contributes further uncertainty to pixel responses, which complicates photometry,
i.e., the estimation of true light stimuli from image data. Although relevant to linear imagers, these
problems are worse with nonlinear imagers because of their increased circuit complexity.

Nonlinear CMOS image sensors, such as logarithmic (log) and linear-logarithmic (lin-log) designs,
achieve dynamic ranges (DRs) of over 120 dB easily at video rates, 40–60 dB wider than that of charge
coupled device (CCD) and linear CMOS image sensors [1,2]. However, our work aside [3], nonlinear
imagers suffer, in the log region, from low (below 40 dB) peak signal-to-noise-and-distortion ratios
(PSNDRs), a measure of image quality that depends on temporal noise and residual FPN. Unfortunately,
correlated double sampling (CDS), a simple FPN correction method that is effective with linear CMOS
image sensors, does not benefit nonlinear ones, in the log region, to the same extent.

A variety of analog approaches, including CDS, have been investigated to correct offset FPN in
nonlinear imagers [4–9]. Their advantage is that calibration is not required. However, nonlinear imagers
are subject, especially in the log region, to higher-order FPN [10,11], such as but not limited to gain FPN,
which analog approaches do not correct. Meanwhile, using digital FPN (and photometric) correction, as
well as a novel architecture, we were first to demonstrate a high PSNDR (45 dB)—comparable to that
of CCD and linear CMOS image sensors—with a log CMOS image sensor [3].

The calibration and correction we used involved nonlinear regression on a circuit-based model from
Joseph and Collins [10]. Although the model and its explanation of FPN have been widely accepted,
both for log imagers and the log region of lin-log imagers, researchers have developed a variety of
simplifications both to the model itself and to parameter estimation [12–14]. Their objectives have been
to simplify calibration and correction, while achieving sufficient accuracy. Outperforming the accuracy
of the original method, over a wide DR, is practically impossible. With some reasonable assumptions on
camera noise, the original method is equivalent to maximum-likelihood estimation [10].

This paper proposes a novel approach for the calibration and correction of nonlinear imagers
in general, and for a log imager in particular. The objective of the novel approach is simplified
calibration and correction, while achieving sufficient accuracy over a wide DR. Unlike the literature,
no circuit-based model is required or used. The approach depends primarily on the monotonic property
of pixel responses, a property shared by linear, log, and lin-log imagers. Unlike the literature, with the
notable exception of Hoefflinger [13], we also provide a fixed-point implementation of our method, and
we prove, unlike Hoefflinger, that the implementation satisfies an optimality criterion.

Section 2 presents our materials and methods, which are, respectively, a log CMOS image sensor, with
low temporal noise, and a new approach for FPN and photometric calibration and correction. Section 3
gives a conceptual overview, a mathematical formulation, and important refinements for an optimal
fixed-point implementation of the proposed FPN correction. Fixed-point photometric correction is also
explained. Section 4 presents experimental results, discussed with respect to the literature, to validate
the new methods and implementation. Finally, Section 5 summarizes our contributions.
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2. Materials and Methods

This section proposes new methods for the calibration and correction of non-idealities in image
sensors due to mismatch and process variation. Instead of analytical methods, whereby circuit-based
models are used to derive specific calibrations and corrections, numerical methods are applied to general
image sensors, modeled using low-degree polynomials. The proposed approach results in efficient
methods applicable to a variety of imagers, linear and nonlinear. Nevertheless, a specific log imager
and its measured data, our materials, is first presented to put subsequent ideas in context.

2.1. Image Sensor

Previously, in this journal, we presented a CMOS digital pixel sensor (DPS) array with a log
delta-sigma (∆Σ) architecture [3]. This image sensor employs a classic log sensor and a novel first-order
∆Σ analog-to-digital converter (ADC), including decimator, in each pixel. Detailed specifications were
provided and the image sensor was compared to a wide variety of other image sensors. For a different
purpose than in the prior publication, we revisit the same image sensor and experimental setup.

Details of the experimental setup are given in our prior publication [3]. As previously reported, “The
measured data comprises mn[o] pixel responses, yijk, where: i indexes luminance stimuli, xi, with
1 ≤ i ≤ m; j indexes pixels of the image sensor, with 1 ≤ j ≤ n; and k indexes consecutive frames,
with 1 ≤ k ≤ [o]... [The] index dimensions m, n and [o] are 22, [48× 64] and 49, respectively.” For this
work, we partition the measured data, comprising mo images (n pixels each) of uniform stimuli xi, into
m time-averaged calibration images, ȳij , and m single-frame additional images, yij , as follows:

ȳij =
1

o− 1

o−1∑
k=1

yijk (1)

yij = yijo (2)

Using the calibration data, Figure 1 shows the average response, ȳi, and the root mean square (RMS)
temporal noise per luminance, σ̂n

i , of the log CMOS image sensor. These are calculated as follows:

ȳi =
1

n

n∑
j=1

ȳij (3)

σ̂n
i =

√√√√ 1

n(o− 2)

n∑
j=1

o−1∑
k=1

(rn
ijk)2 (4)

where

rn
ijk = yijk − ȳij (5)

The overall RMS temporal noise, also shown in Figure 1, is calculated as follows:

σ̂n =

√√√√ 1

mn(o− 2)

m∑
i=1

n∑
j=1

o−1∑
k=1

(rn
ijk)2 (6)
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Figure 1. Statistics of a logarithmic (log) imager. The maximum response, average response,
minimum response excluding outliers (<0.2% of pixels), and root mean square (RMS)
temporal noise per luminance, of a 48 × 64 pixel array, are shown versus scene luminance.
The overall RMS temporal noise is also shown. LSB stands for least significant bit.

As shown in Figure 1, the range of pixel responses, at each uniform luminance, is quite large,
indicative of substantial FPN. As disclosed previously [3], a small number of pixel responses (i.e.,
six) were outliers because of in-pixel ADC issues. While excluded from the range shown in Figure 1,
they are not excluded in all other results, serving to demonstrate the robustness of our approach.

Over a wide DR, the average response, ȳi, is a monotonic nonlinear function of scene luminance,
xi. At present, no theory has been published to explain the temporal noise of log pixels with in-pixel
∆Σ ADCs. Experimentally, the RMS temporal noise per luminance, σ̂n

i , proves relatively independent
of luminance. Moreover, the temporal noise residuals, rn

ijk, approximately follow a normal distribution,
and their RMS values are also relatively independent of pixel index, j, and frame index, k.

High peak signal-to-noise ratios (PSNRs), which are independent of FPN correction, are important
because they limit PSNDRs. With our log imager [3], over 95% of pixels have a PSNR of at least 40 dB,
and the median PSNR is about 46 dB. Storm et al. [12] report a PSNR of about 32 dB, in the log region,
for their lin-log imager, and Hoefflinger [13] reports a PSNR of about 35 dB for his log imager.

As mentioned in Section 1, we aim to simplify correction, while achieving sufficient accuracy over
a wide DR. One degree of complexity, normal for a log imager, is a reduced sensitivity (slope) in the
dimmer 60 dB of the over 120 dB of tested DR. Otim et al. [14], for example, propose a simplified
correction that would only apply to the brighter 60 dB. Another degree of complexity is that, because
our PSNR is relatively high, our FPN correction has to be more accurate, for residual FPN to be on the
same order as temporal noise. Fortunately, our proposed approach handles these complexities.
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2.2. Polynomial Regression

As with a literature method [10], calibration uses m images of uniform stimuli xi, where 1 ≤ i ≤ m.
For an image sensor with n pixels, the actual responses ȳij , where 1 ≤ j ≤ n, are modeled thusly:

ȳij = fj(xi) + εij (7)

where fj are monotonic functions that vary with pixel index j due to device mismatch.
Residual errors εij , in Equation (7), encapsulate temporal noise, including quantization noise, and

residual FPN due to imperfect modeling. The advantage of using time-averaged actual responses for
calibration, indicated by a bar on yij , is that temporal noise power is reduced, allowing methods to
focus on residual FPN. Errors are assumed to behave as independent and identically-distributed random
variables, which follow a zero-mean normal distribution. If standard deviations of residual errors were
to depend on stimuli, a weighting scheme may be used to factor out such dependence.

FPN occurs, unfortunately, because fj varies randomly from pixel to pixel due to device mismatch.
With colour image sensors, fj varies also by design. In that case, the theory presented here applies to
red, green, and blue pixels when treated separately. Average responses ȳi of all pixels, as follows, may
be considered the ideal responses F (xi) of the image sensor to the same uniform stimuli:

ȳi =
1

n

n∑
j=1

ȳij ≈
1

n

n∑
j=1

fj(xi) ≡ F (xi) (8)

Because of their zero-mean normal distribution, residual errors are effectively filtered out of the ideal
responses, in Equation (8), when n is large enough, a good assumption for an image sensor of many
pixels. Moreover, if each fj is monotonic with respect to xi, also a good assumption for an image sensor,
then so is F . Furthermore, if F is monotonic then its inverse F−1 exists and the following holds:

xi = F−1(ȳi) (9)

Using Equations (7) and (9), actual responses ȳij may be written in terms of ideal responses ȳi:

ȳij = fj(F
−1(ȳi)) + εij (10)

Although fj and F−1 are functions that may be quite nonlinear, their composition in Equation (10) is
expected to be less so because of an approximate inverse relationship. Notably, these functions would
be exact inverses if there were no mismatch variation. Using Taylor’s theorem, the composite functions
are replaced by ȳi perturbed by degree-p polynomials, with low p expected to suffice, as follows:

ȳij = ȳi + aj0 + aj1ȳi + . . . ajpȳ
p
i + εij (11)

where ajk are per-pixel parameters, with 0 ≤ k ≤ p, and residual errors εij absorb truncation errors
when p is high enough. Given sufficient calibration data, maximum likelihood (ML) estimates âjk of the
p+ 1 parameters per pixel may be easily computed using the ordinary least squares method.

The above is called the polynomial regression (PR) method for FPN calibration. For FPN correction,
consider the actual responses yj to arbitrary (i.e., uniform or non-uniform) stimuli xj:

yj = fj(xj) + εj (12)
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Using the same approach as above, it is straightforward to show that the ML estimates ŷj of the ideal
responses to the arbitrary stimuli are given by roots of n degree-p polynomial equations, as follows:

yj = ŷj + aj0 + aj1ŷj + . . . ajpŷ
p
j (13)

where the ML estimates âjk, obtained by calibration, are employed for the correction.
With the PR method, calibration is straightforward—it is equivalent to polynomial regression—but

correction is relatively difficult—it is equivalent to polynomial root finding. For p ≥ 2, correction
requires more than just arithmetic, unlike calibration. However, what matters is for correction to be
simple, preferably using a low-power approach, because it has to be done repeatedly in real time, unlike
calibration. The PR method above provides a useful foundation for such a method below.

2.3. Inverse Polynomial Regression

For efficient video processing in real time, FPN correction should be computed using only arithmetic.
Toward this end, monotonic functions in Equation (10) are first inverted to write ȳi in terms of ȳij:

ȳi = F (f−1
j (ȳij − εij)) ≈ F (f−1

j (ȳij)) + ε′ij (14)

where

ε′ij = − dȳi
dȳij

εij (15)

As with the PR method, composite functions in Equation (14) are replaced with Taylor polynomials:

ȳi = ȳij + bj0 + bj1ȳij + . . . bjqȳ
q
ij + ε′ij (16)

where bjk, with 0 ≤ k ≤ q, are per-pixel parameters. Although residual errors ε′ij independently follow
zero-mean normal distributions, they are not identically distributed due to Equation (15). The weighted
least squares method is therefore used to obtain ML estimates b̂jk of the q + 1 parameters per pixel.
Based on the PR method, where p is taken to equal q, weights wij are estimated as follows:

ŵij = 1 + âj1 + 2âj2ȳi + . . . pâjpȳ
p−1
i ≈ dȳij

dȳi
(17)

The above is called the inverse polynomial regression (IPR) method for FPN calibration. For FPN
correction, consider again Equation (12), which gives the actual responses yj to arbitrary stimuli xj . It
is straightforward to show, via the above approach, that the ML estimates ŷj of ideal responses to the
arbitrary stimuli are given by n polynomials, computable without exponents, as follows:

ŷj = yj + bj0 + bj1yj + . . . bjqy
q
j (18)

= yj + bj0 + yj(bj1 + . . . yj(bjq)) (19)

where the ML estimates b̂jk, obtained by calibration, are employed for the correction.
Although IPR calibration is more complex than PR calibration, it can still be done using only

arithmetic. Moreover, the extra complexity is insignificant because calibration, unlike correction, is
done once and need not be embedded with an image sensor. On the other hand, IPR correction is much
simpler than PR correction. It requires a small number of additions and multiplications per pixel, a
substantial simplification. Arithmetic operations are especially efficient for real-time processing.
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2.4. Inverse Spline Interpolation

The IPR method corrects FPN in actual responses yj to arbitrary stimuli xj by mapping the former
to ideal responses ŷj . It is a relative calibration, addressing intra-die mismatch variation. To address
intra-wafer (die-to-die) and inter-wafer process variation, an absolute calibration is also required. The
focus of this paper is on log CMOS image sensors, especially for wide DR imaging. Ideal responses
ŷj are therefore calibrated absolutely with respect to estimated stimuli ln x̂j on a log scale, not x̂j on a
linear scale. That way, fewer bits are needed for satisfactory encoding of wide DR responses.

Data collected for the FPN calibration, i.e., the average responses ȳi to the m uniform stimuli xi, is
also used to perform the photometric calibration. Given Equation (9), the following holds:

lnxi = lnF−1(ȳi), (20)

where lnF−1 is monotonic. Instead of using circuit analysis of the nonlinear pixel to model the
relationship, a cubic Hermite spline S is constructed to interpolate the m data points monotonically:

lnxi = S(ȳi), (21)

where

S(y) =



S1(y), y ≤ ȳ2,

S2(y), ȳ2 < y ≤ ȳ3,
...

...

Sm−1(y), ȳm−1 < y.

(22)

The cubic polynomials Si, in Equation (22), may be computed using only arithmetic, as follows:

Si(y) = ci0 + (y − ȳi)(ci1 + (y − ȳi)(ci2 + (y − ȳi)(ci3))) (23)

where the 4(m− 1) parameters cik, with 1 ≤ i ≤ m− 1 and 0 ≤ k ≤ 3, are calculated once offline, e.g.,
using pchip in MATLAB, during photometric calibration. The above arithmetic is employed repeatedly,
in real time, for the photometric correction of ideal responses ŷj to estimated stimuli ln x̂j:

ln x̂j = S(ŷj) (24)

This approach is called the inverse spline interpolation (ISI) method because it models an inverse
function using spline interpolation. Calibration is straightforward, requiring a well known algorithm for
spline interpolation, and correction is efficient, requiring only selection and arithmetic operations.

3. Fixed-Point Implementation

The previous section introduced methods for the calibration and correction of mismatch and process
variation in CMOS image sensors, particularly log imagers. Unlike calibration, correction must be done
efficiently in real time to be suitable for low-power video applications, an important end use of CMOS
image sensors. Thus, an optimized fixed-point (integer) implementation is presented here.
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Static quantization and dynamic bit shifting are used to implement the FPN, i.e., IPR, correction,
as shown in Figure 2, whereas a look-up table (LUT) suffices for the photometric, i.e., ISI, correction.
Because the output of a fixed-point IPR correction, explained in detail below, is essentially an integer,
the LUT is constructed simply by computing, for each possible integer, the result of the ISI correction.
Unlike IPR correction, which has per-pixel parameters, ISI correction is the same for each pixel, and so
only one LUT is required per imager. Further aspects of the LUT are explained in Section 4.

bit shift
+

0
ˆ

jb

−y0 

+ 

bit shift

+ 

+ quantize

look up
jL̂jŶ

quantize
0

ˆ
jB

1
ˆ

jb1
ˆ

jB

bit shift

quantize
jqb̂

jqB̂
x 

x 

yj 

Figure 2. Fixed-point implementation of correction. Quantization and bit shifting introduce
static and dynamic round-off errors, respectively, to the fixed pattern noise (FPN) correction.
Their impact is minimized, in the fixed-point implementation, subject to a total wordlength
limit per pixel. A look-up table (LUT) suffices for the photometric correction.

3.1. Conceptual Overview

Actual responses yj to arbitrary stimuli xj , where j indexes pixels, are assumed to be unsigned
integers. These responses are the raw outputs of an image sensor after analog-to-digital conversion.
However, the n(q+1) estimated parameters b̂jk, where k indexes parameters, obtained by IPR calibration
are floating-point numbers. They may be turned into fixed-point numbers by quantization. As a result,
IPR correction, in Equation (19), may be implemented using only fixed-point arithmetic.

Parameter quantization has opposing requirements. Let tk, where 0 ≤ k ≤ q, represent the numbers
of bits, i.e., the wordlengths, allocated per parameter, where homogeneity across pixels is employed
for simplicity. On the one hand, tk should be large so that the static errors ∆b̂jk added to estimated
parameters b̂jk do not degrade the IPR correction. On the other hand, the total wordlength t =

∑q
k=0 tk

should be small to reduce the memory and processing required to implement the IPR correction.
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The impact of parameter quantization on the residual errors of the IPR calibration is modeled
below. This reuses the calibration data, i.e., actual responses ȳij to m uniform stimuli xi, modeled in
Equation (7). Subject to a given total wordlength t, e.g., based on an integer number of bytes, the optimal
parameter wordlengths tk are computed. For this optimized design, the RMS of residual errors is found
for the calibration data. By comparing the RMS residual errors of the floating-point and fixed-point
implementations, where the latter is a function of t, a suitable total wordlength may be found.

3.2. Mathematical Formulation

For either a floating-point or fixed-point implementation of the IPR method, the RMS of residual
errors εij is directly proportional to the sum square error (SSE) of weighted residuals wijε

′
ij . With the

calibration data, i.e., the actual and ideal responses ȳij and ȳi, the fixed-point SSE is given by:

SSE fixed =
m∑
i=1

n∑
j=1

ŵ2
ij(ȳi − Ŷij)2 (25)

Ŷij = ŷij + ∆ŷij (26)

ŷij = ȳij + b̂j0 + ȳij(b̂j1 + . . . ȳij(b̂jq)) (27)

where ŷij and Ŷij are the floating and fixed-point corrections of ȳij , respectively, and ŵij are the weights
in Equation (17). Correction errors ∆ŷij are polynomial functions of quantization errors ∆b̂jk:

∆ŷij = ∆b̂j0 + ȳij(∆b̂j1 + . . . ȳij(∆b̂jq)) (28)

Direct optimization of Equation (25) proved too difficult. Instead, assume that the quantization errors
∆b̂jk behave as independent random variables that are uniformly distributed as follows:

|∆b̂jk| ≤ 0.5ek (29)

ek = 2sk (30)

where ek and sk are the quantization step sizes and binary-point positions, respectively. Then, using
Equation (28) and the calculus of random variables, the following expectations may be derived:

E{∆ŷij} = 0 (31)

E{∆ŷ2
ij} =

1

12

q∑
k=0

ȳ2k
ij e

2
k (32)

Equation (29) requires that quantization errors ∆b̂jk be bounded by ±0.5 ek, which is true only if
saturation is avoided. This implies the following conditions on minimum parameter wordlengths tk:

tk = dlog2(1 + dk/ek)e (33)

dk = max
j
{b̂jk} −min

j
{b̂jk} (34)

where dk represent the static ranges of the estimated floating-point parameters b̂jk.
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For fixed-point implementation purposes, the only random variables in Equations (25)–(28) are the
quantization errors ∆b̂jk. Other symbols represent constants obtained via floating-point IPR calibration
and correction. Using the calculus of random variables, the expected SSE may be derived:

E{SSE fixed} = SSE float + E{∆SSE} (35)

SSE float =
m∑
i=1

n∑
j=1

ŵ2
ij(ȳi − ŷij)2 (36)

E{∆SSE} =
m∑
i=1

n∑
j=1

ŵ2
ijE{∆ŷ2

ij} (37)

which may be rewritten in terms of quantization step sizes ek. Using Equation (32), we obtain:

E{∆SSE} =

q∑
k=0

cke
2
k (38)

ck =
1

12

m∑
i=1

n∑
j=1

(ŵij ȳ
k
ij)

2 (39)

The expected extra SSE, in Equation (38), may be minimized, subject to total wordlength t, with
respect to binary-point positions sk, via Equation (30), by minimizing the following Lagrangian:

L(sk, λ) = log2(E{∆SSE}) + λ(t−
∑q

k=0 tk) (40)

where a base-2 logarithm is used for numerical reasons. The Lagrangian is optimized when its gradient
is zero. Approximations are required to derive this gradient. Binary-point positions sk and wordlengths
tk are treated as reals, although they are integers, and Equation (33) is replaced with the following:

tk ≈ log2(1 + dk/ek) + 0.5 (41)

where the offset is needed for unbiasedness. The gradient of the Lagrangian is then derived:

∂L
∂sk

=
2cke

2
k

E{∆SSE}
+ λ

dk/ek
1 + dk/ek

(42)

∂L
∂λ

= t−
∑q

k=0 tk (43)

Optimization may be performed using fmincon in MATLAB, which chooses an initial λ value
automatically. Initial sk values are obtained by setting tk = t/(q + 1), solving Equation (41) for ek
using dk in Equation (34), and solving Equation (30) for sk. Final sk values are rounded to the nearest
integers, whereupon integer tk values are computed using Equations (30) and (33). The expected extra
SSE in Equation (38) and the expected SSE in Equation (35) are then recomputed.

3.3. Important Refinements

A number of details are best explained as refinements to the above formulation. For example, instead
of the initially obvious Equation (34), the following dk values are the ones used in the optimization:

dk = 2 max
j
{|b̂jk|} (44)
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Compared to Equation (34), Equation (44) overstates the ranges of estimated parameters. However,
it is unlikely to do so by much, which can be argued via a symmetry analysis of the IPR calibration.
On the other hand, Equation (44) simplifies the fixed-point implementation because quantized (B̂jk) and
unquantized (b̂jk) parameters are then related only by binary-point shifting and rounding:

B̂jk = round(2−sk b̂jk) (45)

2skB̂jk = b̂jk + ∆b̂jk (46)

With Equation (44), there is no need to quantize, store, and use minimum values of b̂jk, as with
Equation (34). Quantized parameters B̂jk are stored, without saturation, using tk-bit signed integers.
Given actual responses yj to arbitrary stimuli xj , fixed-point IPR correction therefore becomes:

Ŷj = yj + 2s0(B̂j0 + 2s1−s0yj(B̂j1 + . . . 2sq−sq−1yj(B̂jq))) (47)

As shown in Figure 2, fixed-point IPR correction involves repeated fixed-point multiplication, bit
shifting, and fixed-point addition. Cascading multiplications naively could require the processing of very
large words in real time. When u and v-bit words are multiplied, the result may be a (u + v)-bit word.
However, because the IPR method replaces approximately linear functions with Taylor polynomials,
most bit shifts will produce insignificant fractional parts. If rounded bit shifting is used, large words are
avoided. Moreover, fixed-point arithmetic may be replaced with simple integer arithmetic.

While rounded bit shifting is easily implemented, it could increase the expected extra SSE in
Equation (38), which may be considered during optimization. In Equation (47), an addition with B̂jk

follows each sk+1 − sk bit shift. Assuming the shift produces a fractional part, the round-off error may
be represented by an independent random variable that is uniformly distributed over a ±0.5 LSB range.
Instead of adding these random variables to B̂jk in Equation (47), they may be scaled by 2sk and added
to b̂jk because of Equation (46). If s0 < 0, the leftmost shift in Equation (47) is also subject to round-off
error over a ±0.5 LSB range. However, s0 ≥ 0 is likely in an optimal design given that e0 = 2s0 is the
precision of b̂j0, which need not be smaller than 1 LSB, the precision of unsigned integers yj .

Using the above insights and the calculus of random variables, dynamic round-off errors are modeled
by doubling the variances of static round-off errors ∆b̂jk when sk+1 < sk, assumed to be always true for
simplicity. This is captured in the optimization by replacing Equation (39) with the following:

ck =
αk

12

m∑
i=1

n∑
j=1

(ŵij ȳ
k
ij)

2 (48)

where

αk =

2, 0 ≤ k ≤ q − 1

1, k = q
(49)

Finally, due to Equations (33) and (44), parameter wordlengths are proportional to their ranges, all
else being constant. These ranges may be significantly reduced by subtracting a constant y0 from actual
responses ȳij , which are unsigned integers, before IPR calibration. A suitable value for y0 is round(ȳ),
where ȳ is the mean of ȳi. Such a subtraction reduces the range of power terms, i.e., (ȳij − y0)k replaces
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ȳkij , which in turn reduces the range of estimated parameters b̂jk. As shown (coloured red) in Figure 2, the
same subtraction must be done prior to IPR correction. This refinement does not affect the floating-point
SSE but it substantially reduces the fixed-point SSE for a given total wordlength.

4. Results and Discussion

This paper introduced polynomial-based methods and their fixed-point implementation for the
calibration and correction of log CMOS image sensors. The theory involved provable mathematical
deductions. Nevertheless, experimental results presented here illustrate how the theory is applied in
practice. More importantly, the results also validate unproved assumptions of the theory.

In this section, floating-point calibration and fixed-point implementation results are given and
discussed for the proposed methods and relevant literature methods. Correction results are also presented
and compared for several approaches. In addition to these offline results, real-time correction results are
given for a selected approach. All results, whether statistical values or actual images, use experimental
data obtained at video rates with the log CMOS image sensor described in Section 2.1.

4.1. FPN and Photometric Calibration

Figure 3 validates that actual responses are approximate linear functions of the average response,
despite the highly nonlinear dependence of response on luminance, over a wide DR, as shown in Figure 1.
In the absence of FPN, the actual response of any pixel equals the average response of all pixels.
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Figure 3. Actual response versus average response. Because of mismatch variation, which
causes FPN, the actual response of any pixel—five are shown—varies relative to the average
response of all pixels. The average response is considered to be an ideal response.
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The PR and IPR methods, also called PR(p) and IPR(q) methods in this section, use degree p and
degree q polynomial models, respectively, having p+1 and q+1 parameters per pixel (ppp). Considering
Figure 3 as an example, the PR method models actual responses as polynomial functions of average
responses, whereas the IPR method does the opposite. One of the reasons the latter proves more useful is
because the purpose of FPN correction, when divorced from photometric correction, is to take non-ideal,
i.e., actual, responses as inputs and give ideal, e.g., average, responses as outputs.

An FPN, or relative, calibration involves the estimation of parameters, per pixel, for an imaging model
that captures pixel-to-pixel variations. A photometric, or absolute, calibration involves the estimation of
parameters, per imager, for an imaging model that captures imager-to-imager variations. Although joint
FPN-photometric calibration and correction is possible, as discussed below for literature methods, the
common practice with linear imagers is to separate them. In this paper, a separate approach is likewise
taken for monotonic nonlinear imagers, in particular for a log CMOS image sensor.

Otim et al. [14] have presented three related models, founded upon circuit analysis, which could
be used for joint FPN-photometric calibration and correction of log CMOS image sensors. For these
models, an equivalent algebraic representation, more suitable for this discussion, is as follows:

ȳij =


aj + bj ln(xi) + εij , cj � xi � dj

aj + bj ln(cj + xi) + εij , cj + xi � dj

a′j + b′j ln
(

exp
(√

cj+xi

dj

)
− 1
)

+ εij , otherwise

(50)

In Equation (50), the first two cases, called the offset-gain (OG) and offset-gain-bias (OGB) models,
follow from earlier work by Joseph and Collins [10]. We name the third case the offset-gain-bias-knee
(OGBK) model. In the OGBK model, cj and dj are luminances at which the response function bends
due to dark current and strong inversion effects, respectively. When luminances of interest are not bright
enough for the strong inversion effects, the model simplifies to the OGB model. Dark current effects
may also be ignored, resulting in the OG model. Parameters aj (or a′j), bj (or b′j), cj , and dj are called
the offset, gain, bias, and knee, respectively. Two are functions of the others, as follows:

aj = a′j − (b′j/2) ln(dj) (51)

bj = b′j/2 (52)

Section 2 explained the PR and IPR calibrations, both of which entail general linear regression.
Calibration of the OGB and OGBK models requires nonlinear regression. Linearized regression may
be used with the OG model, by taking ln(xi) as the independent variable. For each method, the overall
RMS residual FPN, σ̂d, and the RMS residual FPN per luminance, σ̂d

i , are computed as follows:

σ̂d =

√√√√ 1

(m− l)n

m∑
i=1

n∑
j=1

(rd
ij)

2 (53)

σ̂d
i =

√√√√ m

(m− l)n

n∑
j=1

(rd
ij)

2 (54)

where complexities, l, and residual FPNs, rd
ij , are given in Table 1. As residual FPN is a form of spatial

distortion in corrected images, a superscript d is used, in contrast to n for temporal noise.
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Table 1. Summary of FPN calibration methods. For each method, the complexity is the
number of parameters per pixel (ppp) required for FPN correction, and the residual FPN is
the (weighted) error, at each luminance xi and pixel j, of the fitted response.

Method Complexity (l) Residual FPN (rdij)

PR(p) p + 1 ȳij − (ȳi +
∑p

k=0 âjkȳ
k
i )

IPR(q) q + 1 ŵij(ȳi − (ȳij +
∑q

k=0 b̂jkȳ
k
ij))

OG 2 ȳij − (âj + b̂j ln(xi))

OGB 3 ȳij − (âj + b̂j ln(ĉj + xi))

OGBK 4 ȳij − (â′j + b̂′j ln(exp(
√

(ĉj + xi)/d̂j)− 1)

Figure 4 gives the overall goodness of fit, defined as σ̂d/σ̂n, for all calibration methods summarized
in Table 1. When this ratio is less than or equal to about one (or 100), it means that FPN is effectively
calibrated. Thus, FPN is effectively calibrated by the PR(3), IPR(3), OGB, and OGBK methods.
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Figure 4. Comparison of FPN calibration methods. The overall goodness of fit is the ratio
of overall RMS residual FPN to overall RMS temporal noise. This paper introduced the
polynomial regression (PR) and inverse polynomial regression (IPR) methods, whereas the
offset-gain-bias (OGB) and related methods are taken from the literature.

The overall goodness of fit of the PR and IPR calibrations are comparable for quadratic and cubic
polynomial models, as shown in Figure 4. However, with the PR method, it would be difficult and
very difficult to perform FPN correction using quadratic and cubic polynomials, respectively, because
all roots must be computed, for each pixel, and the correct root must be selected, also for each pixel.
Thus, the IPR method is much preferred for these polynomial degrees. Note that overall goodnesses of
fit are identical for lower degrees, i.e., p = q = 0 and p = q = 1. This is expected mathematically.
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Figure 5 shows the goodness of fit per luminance, defined as σ̂d
i /σ̂

n, versus luminance, xi, for the
linear PR, quadratic IPR, cubic IPR, OGB, and OGB+ (see below) calibrations. As shown in Figure 4,
the OGBK method, at the cost of increased complexity, provided no benefit over the OGB method.
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Figure 5. Comparing goodness of fit per luminance. This ratio divides RMS residual FPN
per luminance by overall RMS temporal noise. Unlike the OGB method, the OGB+ method,
also taken from the literature, corrects for luminance errors. However, unlike both OGB
methods, the IPR method requires only arithmetic operations for FPN correction.

In theory, a good FPN calibration should be equally good at all luminances of interest. In practice,
OGB+ method aside, all calibrations exhibit dependence of goodness on luminance, which is worst for
the linear PR and quadratic IPR calibrations. The cubic IPR and OGB calibrations exhibit goodnesses
that are relatively independent of luminance. For both calibrations, goodnesses are approximately one,
which means residual FPN is comparable to temporal noise at each luminance over the wide DR.

Luminance dependence of the OGB method, which entails a joint FPN-photometric calibration, may
be attributed to measurement errors in luminances xi. The OGB+ method [10] is a complex approach,
used for our prior publication [3], that factors these out. As explained in Section 1, the objective of this
paper, as with other published papers, is to simplify correction even at some expense of accuracy. The
IPR(3) method is almost as accurate as the OGB method but requires only arithmetic operations.

FPN calibration using the IPR method enables mapping of the actual response of each pixel (ordinate
in Figure 3) to an ideal response (abscissa in Figure 3). Photometric calibration using the ISI method
enables mapping of this ideal response (ordinate in Figure 1) to scene luminance (abscissa in Figure 1).
ISI calibration is done by constructing a cubic Hermite spline, which guarantees monotonicity, to map
from ȳ to lnx using the 22 data points (ȳi, lnxi) shown in Figure 1. The result, called an inverse spline
because it represents an inverse function, is plotted in Figure 1 (solid cyan line).
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4.2. Fixed-Point Implementation

Whereas calibration is done once for an image sensor, FPN and photometric correction must be done
repeatedly and in real time for a video-rate image sensor. Although a floating-point implementation is
feasible for small pixel arrays operating at low frame rates, a fixed-point implementation is expected to
be more scalable, especially for low-power applications. Another advantage of fixed point is reduced
storage requirements, relative to floating point, for the parameters estimated during calibration.

A fixed-point implementation, however, may cause a loss of performance. For FPN calibration, this
is quantifiable by comparing to the overall goodness of fit, σ̂d/σ̂n, introduced in the previous section.
The fixed-point version, σ̂D/σ̂n, uses a revised overall RMS residual FPN, σ̂D, defined as follows:

σ̂D =

√√√√ 1

(m− l)n

m∑
i=1

n∑
j=1

ŵ2
ij(ȳi − Ŷij)2 (55)

where corrected images Ŷij are obtained from raw images ȳij according to Figure 2, with yj and Ŷj

replaced by ȳij and Ŷij , respectively. As before, the complexity, l, of this IPR(q) calibration is q + 1.
Figure 6 plots the overall goodnesses of fit, for fixed-point implementations of the IPR(2) and IPR(3)

calibrations, versus the total wordlength, t, used to quantize the estimated parameters, b̂jk. In addition to
the actual goodnesses, as defined in the previous paragraph, modeled goodnesses are shown. The only
difference is in the calculation of Ŷij in Equation (55). As explained in Section 3, an approximate but
differentiable model is defined, which is optimized to minimize the impact of parameter quantization.
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Figure 6. Fixed and floating-point implementations. For the fixed-point FPN calibration,
actual (dots) and modeled (curved lines) goodness results are shown. Both are computed, at
each total wordlength t, after optimization of the model. The floating-point FPN calibration
results (horizontal lines) are the limiting values. Here, bpp stands for bits per pixel.
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Figure 6 demonstrates that the fixed-point results converge on the floating-point ones—the horizontal
lines—with a sufficient total wordlength, t. Moreover, Figure 6 validates the differentiable model as an
approximation of the actual fixed-point results. This is important because the model is used to determine
how many bits, tk, to allocate to each parameter, as well as their binary-point positions, sk. Examples
are given in Table 2. IPR parameters b̂jk are quantized to integers B̂jk, according to Equation (45).

Table 2. Details of fixed-point implementations. Total wordlengths t, in bpp, are selected
to be integer multiples of whole bytes. Here, tk represents the wordlengths, also in bpp, of
parameters B̂jk, shown in Figure 2, and sk represents their binary-point positions. For each
pixel j, floating-point parameters b̂jk are quantized to get integer parameters B̂jk.

(a) IPR(2) method (t bpp) (b) IPR(3) method (t bpp)

t t0 t1 t2 s0 s1 s2 t0 t1 t2 t3 s0 s1 s2 s3

16 7 6 3 8 −4 −15 4 4 5 3 10 −1 −14 −26

24 10 8 6 5 −6 −18 6 7 6 5 8 −4 −16 −28

32 12 11 9 3 −9 −21 8 9 8 7 6 −6 −18 −30

40 15 14 11 0 −12 −23 10 11 10 9 4 −8 −20 −32

48 18 16 14 −3 −14 −26 12 13 12 11 2 −10 −22 −34

Figure 6 also illustrates that fixed-point considerations may be the deciding factor when choosing
between polynomial degrees. For example, if one decided to limit the FPN correction parameters to
four or fewer bytes per pixel, i.e., t ≤ 32, then there is no advantage in using cubic over quadratic
polynomials. Considering that an integer number of bytes or nibbles (half bytes) tends to be efficient
from a hardware perspective, there is little advantage in using a fixed-point IPR method for 28 < t < 36,
at least with this particular image sensor. Accordingly, one could use a fixed-point IPR(2) method with
three bytes per pixel (24 bpp) or a fixed-point IPR(3) method with five bytes per pixel (40 bpp).

Hoefflinger [13] reports a fixed-point implementation for a log CMOS image sensor with an active
pixel sensor (APS) architecture. His implementation uses 24 bpp to represent parameters of the OGB
model. While he achieves a residual FPN comparable to temporal noise, the temporal noise, relative
to signal, was 3.5 times (11 dB) higher than with our log CMOS image sensor, based on a DPS array.
The PSNR of his image sensor was 35 dB [13], whereas the PSNR of ours is 46 dB [3]. Furthermore,
Hoefflinger does not show that his 24 bpp fixed-point implementation is optimal in any sense.

A fixed-point implementation is also required for our photometric correction. As shown in Figure 2,
this can be done simply using an LUT. The input and output of the FPN correction (i.e., yj and Ŷj

in Figure 2, respectively) are both 16-bit integers. As such, an LUT with 216 words, at most, may be
pre-computed to perform ISI correction in real time. This correction is essentially an inverse mapping of
the average response function shown in Figure 1. ISI correction may be effectively combined with “tone
mapping,” explained in the next section. This specifies the size of each word in the LUT to be one byte.
Thus, a 64 kilobyte LUT, at most, suffices to implement both photometric correction and tone mapping.
Only one LUT is required to perform these operations for the whole pixel array.
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4.3. FPN and Photometric Correction

Tone mapping refers to the processing used to properly display images from wide DR cameras [13].
Standard displays, such as monitors and printers, can depict a relatively narrow DR of intensities. For
the purposes of this paper, which is not about tone mapping, a simple approach is adopted based on
the sRGB specification [15], which is the default colour space of modern displays. Because our image
sensor is monochromatic, the colour processing part of the sRGB specification is ignored.

For an image with n pixels, let x̂j be the estimated scene luminance of the jth pixel, where 1 ≤ j ≤ n.
The displayed image Ij , which is an integer from 0 to 255 at each pixel, is computed as follows:

Ij =

round(255(x̂j/x0)1/2.2), x̂j < x0

255, otherwise
(56)

where saturation is given by the white point, x0, and “gamma correction” by the exponent, 1/2.2.
According to the sRGB specification, modern displays simulate the gamma response of legacy

cathode ray tubes (CRTs). This “CRT” gamma cancels out the exponent in Equation (56) to achieve
overall a linear mapping from estimated luminances x̂j to displayed tones. Given ln x̂j instead of x̂j , as
with ISI correction, the above tone mapping may be rewritten as follows, where ` represents lnx:

Ij =

round(255 exp((ˆ̀
j − `0)/2.2)), ˆ̀

j < `0

255, otherwise
(57)

Median filtering is employed to remove salt-and-pepper noise caused by “dead” pixels, i.e., outliers
where responses are essentially useless. For interior pixels, the neighbourhood is a five-pixel cross made
up of the pixel and its four nearest neighbours. For border and corner pixels, the pixel and its nearest two
border pixels make up a three-pixel neighbourhood. These are the smallest symmetric neighbourhoods
possible, where odd sizes ensure that means are never needed to compute medians.

The chosen median filter has low complexity, which is good for real-time processing. Furthermore,
the avoidance of means implies that the median filter may be placed equally before or after any
monotonic transform. ISI correction and simple tone mapping are each monotonic transforms. Although
the median filter may be placed before either of these transforms, with no impact on final images, median
filtering is most efficiently done after the simple tone mapping because of the 8 bpp format.

As described in Section 2.1, additional images yij were collected of the 22 calibration scenes, each of
uniform luminance xi, where 1 ≤ i ≤ 22. These images were not used for calibration. Also, unlike the
calibration images ȳij , these images were not averaged over time and, thus, include unfiltered temporal
noise. For brevity, every third additional image, i.e., where i = 1, 4, . . . 22, was selected. Corresponding
luminances, which cover a DR of 121 dB, are indicated by vertical lines in Figures 1 and 5.

Figure 7 depicts the outcome of FPN correction, photometric correction, simple tone mapping,
and median filtering for the eight selected additional images, using six different correction methods,
including fixed-point implementations of two IPR methods. At each selected luminance xi, which
ranged from 7.3 × 10−2 to 7.8 × 104 cd/m2, the white point chosen for the simple tone mapping was
(255/128)2.2xi. With this choice, perfect FPN and photometric correction would result in a uniform
mid-level grey image, i.e., Ij would equal 128 LSB for all pixels, after simple tone mapping.
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Figure 7. Corrected images versus correction method. Top to bottom: (a) the PR(1) method
(2 ppp); (b) the IPR(2) method (24 bpp); (c) the IPR(2) method (3 ppp); (d) the IPR(3)
method (40 bpp); (e) the IPR(3) method (4 ppp); and (f) the OGB method (3 ppp). With
perfect FPN and photometric correction, all pixels would have a uniform grey value.

To interpret Figure 7, consider both Figures 1 and 5. A better goodness per luminance, i.e., a lower
value, in Figure 5 means that residual FPN is less significant relative to temporal noise. However, a more
horizontal slope in Figure 1, for the average response as a function of log luminance, means that residual
FPN and temporal noise have a greater impact on estimated luminance and, hence, image quality.

Figure 7 depicts the results of floating-point PR(1), IPR(2), and IPR(3), plus ISI, corrections. In these
cases, Equation (57) specifies the tone mapping. Image quality improves with increasing polynomial
degree, especially going from the linear to the quadratic model. Note the non-uniform greyness with
the PR(1) results, even at higher luminances. The figure also depicts the results of fixed-point IPR(2)
and IPR(3) corrections, using 24 and 40 bpp, respectively. In these cases, Equation (57) specifies the
tone mapping with L̂j instead of ˆ̀

j , where L̂j is the result of the fixed-point ISI correction, as shown in
Figure 2. Compared to the corresponding floating-point results, there is little to no difference.

Figure 7 also depicts the results of the floating-point OGB method, for which Equation (56) specifies
the tone mapping. Although not ideal, image quality is better at 7.3 × 10−2 cd/m2, compared to
all other methods. However, image quality is worse at 4.3 cd/m2. What is happening is a problem
with the photometric correction, not with the FPN correction, because the OGB method is sensitive to
measurement errors in xi, which determines the white point. Overall, compared to the OGB method, the
quadratic and cubic IPR, plus ISI, methods offer satisfactory image quality, over a wide DR, and this
performance is achievable using a fixed-point implementation based largely on simple arithmetic.

The IPR(2) and ISI methods were programmed to operate in real time on a desktop computer that
controlled our image sensor. Videos were displayed and recorded of multiple non-uniform scenes. Each
used a different white point chosen manually. Figure 8 depicts several frames taken from these videos.
Notwithstanding the low spatial resolution of the camera, which had only 48 × 64 pixels [3], the image
quality is good after tone mapping, further validation for the polynomial-based methods.
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Figure 8. Polynomial-based correction in real time. Because the visual quality of quadratic
FPN correction was deemed sufficient, with simple tone mapping, and the fixed-point work
was unfinished at the time, the IPR(2) method (3 ppp) was implemented at a 30 Hz frame
rate. Top row (left to right): a building against the sky; a plant by a window; and a bookshelf
in sunlight. Bottom row: three views of a face with highlights and shadows.

5. Conclusions

This paper proposed novel methods, based on low-degree polynomials, for FPN and photometric
correction. Although developed for log CMOS image sensors, which achieve wide DRs easily at video
rates, the proposed methods are not tied to any circuit model, unlike previous work. They may be applied
to any image sensor, provided pixel responses are monotonic with respect to light stimulus.

When FPN calibration and correction are done using the proposed IPR method, correction may be
implemented solely with arithmetic operations. Photometric calibration and correction are done using the
proposed ISI method, where correction may be implemented solely with logic and arithmetic operations.
Computational complexity may be further reduced using a proposed fixed-point implementation, which
introduces bit shifting and an LUT to the FPN and photometric correction, respectively. To minimize the
number of bits required for FPN correction, a Lagrangian function is defined and optimized.

The theory was validated using a log CMOS image sensor, operating at video rates, having relatively
low temporal noise, thanks to in-pixel ADCs. With IPR correction, the residual FPN was made as low
as the temporal noise. Together with ISI correction, the approach proved comparable, over a wide DR,
to a leading approach from the literature that performs a joint FPN-photometric correction. Equivalent
results were achieved using a fixed-point implementation. In conclusion, the proposed method achieved
satisfactory performance, over a wide DR, but with low computational complexity.
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