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Abstract: In this paper, the problem of non-rigid structure estimation in trajectory space 

from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), 

based on characteristic points’ trajectories described by a predefined Discrete Cosine 

Transform (DCT) basis, the structure matrix was also calculated by using a factorization 

method. To further optimize the non-rigid structure estimation from monocular vision, the 

rank minimization problem about structure matrix is proposed to implement the non-rigid 

structure estimation by introducing the basic low-rank condition. Moreover, the 

Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank 

minimization problem, and the initial structure matrix calculated by the PTA method is 

optimized. The APG algorithm can converge to efficient solutions quickly and lessen the 

reconstruction error obviously. The reconstruction results of real image sequences indicate 

that the proposed approach runs reliably, and effectively improves the accuracy of  

non-rigid structure estimation from monocular vision. 

Keywords: non-rigid structure estimation; monocular vision; trace minimization 

constraint; rank minimization; APG algorithm 
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1. Introduction 

Recently, non-rigid structure estimation from monocular vision, which can recover the time varying 

3D coordinates of points on a non-rigid object from their 2D places in a video sequence, has become a 

popular research topic. Generally, two major methods, i.e., the trajectory basis method and shape basis 

method, are often used to solve non-rigid structure estimation problems. The factorization method was 

first proposed to recover rigid structure by Tomasi and Kanade [1], and the method was extended to 

solve the non-rigid structure problem in the seminal paper by Bregler et al. [2]. The core idea is that 

shapes observed from motion can be represented by the linear combination of a compact set of basis 

shapes. Each instantaneous structure, such as a running person, can be expressed as a point in the 

linear space of shapes spanned by the shape basis. A large number of methods have subsequently been 

developed [3–5], which promoted improved performances of shape basis. However, the shape basis 

has some limitations since it has a specific nature and can’t generally apply to all non-rigid bodies. The 

shape basis of a dancer moving, for example, cannot be recycled to compactly represent a person 

running. So, as an alternative to a shape space, Akhter et al. [6,7] proposed to represent the  

time-varying structure of a non-rigid object by using a linear combination of a set of basis trajectories, 

which was called Point Trajectory Approach (PTA). The primary advantage of PTA was that the 

trajectory basis can be predefined to be close to many real trajectories, which resulted in a significant 

reduction in unknowns, and corresponding stability improvement in estimation. Zhu et al. [8] pointed 

out that the importance of selecting the number of trajectory basis, rather than the more bases used the 

better, which varied from different models. On this basis, Gotardo and Matinez [9] combined the shape 

method and trajectory method, which can further improve the reconstruction performance. Recently, 

Rehan et al. [10] proposed a novel constraint in the form of local rigidity, which gave stable results in 

challenging realistic scenarios with small camera motions and shorter sequences. Minsk et al. [11] 

introduced new constraints that were more effective for non-rigid structure estimation, which 

constrained the motion parameters so that the 3D shapes were most closely aligned to each other, 

making the rank constraints unnecessary. Then they proposed a new probabilistic model in [12], which 

incorporated the smoothness constraint without requiring any prior knowledge. This approach regarded 

the sequence of 3D shapes as a simple stationary Markov process with Procrustes alignment, whose 

parameters were learned during the fitting process. Antonio et al. [13] proposed an online solution to 

estimate non- rigid structure, which modeled non-rigid deformations as a linear combination of some 

mode shapes obtained using modal analysis from continuum mechanics. However, the underlying 

principle behind most approaches was to model deformations using a low-rank shape [2,9,14,15], and 

it improved the accuracy of the non-rigid structure estimation. 

In order to further improve the accuracy of non-rigid structure estimation, low rank condition of 

structure matrix is also investigated in this paper, and the APG algorithm is proposed to optimize the 

structure matrix, which can quickly converge to an efficient solution. Many trajectory bases can be 

used to recover the structure [16], such as the Discrete Cosine Transform (DCT) basis, Walsh 

Hadamard Transform (WHT) basis and Discrete Wavelet Transform (DWT) basis. In this paper, the 

predefined DCT basis is introduced to recover the motion and structure of the non-rigid object. For the 

2D signal of NM ×  sample points, the DCT formula can be defined as follows:  
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In the paper, the APG method is proposed to solve the problem of non-rigid structure estimation. A 

new constraint, called trace minimization constraint of the rectification matrix, is introduced to narrow 

the solution space and improve the computiational speed of our algorithm. The proposed method can 

effectively estimate both 3D structures of non-rigid objects and the camera motion. The experimental 

results on real image sequences indicate that the proposed approach effectively improves the accuracy 

of non-rigid structure estimation from monocular vision. 

This paper is organized as follows: the problems are formally described in Section 2 before briefly 

introducing how to get the initial structure matrix S  by using PTA method in Section 3. In Section 4, 

the APG algorithm is introduced to optimize S . Experimental results are presented in Section 5. 

Finally, a summary and future works are discussed. 

2. The Problem of Non-Rigid Structure Estimation 

In fact, 3D reconstruction of non-rigid motion from monocular vision is equivalent to the 

decomposition of the measurement matrix W, that is decomposing the W  into the rotation matrix R  of 

camera and the structure matrix S  of the non-rigid object. This problem can be simplified to estimate 

the rectification matrix Q. The PTA method is implemented to estimate the corresponding unknown 

parameters by a series of constraints, and to recover the structure S  of the non-rigid object. Then, the 

APG algorithm is used to reconstruct the structure matrix S  which is calculated by PTA, and can 

further improve the accuracy of the non-rigid structure estimation from monocular vision. 

After feature point correspondence, the measured 2D trajectories can be included in the 

measurement matrix W, containing the location of N image points across M frames: 
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The measurement matrix W can be decomposed as RSW = , where R  is a MM 32 ×  matrix, 
）（ MiRi ,2,1=  is an orthogonal projection  matrix: 
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The structure matrix S  is a NM ×3  matrix, and the structure at a time instant t  can be represented 

as follows: 
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3. The Calculation of Matrix S Using PTA 

The structure matrix S can be decomposed into the trajectory basis matrix Θ and the coefficient matrix 
A , NKKMNM AS ××× Θ= 3333 . Defining the equation Θ=Λ R , the elements of the matrix Λ  are as follows: 
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K is the size of the DCT basis. If K is chosen too small, the trajectory is poorly represented, but if it 

is chosen too large, the system is ill-conditioned and the reconstruction error becomes unlimited, so 

how to choose a suitable K  is very important. 

According to the above mentioned, the measurement matrix W is decomposed as: 

ΛΑ=ΘΑ== RRSW  (8)

Factorize W  with the Singular Value Decomposition (SVD) method: 

∧∧

ΑΛ=W  (9)

However, the matrices 
∧

Λ  and 
∧

Α  will not be equal to Λ  and Α  respectively, because SVD is not 

unique. Any non-singular orthogonal matrix [17] 
KKRQ 33 ×∈  can be inserted between 

∧ ∧
ΛΑ, and get a 

new valid decomposition ΛΑ=ΑΛ=ΑΛ=
∧

−
∧∧∧

1QQW . The matrix Q  is called the rectification matrix.  
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According to reference [6], instead of computing the whole matrix Q , only three columns of Q  are 

sufficient to rectify 
∧

Λ  and 
∧

Α . After defining the first, stK 1+  and stK 12 +  columns of the 
rectification matrix Q  as kQ , we can get the R : 
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−

∧

∈Λ  denotes the two rows of matrix 
∧

Λ  at positions between 12 −i  and i2 .  
Due to the inherent ambiguity of the orthogonal constraint, Xiao et al. [18] found that the above 

method couldn’t obtain a unique solution of the rectification matrix Q . However, Akhter et al. [14] 

showed that the inherent ambiguity did not necessarily lead to a fuzzy shape. Experimental results 
proved that only using the constraint can also recover the unique structure S. 

The rectification matrix kQ  can be estimated precisely by using the trace minimization constraint of 

the T
kkQQ . Once matrix kQ  has been computed, the matrix R  can be estimated by using a nonlinear 

minimization routine.  

According to Equation (8), the structure matrix S  can be calculated by the pseudo-inverse method. 

Because ETT =ΛΛΛΛ −1）（ , AW Λ= , coefficient matrix A  is calculated as follows: 

WA TT ΛΛΛ= −1)(  (12)

Then the structure matrix is calculated by the equation WAS TT ΛΛΛΘ=Θ= −1)( . The S  is set as 

the iterative initial value of the APG algorithm. 

4. The Optimization of Matrix S Using the APG Algorithm 

4.1. The Trace-Minimization Problem 

The goal of this paper is to solve the structure matrix S  through the equation RSW = , where the 

measurement matrix W  is known, and the rotation matrix R  is calculated. Because AS Θ= , the rank 

of  the matrix should meet the requirement of  the low-order linear model: 

KArankrankSrank 3)}(),(min{)( ≤Θ≤  (13)

The size of DCT basis K is a small constant, so the structure matrix S is a low-rank matrix. Then the 

low-rank condition is relaxed to a rank-minimization problem [19,20]. Now the structure matrix S  

will be a solution to the rank minimization problem as follows: 

RSW

tsSrank

=
.),(min

 (14)

according to Dai et al. [21], because the rank-function itself is not very numerically stable and  

rank-minimization is an NP-hard problem in general. Relaxing the above rank-minimization to a 

nuclear-norm minimization form in an effective way [22,23], that is min *||S|| . In principle, the 
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nuclear-norm minimization may be solved by a standard SDP solver [15]. In this study, the size of S  

is NM ×3 . However, when the size is large, the SDP technique cannot work well. 

4.2. The Application of the APG Algorithm 

Many efficient convex optimization algorithms could be used to solve the problem. In this paper, an 

effective iterative algorithm, the APG algorithm [24,25], is proposed to optimize the non-rigid 

structure estimation from monocular vision. According to this algorithm, a closed form solution of the 

following Equation (15) can be obtained. In Equation (8), W is a measurement matrix of the signal S , 

which was obtained by using the calculated matrix R . The above minimization Equation (14) can be 

rewritten in Lagrangian form as follows: ݉݅݊	 12 ห|ܹ − ܴܵ|ห ிଶ + ||ܵ||ߤ ∗ (15)

where 0>μ  is a given parameter, and set ݂(ܵ) = ଵଶ ห|ܹ − ܴܵ|ห	ிଶ , ܲ(ܵ) = ∗	ห|ܵ|หߤ , (ܵ)ܨ		 = ݂(ܵ) + ܲ(ܵ).  
Here, the stopping condition of the APG algorithm is defined as following: 
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L Ff

F ≤+

}||S||,1max{
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K

K1K  (16)

where tol is a moderately small positive number, since when KS  gets close to an optimal solution S , 

the distance between KS  and 1+KS  should become very small. If tol is too large, the non-rigid structure 

may not be calculated accurately, if tol is too small, the running time will be too long, so we should 

choose a suitable tol. 

fL  is the Lipschitz constant of f∇ : 

||||L||)()(|| 2121 SSSfSf f −≤∇−∇  (17)

where the Lipschitz constant Lf is simply the square of the operator norm of the linear map: WS → .  
Instead of directly minimizing )(SF , the APG method minimizes a sequence of separable 

quadratic approximation to )(SF , denoted as ),( 2SSQ , formed at specially chosen points 2S : 
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and then the iterative formula is shown as follows: 
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The detailed steps of the APG algorithm are summarized in Algorithm 1.  

Algorithm 1. The steps of the APG algorithm. 
Step 1. Initialization: Given 0>μ , SSS == 01 ， ),1[01 +∞∈= tt ，K=1，2，3... 

Step 2. While not converged do 

Step 3. )(
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Step 7. End while. 
Step 8. Output 

1+KS , namely the reconstructed structure matrix S . 

In the Algorithm 1, factorize G  with SVD method, TVUG Σ= , )(iag σD=Σ . 

5. Experiment Results 

5.1. The Yoga Sequence Experiment  

The experimental dataset consists of a 307-frame sequence of a human practicing yoga, which 

comes from http://cvlab.lums.edu.pk/non-rigid structure estimation. The database is observed by a 

perspective camera orbiting the subject on a horizontal plane at a speed of 5° per frame. The 

reconstruction performances of Akhter et al.’s PTA approach and the APG approach are presented in 

the following Figures 1 and 2, respectively. In the figures, the blue dots are the ground truth 3D points, 

and the red circles show the recovered points. 

As shown in Figures 1 and 2, in general, the APG method reconstruction is better than that of  

PTA algorithm. Especially, the reconstruction precision of the APG method is increased significantly 

when K = 9. 

From Figure 3, it can be found that APG method can improve the reconstruction quality with less 

reconstruction structure errors than the PTA method with different values of K.  

From Figure 4, it can be found that APG method can improve the reconstruction quality with less 

reconstruction rotation errors than the PTA method with different values of K. From the above figures, 

the proposed method performs effectively, and the reconstruction accuracy of non-rigid structure 

estimation from monocular vision is improved effectively. The reconstruction results on the real yoga 
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sequence images indicate that not only the structure reconstruction, but also the rotation reconstruction 

is obviously improved by using the APG algorithm.  

(a) (b) 

(c) (d) 

Figure 1. Reconstruction of the yoga sequence using the PTA method with four different  

K values, (a) K = 4; (b) K = 7; (c) K = 9; and (d) K = 11. 

(a) (b) 

(c) (d) 

Figure 2. Reconstruction of the yoga sequence using the APG method with four different 

K values, (a) K = 4; (b) K = 7; (c) K = 9; and (d) K = 11. 

 

Figure 3. The structure error of different values of K by using PTA and APG algorithms. 
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Figure 4. The rotation error of different values of K by using PTA and APG algorithms. 

5.2. The Pickup Sequence Experiment 

In addition, another experimental dataset is proposed to test the proposed APG method for non-rigid 

structure estimation. The experimental dataset consists of a 357-frames human pickup sequence, which 

come from http://cvlab.lums.edu.pk/non-rigid structure estimation. The database is observed by a 

perspective camera orbiting the subject on a horizontal plane at a speed of 5° per frame. In this paper, 

the comparison of non-rigid structure estimation from monocular vision between the proposed APG 

algorithm and PTA algorithm is given, which are presented in terms of the reconstruction result figures 

and reconstruction error curves with different K values. In the following figures, the blue dots are the 

ground truth 3D points, and the red circles show the recovered points. 

From Figures 5 and 6, in general, the APG method reconstruction is better than the PTA algorithm 

one. When K = 3, the reconstruction precision of the APG method is increased significantly. 

(a) (b) 

(c) (d) 

Figure 5. PTA reconstruction of the pickup sequence with four different K values,  

(a) K = 3; (b) K = 7; (c) K = 10; and (d) K = 12. 
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(a) (b) 

(c) (d) 

Figure 6. APG method reconstruction of the pickup sequence with four different K values, 

(a) K = 3; (b) K = 7; (c) K = 10; and (d) K = 12. 

From Figure 7, it can be found that APG method can improve the reconstruction quality with less 

reconstruction structure errors than the PTA method with different values of K. 

 

Figure 7. The structure error of different values of K using the PTA and APG algorithms. 

From Figure 8, it can be found that APG method can improve the reconstruction quality with less 

reconstruction rotation errors than the PTA method with different values of K. From Figures 7 and 8, 

we can see the proposed APG method runs reliably, and the accuracy of non-rigid structure estimation 

is effectively improved. The reconstruction results on the real pickup image sequences indicate that  

the APG method outperforms the PTA method in terms of reconstruction accuracy of non-rigid 

structure estimation. 
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Figure 8. The rotation error of different values of K using the PTA and APG algorithms.  

5.3. The Comparison of APG Method and Block Matrix Method 

The comparisons of reconstruction results between the APG algorithm and Block Matrix Method 

(the method of Dai et al. [20]) on the shark sequence are presented in the following figure. The shark 

sequence contains 240 frames and 91 features. 

 
(a) 

 
(b) 

Figure 9. 3D reconstruction results on the shark sequence. (a) Reconstruction results using 

the APG method, where the mean structure error is 0.204; (b) Reconstruction results using 

the Block Matrix Method, where the mean structure error is 0.242. 
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The comparison of reconstruction errors between the APG algorithm and Block Matrix Method is 

provided in Table 1, where the number in brackets is the best value of K, which is chosen by 

exhaustively trying out different numeric values between 2 and 13. In our paper, the best value of ܭ is 

confirmed by the tracked positions of a sequence of non-rigid shapes by using the rank analysis  

method [26]. As can be seen in Figures 9 and 10 and Table 1, the proposed APG method outperforms the 

Block Matrix Method when the experiment involves the shark and drink sequences. When the 

experiment is about other sequences, the APG method is not good as the Block Matrix Method, but the 

difference is not obvious. 

 
(a) 

 
(b) 

Figure 10. 3D reconstruction results on the drink sequence. (a) Reconstruction results 

using the APG method, where the mean structure error is 0.017; (b) Reconstruction results 

using the Block Matrix Method, where the mean structure error is 0.019. 

All the structure error mentioned in our paper refers to the mean error of each frame, we call it mean 

structure error ( ௌ݁(ݐ)). The computational formula is as follows: 

ௌ݁(ݐ) = ଵఙே∑ ݁௧௝ே௝ୀଵ ，σ = ଵଷ் ∑ ௧௫ߪ) + ௧௬ߪ + ௧௭)௧்ୀଵߪ  (21)݁௧௝ = ටܮ௧௝௫ଶ + ௧௝௬ଶܮ + ௧௝௭ଶܮ ௧௝௫ܮ(22)  = |ܵ௥(3ݐ − 2, ݆) − ܵ଴(3ݐ − 2, ௧௝௬ܮ(23) |(݆ = |ܵ௥(3ݐ − 1, ݆) − ܵ଴(3ݐ − 1, ௧௝௭ܮ(24) |(݆ = |ܵ௥(3ݐ, ݆) − ܵ଴(3ݐ, ݆)| (25)

where 	݆ = 1,2, … ,ܰ, ,௧௫ߪ  ௧௬ߪ  and ߪ௧௭	 are respectively the standard deviation of the point ܺ, ܻ, ܼ 

coordinates of the t-th frame corresponding to the 3D structure. ݁௧௝ represents the reconstruction error of 

the j-th 3D point of the t-th frame. ܵ௥	is the structure matrix we reconstructed, while ܵ଴ is the actual 

structure matrix. 
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Table 1. The reconstruction error by using APG method and Block Matrix Method. 

Database Shark Drink Yoga Dance Pickup 

Block Matrix Method 0.242(3) 0.019(4) 0.125(9) 0.171(10) 0.138(7) 
APG method 0.204(2) 0.017(13) 0.135(9)  0.231(5) 0.202(7) 

5.4. The Comparison of the APG Method and Existing Methods 

Moreover, the comparison of reconstruction error between the APG algorithm and the existing  

EM-PPCA [17], MP [27], the PTA method [6], and CSF [9] are also provided in Figure 11 and Table 2.  

 

Figure 11. The structure error of five different sequences by using different methods. 

The abscissa of Figure 11 shows five sequences: drink, yoga, pickup, shark and dance, respectively. Its 

ordinate indicates the structure errors using five different methods. It can be found that the reconstruction 

results using the APG method are obviously better than those obtained with the other methods.  

Table 2. APG method compared with other methods in terms of reconstruction error. 

Database 
Methods 

EM-PPCA MP PTA CSF APG 

Drink 0.339 0.460 0.025 (3) 0.022 (6) 0.017 (13) 

Dance 0.984 0.264 0.296 (5) 0.271 (2) 0.231 (5) 

Yoga 0.810 0.804 0.162 (11) 0.147 (7) 0.135 (9) 

Shark 0.050 0.157 0.312 (2) 0.254 (2) 0.204 (2) 

Pickup 0.582 0.433 0.237 (12) 0.230 (6) 0.202 (7) 

From Figure 11 and Table 2, the reconstruction results on the most real image sequences indicate 

that reconstruction accuracy is significantly improved by the APG method, which obviously reduces 

the structure errors. The APG method can further optimize the structures calculated by the PTA 

method, which is proved to be an effective approach for non-rigid structure estimation from monocular 

vision. However, for dramatic movement image sequence, the proposed approach cannot improve the 

accuracy of the non-rigid structure estimation effectively, such as in the shark sequence. 
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In our algorithm, the PTA method is first used to calculate the structure matrix, and then the APG 

method is used to optimize the structure matrix. In the total execution time of our algorithm (ܶ), the 

percentage of the execution time of APG algorithm (ݐ/ܶ) is showedn in Table 3. 

Table 3. The percentage of the execution time of APG algorithm. 

Time Drink Dance Yoga Shark Pickup 

T 30.073 s 1.9245 s 2.4637 s 0.8516 s 3.7898 s 

t/T 4.99% 19.1% 3.12% 23.9% 2.62% 

Table 3 shows that our APG method runs quickly, and can converge to the best solution in a little time. 

6. Conclusions 

In this paper, the APG algorithm is proposed to solve the trace-minimization problem of the 

structure matrix. The initial value of the APG algorithm can be calculated by using the PTA method. 

The proposed APG method can further improve the structure performance and converge to the optimal 

solution. Above experimental databases are applied to test the proposed APG method for non-rigid 

structure estimation from monocular vision. The experimental results show that the proposed method 

can improve the reconstruction quality of non-rigid structure estimation with less reconstruction error 

than the PTA method. The APG algorithm can also converge to the best solution quickly, so the time 

consumption of the proposed method is near that of the PTA method.  

However, the APG method is not available for reconstructing dramatic movement sequences, so in 

the future, the APG method will be improved to make it suitable for dramatic movement. Moreover, 

the selection of the initial value plays an important role in the reconstruction efficiency of the proposed 

algorithm, and how to select the best initial value is another future work. The structure matrix S can 

also act as a solution to the rank minimization problem, so in the future, some optimization algorithms, 

such as the Singular Value Thresholding (SVT) algorithm, will be considered to further reduce the 

reconstruction error of non-rigid structure estimation from monocular vision. 
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