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Abstract: Sequential fault diagnosis is an approach that realizes fault isolation by 

executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic 

strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic 

strategy generation is an important step in the process of diagnosis system construction, 

which has been studied extensively in the literature. However, previous algorithms either 

are designed for single mode systems or do not consider test placement cost. They are not 

suitable to solve the sequential diagnostic strategy generation problem considering test 

placement cost for multimode systems. Therefore, this problem is studied in this paper. A 

formulation is presented. Two algorithms are proposed, one of which is realized by system 

transformation and the other is newly designed. Extensive simulations are carried out to 

test the effectiveness of the algorithms. A real-world system is also presented. All the 

results show that both of them have the ability to solve the diagnostic strategy generation 

problem, and they have different characteristics. 
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1. Introduction 

Diagnostic strategy generation is one of the important contents of diagnosis system design. It has 

great influence on diagnostic accuracy and cost. As an efficient diagnostic method, sequential 

diagnostic strategy, which realizes fault isolation by executing the optimal test step by step, has been 

applied extensively, and thus extensive attention has been paid to how to generate it optimally. The 

problem is also called test sequencing problem [1] or sequential fault diagnosis problem [2]. One of the 

typical methods is to formulate it as an AND/OR graph search problem and solve it using an AO* 

algorithm [3], where a good result has been obtained for the perfect test systems. Based on the results, in 

order to solve the problem in real-world systems where unreliable tests and multiple faults may exist, 

heuristic functions (information gain heuristic, rollout strategy, etc.) have been developed by different 

researchers [4–6]. These methods achieve good effect in generating of optimal diagnostic strategy. 

However, only the execution cost of the tests (power consumption, time to carry out the test, etc.) is 

considered in the traditional methods, and the diagnostic strategy obtained is not optimal from the 

viewpoint of life cycle [7]. Specifically, the sensors and diagnostic steps are optimized based on the 

object that the average shortest diagnostic path is obtained, which indicates that the sensor placement 

cost (purchase cost, installation cost, etc.) is omitted in the algorithm and thus the result is actually not 

optimal as expected. Consequently, an algorithm (the AOL algorithm) was proposed in our previous 

research to solve the problem [7]. Based on the result, the algorithm is further developed to solve the 

problem with imperfect tests by generating sub-tree using information heuristics [8]. Both of the 

methods in [7,8] can generate a better result than the previous algorithms from the viewpoint of life 

cycle cost.  

However, these two methods were designed for single mode systems, i.e., the dependency 

relationships between the faults and the tests are assumed to be changeless whichever work station the 

equipment is. This assumption may be true for a simple system, but it is not feasible for complicated 

systems, which are very common in the real world.  

Take a satellite as an example—it can work using either solar panels or batteries. The solar panel 

can also be divided into different individual parts. If we encounter a power supply problem in this 

spacecraft, different suspect failure sources will be obtained in the two operation modes which contain 

either solar panels or batteries. This means that the D-matrix (diagnostic dictionary matrix) is different 

in this kind of multimode systems and will undoubtedly affect the diagnostic strategy. This situation is 

very common in redundant systems and systems with different working status. Mode change should be 

taken into account to generate the optimal diagnostic strategy. For this problem, Ruan et al. proposed 

an algorithm based on information gain heuristics [9]. Rollout strategy is applied to improve the result. 

Yang et al. proposed a quasi multi-step look-ahead search algorithm, which can balance between 

diagnostic accuracy and computational complexity [10]. However, as discussed above, their methods 

do not consider the test placement cost, which means that their optimality is not as good as expected. 

Further research must be carried out to solve this problem.  

In this paper, the optimal sequential diagnostic strategy generation problem considering test 

placement cost for multimode systems is studied. It is formulated as an AND/OR graph search 

problem. Two solution algorithms are proposed. Computational experiments are carried out to 

compare and test the effectiveness of the methods. A real-world system is also presented. 
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The remainder of the paper is organized as follows: in Section 2, the problem studied in this paper is 

formulated. In Section 3, two algorithms are proposed, one of which is realized by system 

transformation and the other is newly designed. In Section 4, the proposed algorithm is extended to 

deal with the problem with imperfect tests. In Section 5, the model and algorithms are tested and 

compared on various simulated systems. In Section 6, the proposed algorithms are tested on a  

real-world system. Finally, the paper concludes with a summary in Section 7. 

2. Problem Formulation 

In the diagnostic strategy generation problem for the multimode systems, not only the test costs 

should be considered, but also the mode transition costs should be taken into account. Formally, this 

problem consists of the following: 

(1) A system consisting of k + 1 fault states, 1 1{ , , , }k kS s s s +=  , where 1ks +  denotes the  

fault-free state. 
(2) The failure rate corresponding to each fault state in S , 1 1{ , , , },k kP p p p +=   and they are 

normalized, i.e., 
1

1

1
k

i
i

p
+

=

= . 

(3) A finite set of candidate tests 1 2{ , , , }nT t t t=  . 

(4) Test placement cost 1 2{ , , , }nCP CP CP CP=   and execution cost 1 2{ , , , }nCE CE CE CE=   

corresponding to each test in T . 
(5) A finite set of L  system modes denoted by 1 2{ , , , }LM m m m=   and their transition cost 

[ ]ij L LC c ×= , where ijc  denotes the cost occurred when the mode is changed from im  to jm . It 

is evident that the main diagonal elements are zero, i.e., 0ijc =  for i j= . 

(6) A series of diagnostic dictionary matrixes (D-matrix) ( 1)[ ] ,l
l ij k nD d + ×=  1, ,l L=  , where l

ijd  is 

1 if test jt can detect fault is  at mode l , and 0 otherwise. For the fault-free state, 

( 1) 0, 1, , , 1, ,l
k jd j n l L+ = = =  . Note that we assume all the tests are available at each mode, 

which will simplify the derivation process. In case that a test cannot be used in a mode, only 

needs to set all the elements in the D-matrix corresponding to the test at the mode to zero.  

(7) Execution times N  of the sequential fault diagnosis strategy in the life cycle period, which can 

either be obtained from the historical data or be calculated from the reliability data [7].  

Diagnostic strategy generation problem is an optimization problem. Its objective is to obtain a 

diagnostic tree achieving the maximum diagnostic accuracy with the minimum test cost. It is usually 

formulated as a binary AND/OR graph search problem in the single-mode system [7], i.e., 

min e pJ N J J= ⋅ +  (1)

where J  denotes the total cost of the diagnostic strategy, pJ  denotes the test placement cost at the design 

stage and eJ  denote the average test execution cost of the diagnostic tree. Unlike the single-mode system, 

the mode transformation cost and dependency change should be considered when a system has more than 

one mode. The typical structure of a multimode system diagnostic strategy is shown in Figure 1. 
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Figure 1. A typical diagnostic strategy of multimode system. 

Formally, eJ  in Equation (1) can be given by [9]: 

ρ ρ 11

ρ [ ] ( ) ( 1)
1 1 1

i i

i i i

k

e j Q j Q j i
i j j

J CE c p
−+

+
= = =

  = + 
  

    (2)

where ρi  denotes the sequence of tests applied to isolate the fault state is  and ρi denotes the 

cardinality of the test sequence ρi , ( )iQ j  denotes the mode index of the jth test in ρi . 

pJ  is the summation of the placement cost of all the tests applied:  

1
1 ρ

k
i i

P x
x

J CP
+
=∈

= 


 
(3)

Our problem is to design an algorithm to generate a diagnostic strategy that realizes Equation (1). 

This problem is NP-hard, which means that a useful optimal algorithm can hardly be found, and a 

feasible suboptimal algorithm is what we want to develop. Actually, it has been proved that the 

construction of optimal test sequence in the single-mode system is a NP-complete problem [11–13]. 

For a system with m  tests and each of the test has n  results, at most 2 !mn m−  diagnostic strategies can 

be obtained even when the test placement cost is not taken into account [14].  

3. Solution Algorithms 

3.1. Algorithm 1 

As discussed above, previous algorithms cannot solve the diagnostic strategy generation problem 

considering test placement cost for multimode systems. In this section, we propose a method by means 

of system transformation. For the system formulated in Section 2, we generate a single mode systemas 

follows: 

1 2{ , , , }nT t t t ′=   (4)

where: 
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n L n′ = ⋅  (5)

For the test placement cost:  

1 2 1{ , , , , , , }n n nCP CP CP CP CP CP ′+′ =    (6)

where (( 1) mod ) 1i n iCP CP− + = . 

For the test execution cost: 

1 2 1{ , , , , , , }n n nCE CE CE CE CE CE ′+′ =    (7)

where (( 1) mod ) 1i n iCE CE− + =  

The total mode number becomes 1L′ = . The size of D-matrix becomes ( 1)k n′+ × , i.e., 

( 1)
ˆ[ ]ij k nD d ′+ ×=

 (8)

where: 

1
1

((( 1)mod ) 1)
ˆ

j

n
ij i j nd d

− +  
− +=

 
(9)

Here, x    denotes the floor function, i.e., the largest integer not greater than x . The other 

parameters are the same as those formulated in Section 2.  

From the transformation process, it is evident that the dependency relationships between the tests 

and the faults are not changed. All of them are presented in a single mode system by extending the 

columns of the D-matrix. Then, the problem can be solved using the algorithm for single mode system. 

The drawback is that the mode transformation cost should be omitted in the algorithm, which may 

affect the effectiveness of the algorithm. Therefore, we propose a new algorithm in the next section. 

3.2. Algorithm 2 

According to the structure of the diagnostic strategy for the multimode system, the solution 

algorithm involves test selection and mode selection at each step. On the condition that the system 

mode is determined, the best test for ambiguity group x  should be selected using the same strategy as 

the one in single mode system, that is [7]: 

* ˆarg min{ ( ) [ ( ) ( ) ( ) ( )] ( , )}j jp e jp jf e jf p
j

j N P x CE P x J x P x J x J x j= ⋅ ⋅ + + +
 (10)

where jpx  and jfx denote the pass and fail nodes respectively. ( )jpP x  and ( )jfP x  denote the 

probabilities of the test outcomes, where ( ) ( ) 1jp jfP x P x+ = . ( )e jpJ x  and ( )e jfJ x  are the cost-to-go 

of execution cost from jpx  and jfx , i.e., the cost in each branch. ( , )pJ x j  is the test placement cost of 

the diagnosis strategy from x  if jt  is selected as the next test of node x . ˆ ( )P x  is the probability of 

state x  in the diagnostic strategy. 

Then, how to select the proper mode becomes the crux of the matter. A parameter denoting the 

ability of each mode needs to be designed. Here, let k  denote current mode, the ability of mode im  is 

formulated as: 
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(11)

where 
1 2

{ , , , }
ph h hLS l l l=   denotes the leaf nodes of the sub-tree generated from x  using information 

gain heuristic method, ( )
jhp l  is the relative probability of the leaf node 

jhl , and: 

( )
i h j

j

i

i
s l

h
i

s x

p

p l
p

∈

∈

=



 

(12)

In Equation (11), ( , )
jsc x l  denotes the test cost in the branch from x  to 

jsl , kic is the transformation 

cost from mode k  to i . Actually, ( , )iH m x  can be explained as the fault isolation ability of mode im , 

and ( , )iC m x  denotes the estimated cost in mode i  to achieve the expected fault isolation level. 

After the formulation to select the best mode and the best test at each step is determined, the 

algorithm to generate diagnostic strategy considering test placement cost for multimode systems is 

designed based on the following idea and steps: 

Step 1 Initialize the diagnostic strategy with the root node. 

Step 2 Iterate the following steps until the satisfied diagnostic strategy is obtained. 

Step 2.1 Determine the node to be expanded. 

Step 2.2 Select the next best system mode. 

Step 2.3 Expand the selected node for one step. 

Step 2.4 Prepare for the cost-revising and arc-marking stages process. 

Step 2.5 Iterate the following steps until all the revisions are carried out. 

Step 2.5.1 Select the bottom node as the one to be revised. 

Step 2.5.2 Recalculate the next best test of the selected node, and update its parameters. 

Step 2.5.3 Determine upward nodes that may need cost revision, continue the revision process. 

The algorithm mainly include expansion process and cost/branch revision process, which is similar 

to the structure of AO* algorithm. Details are shown as follows:  

Step 1 Initialize a graphG consisting of the root node 1 2 1{ , , , }r kx p p p +=  . Label the root node as 

unsolved, and assume that the initial mode of the system is 1m . 

Step 2 Repeat the following steps until the root node rx  is labeled solved. Exit with 

( ) ( )e r p rJ N J x J x= ⋅ +  as the total cost and the marked tree as the fault diagnostic strategy. 

Step 2.1 Compute a partial graph G′  by tracing down the marked arcs from the root node rx . 

Select a leaf node x′  in G′  that maximizes ( )H x  as the node to be expanded, where x  

denotes a leaf node of G′ . ( )H x  denotes the entropy of the x  and 

( ) log( )
i

i i
x

H x
π

π π
∈

= − , where iπ  is the probability of fault is  in x . Let lm ′  denote 

system mode of the leaf x′ . 
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Step 2.2 Calculate the diagnostic capability of each system mode from x′via Equation (11), select 
the mode im ′  by 

1
argmax ( , )i

i L
i A m x

≤ ≤
′ ′= , and set it as the system mode in this branch. 

Step 2.3 let ( )uiT x′ ′  denote the tests that have been used on the path from the root node to x′  in mode 

im ′ . For all the tests ( )j uit T x′ ′∉  in mode im ′ , generate the successive nodes denoted by jpx′  

and jfx ′  corresponding to the pass and fail outcomes. Without changing the system mode, 

generate the sub-tree from jpx′  and jfx ′  using information heuristic until the stopping 

criterion is satisfied. Let ( ), ( )r jp r jfT x T x′ ′  denote the tests applied in the sub-tree from 

jpx′ and jfx ′  respectively. Calculate the execution costs of the sub-trees using the similar 

equation shown in Equation (2), and denote them as ( )e jpJ x′  and ( )e jfJ x′ .  

Set ( ) ( ) ( ) { }ui jp ui jf ui jT x T x T x t′ ′ ′′ ′ ′= =  , ˆ ˆ( ) ( ) ( )jp jpP x P x P x′ ′ ′= , ˆ ˆ( ) ( ) ( )jf jfP x P x P x′ ′ ′= . 

If either jpx′ or jfx′  is a terminal leaf node (satisfying the specified stopping criterion), 

label it as solved.  

Step 2.4 Define a set Z  to denote the nodes in the graph G , and initialize it as { }Z x′= . 

Step 2.5 Repeat the following steps until Z = ∅  

Step 2.5.1 Remove from Z  a node y such that no successor of y  in G  occurs in Z . Let 

( ) ( )r rT y T y′ = , ( ) ( )e eJ y J y′ =  and ( ) ( )J y J y′ =  

Step 2.5.2 For y, calculate *j  via Equation (10). Update ( )eJ y via Equation (13). Set 

* * *( ) ( ) ( ) { }r r rj p j f j
T y T y T y t=   , and *( ) ( , )J y J y j= . If both *j p

y  and *j f
y are 

labeled as solved, label y as solved. Mark the arcs *j
y t→ , * *j j p

t y→  and 

* *j j f
t y→ . 

Step 2.5.3 if y  is the root node, or ( ) ( )e eJ y J y′ = and ( ) ( )r rT y T y′ = are satisfied 

simultaneously, continue to Step 2.4.1. Otherwise, add to Z  all the ancestors of y  

along the marked arcs. Ignore the mode transition nodes.  

In the algorithm: 

* * * * *( ) ( ) ( ) ( ) ( )e e ej j p j p j f j f
J y CE P y J y P y J y= + +

 (13)

As the tests are perfect:  

ˆ ( )
i

i
s x

P x p
∈

= (14)

( )
ˆ( )

i jp

i
s x

jp

p

P x
P x

∈=


 

(15)

For the root node, it is evident that: 

ˆ ( ) 1rP x =  (16)

Note that is if the initial mode of the system is not 1m , one only needs to change the order of the 

system modes. The algorithm will not change. The stopping criterion is either the fault has been 

isolated or none of the unused test has the ability to distinguish the faults in the ambiguity group. 
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Information heuristics to generate the sub-tree can be found in [4]. In order to improve the computation 

efficiency of the algorithm for large-scale system, two strategies are optional: 

(1) In Step 2.3, not all the tests ( )j uit T x′ ′∉  in mode im ′  need to be selected as the next possible 

test node and generate a sub-tree. It is recommended that only a number of tests with the best 

information gain are considered and recorded, which will not affect the result obviously. 

(2) The maximum backtrack steps can be set to reduce the computational time, which is very 

useful for the cases with imperfect tests, as discussed in the next section. 

4. The Imperfect Cases 

The problem formulated above is based on perfect test assumption, i.e., the element in the D-matrix 
l
ijd  either equals 1 or 0, which means a test detects a fault with a probability either of 100% or of 0. 

This may be not true in the real world systems because of electromagnetic interference, unreliable 

sensors, environmental conditions and so on. Actually, test sequencing problem based on imperfect 

data has been studied extensively in the literature [5,15,16]. The algorithm proposed in this paper can 

also be used to solve imperfect test problems by means of several modifications.  

Specifically, the D-matrix firstly needs revision to represent imperfect tests, i.e., ( 1)[ ] ,l
l ij k nD d + ×=  

1, ,l L=   where 0 1l
ijd≤ ≤  denotes the detection probability of test jt  to fault is  at mode l , i.e.: 

Prob{test fails at mode  |  occurrs}l
ij j id t l s=

 (17)

The structure of the algorithm needs not to be changed. The difference is the information heuristic to 

generate the sub-tree and the failure probability after a test is applied. The algorithm can be found in [4].  

5. Simulation Experiment 

In this section, the algorithms proposed in this paper are tested extensively on simulated systems. 

Simulations were carried out in MATLAB, on a PC with 2.4 GHz CPU, 8 GB RAM. They are divided 

into perfect test scenario and imperfect test scenario. The results are averaged over 100 Monte Carlo 

runs. In all the simulations, the same stopping criterion is employed, which means that the diagnostic 

strategies generated by the two algorithms have the same diagnostic accuracy for the same case. The 

cost of the strategy is our major concern.  

 Perfect Test Scenario 

In this scenario, all the tests are assumed to be perfect, i.e., l
ijd  in the D-matrix either equals 1 or 0, 

and it is generated randomly. Two kinds of systems of different scale are simulated. The following 

metrics and notation are used to evaluate the performance of our algorithms: 

(1) m: number of failure modes in the system. 

(2) n: number of tests in the system. 

(3) N: execution times of the sequential fault diagnosis strategy, which denotes the ratio between the test 

placement cost and the test execution cost and it is selected in {10,100,1000} in the simulation.  

(4) L: number of system modes.  
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(5) mc: maximum mode transition cost, which indicates that the mode transition cost is generated 

randomly in [0, mc]. Here, mc can be interpreted as the average proportion of the mode 

transition cost and the test cost. 

(6) Algorithm 1: the algorithm presented in Section 3.1. 

(7) Algorithm 2: the algorithm proposed in Section 3.2. 

(8) Time: average computational time of the corresponding algorithm. 

(9) Cost: total cost of the generated diagnostic strategy. 

(10) ratio: proportion between the total cost of the diagnostic strategy generated by Algorithm 1 and 

by Algorithm 2, i.e., 

Cost of Algorithm 1

Cost of Algorithm 2
ratio =  (18)

In the simulations, the fault probability, test execution cost and placement cost are generated 

randomly in [0,1]. The results in different scenarios are shown in Tables 1–4. 

Table 1. Simulation result for the perfect test cases (N = 100, L = 3). 

System Scale mc 
Algorithm 1 Algorithm 2 

Ratio 
Time(s) Cost Time(s) Cost 

m = 10,n = 15 
1 0.078 167.798 0.041 65.492 2.562 
10 0.071 1283.244 0.052 73.51 17.457 

100 0.07 12762.767 0.053 79.056 161.440 

m = 15,n = 20 
1 0.206 174.048 0.086 61.276 2.840 
10 0.187 1404.385 0.131 72.257 19.436 

100 0.176 15215.566 0.12 70.671 215.301 

Table 2. Simulation result for the perfect test cases (N = 100, L = 5). 

System Scale mc 
Algorithm 1 Algorithm 2 

Ratio 
Time(s) Cost Time(s) Cost 

m = 10, n = 15 
1 0.121 173.714 0.06 61.878 2.807 
10 0.117 1604.094 0.076 76.661 20.925 

100 0.113 14553.069 0.077 77.585 187.576 

m = 15, n = 20 
1 0.362 201.794 0.133 54.235 3.721 
10 0.381 1859.124 0.199 76.775 24.215 

100 0.345 17263.422 0.199 67.607 255.350 

Table 3. Simulation result for the perfect test cases (N = 10, L = 3). 

System Scale mc 
Algorithm 1 Algorithm 2 

Ratio 
Time(s) Cost Time(s) Cost 

m = 10, n = 15 
1 0.301 19.928 0.059 8.849 2.252 
10 0.365 121.748 0.06 10.674 11.406 

100 0.385 1242.526 0.057 10.81 114.942 

m = 15, n = 20 
1 7.842 18.091 0.137 9.116 1.985 
10 1.613 162.558 0.149 11.171 14.552 

100 1.904 1578.83 0.138 10.819 145.931 
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Table 4. Simulation result for the perfect test cases (N = 1000, L = 3). 

System Scale mc 
Algorithm 1 Algorithm 2 

Ratio 
Time(s) Cost Time(s) Cost 

m = 10, n = 15 
1 0.124 1724.087 0.042 655.273 2.631 
10 0.124 14149.781 0.043 762.456 18.558 

100 0.126 125411.935 0.054 701.254 178.840 

m = 15, n = 20 
1 0.307 1733.173 0.092 520.284 3.331 
10 0.307 17354.28 0.093 691.246 25.106 

100 0.292 159739.741 0.116 675.67 236.417 

 Imperfect Test Scenario 

When the tests are imperfect, the dependent relationships between the tests and the faults are 

denoted by a probability. In this scenario, the density of the D-matrix is set as 30%, which means that 

30% of the elements denote fault detection probability and the others denote false alarm. In the 

simulation, they are generated randomly in [0.9,1] and [0,0.05], respectively. The maximum backtrack 

number is set to 3. The other parameters are the same as those presented in the perfect test scenario. 

Table 5. Simulation result for the imperfect test cases (N = 100, L = 3). 

System Scale mc 
Algorithm 1 Algorithm 2 

Ratio 
Time(s) Cost Time(s) Cost 

m = 10, n = 15 
1 0.682 273.147 0.332 159.535 1.712 
10 0.718 1873.166 1.256 175.134 10.696 

100 0.77 19489.007 2.73 221.956 87.806 

m = 15, n = 20 
1 1.779 266.709 0.422 122.345 2.180 
10 1.694 2310.156 1.037 132.335 17.457 

100 1.676 18850.753 2.779 134.432 140.225 

Table 6. Simulation result for the imperfect test cases (N = 100, L = 5). 

System Scale mc 
Algorithm 1 Algorithm 2 

Ratio 
Time(s) Cost Time(s) Cost 

m = 10, n = 15 
1 1.122 243.99 0.377 121.237 2.013 
10 1.552 2441.38 2.474 152.468 16.012 

100 1.564 21749.518 3.776 147.585 147.369 

m = 15, n = 20 
1 2.64 283.033 0.538 121.973 2.320 
10 3.522 2520.372 1.695 125.558 20.073 

100 4.286 22570.595 5.093 142.808 158.049 

According to the result shown in Tables 1–6, we can obtain the following insights and conclusions: 

(1) From all the results shown in Tables 1–6, we can see that Algorithm 2 is better than Algorithm 1, 

i.e., 1ratio > . The computational time is acceptable. 

(2) With the increase of mode transition cost i.e., mc, the advantage of Algorithm 2 is more and more 

obvious. This is because the mode transition cost constitutes a larger part of the total cost of the 

diagnostic strategy when mc becomes larger. It is reasonable that the algorithm designed for 
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multimode system generates a better result. For the similar reason, Algorithm 2 becomes much 

better than Algorithm 1 when N is larger, which can be seen by comparing Tables 1, 3 and 4. 

(3) From the comparison between Tables 1 and 2, and Tables 5 and 6, we can see that the number of 

system modes L influences both the computational time and the efficiency of the algorithms. 

When L becomes larger, the computational time becomes larger because the system is more 

complicated. Algorithm 2 is slightly better than Algorithm 1, because more mode transitions 

may occur in the diagnostic strategy and Algorithm 2 has the ability to choose the optimal 

mode in the generation process. 

(4) The computational time is longer in the imperfect test cases than that in the perfect test cases. This is 

reasonable because the probability calculation in the imperfect test scenario is more complicated 

than Boolean calculation in the perfect test scenario. Furthermore, more tests are needed to isolate a 

fault when the tests are imperfect, which means that the number of nodes in the diagnostic tree is 

larger. And thus more calculation is needed to generate the diagnostic strategy. However, the result 

of Algorithm 2 is still better than Algorithm 1 in the imperfect scenario.  

In general, Algorithm 2 is better than Algorithm 1 in practical application. It has an acceptable 

computational efficiency and a result with lower cost, and can be used for both perfect test cases and 

imperfect test cases.  

6. A Real World Case 

In this section, we use a combinational circuit taken from [17] as an example to evaluate the 

effectiveness of the algorithms proposed in this paper. This system consists of 10 faults, 13 tests and 

two system modes, which means that m = 10, n = 13, L = 2. N is estimated as N = 1000. The D-matrix 

is shown in Table 7. 

Table 7. D-matrix of the real world system. 

Mode 1 Mode 2 

 t1 t2 t3 t4 t5 t6 t7 t8 t9–t13 t1–t8 t9 t10 t11 t12 t13 

f1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 
f2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
f3 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
f4 1 1 1 1 1 0 1 0 0 0 1 1 0 1 0 
f5 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 
f6 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
f7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
f8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
f9 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 
f10 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 
f11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The probability of system OK is 0.9, i.e., 11 0.9p = . The others are 0.01. By analyzing the system, 

we set the mode transition cost as: 
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Considering the positions of the tests, their costs are set as shown in Table 8. 

Table 8. Test cost of the case. 

Test Name t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

CP 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 
CE 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 

Two different diagnostic strategies are generated using the algorithms proposed in this paper. The 

results are shown in Figures 2 and 3. For Algorithm 1, the calculation time is 0.110 s, test cost of the 

diagnostic strategy is 164.421. The corresponding parameters of Algorithm 2 are 0.059 and 159.709, 

respectively. From the result, we can see that Algorithm 2 has a better result, which is consistent with 

the simulation results and our previous conclusions. 
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Figure 2. Diagnostic strategy generated by Algorithm 1. 
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Figure 3. Diagnostic strategy generated by Algorithm 2. 

7. Conclusions 

The optimal sequential diagnostic strategy generation problem considering test placement cost for 

multimode systems is studied in this paper. It is formulated as an AND/OR graph search problem. Two 

algorithms are proposed to solve the problem. One is realized by system transformation and the other 

is newly developed. Simulations are carried out to test the algorithms. The cases with different number 

of modes, mode transition cost, size and so on are studied. The result showed that both of them can 

solve the diagnostic strategy generation problem. Algorithm 2 is much better than Algorithm 1, and it 

is recommended to be used in the practical application. The algorithms are applied to a real-world 

case. The result is in agreement with the simulation data. 

In the future, the diagnostic strategy generation algorithm for the multimode system with 

hierarchical structure will be developed. Then, the algorithm can be used to generate diagnostic 

strategies for the maintenance engineers of different level. Furthermore, test delay, multiple faults, 

fault propagation and other complicate scenarios can be studied.  



Sensors 2015, 15 25605 

 

 

Acknowledgments 

The authors thank the anonymous reviewers for their critical and constructive review of the 

manuscript. This study was supported by the Foundation of State Key Laboratory of Robotics  

(No. 2014-O-14), the National Natural Science Foundation of China (No. 61503398), and the Science 

Foundation of National University of Defense Technology (No. JC14-09-01). 

Author Contributions 

Shigang Zhang provided the ideas and designed Algorithm 2. Lijun Song designed Algorithm 1. 

Wei Zhang performed the experiments and analysed the data. Zheng Hu provided the ideas for the 

imperfect cases and applied the algorithms to the real world case. Yongmin Yang is the team leader. 

He helped us perfect the method and designed the structure of the paper. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Raghavan, V.; Shakeri, M.; Pattipati, K.R. Test sequencing problems arising in test planning and 

design for testability. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1999, 29, 153–163. 

2. Pietersma, J.; van Gemund, A.J.C.; Bos, A. A model-based approach to sequential fault 

diagnosis—A best student paper award winner at IEEE Autotestcon 2005. IEEE Instru. Meas. 

Mag. 2007, 10, 46–52. 

3. Pattipati, K.R.; Alexandridis, M.G. Application of Heuristic Search and Information Theory to 

Sequential Fault Diagnosis. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1990, 20, 872–886. 

4. Raghavan, V.; Shakeri, M.; Pattipati, K. Test sequencing algorithms with unreliable tests.  

IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1999, 29, 347–357. 

5. Yang, P.; Yang, S.; Qiu, J.; Liu, G.; Chen, G. Sequential test strategies with unreliable tests. In 

Proceedings of the IEEE AUTOTESTCON 2008, Salt Lake Cirty, UT, USA, 8–11 September 2008; 

pp. 587–592. 

6. Shakeri, M.; Raghavan, V.; Pattipati, K.R.; Patterson-Hine, A. Sequential testing algorithms for 

multiple fault diagnosis. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2002, 30, 1–14. 

7. Zhang, S.; Hu, Z.; Wen, X. Test Sequencing Problem Arising at the Design Stage for Reducing 

Life Cycle Cost. Chin. J. Aeronaut. 2013, 26, 1000–1007. 

8. Zhang, S.; Hu, Z.; Wen, X. Sequential fault diagnosis strategy with imperfect tests considering 

life cycle cost. J. Cent. South Univ. 2013, 20, 1513–1521. 

9. Ruan, S.; Tu, F.; Pattipati, K.R.; Patterson-Hine, A. On a multimode test sequencing problem. 

IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 1490–1499. 

10. Yang, P.; Qiu, J.; Liu, G. Test sequence optimization of multi-mode system. Comput. Eng. Appl. 

2008, 44, 17–19. 

11. Garey, M.R. Optimal binary identification procedures. SIAM J. Appl. Math. 1972, 23, 173–186. 



Sensors 2015, 15 25606 

 

 

12. Hyafil, L.; Rivest, R.L. Constructing optimal binary decision trees is NP-complete. Inf. Process. 

Lett. 1976, 5, 15–17. 

13. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; 

W. H. Freeman and Company: New York, NY, USA, 1979. 

14. Simpson, W.R.; Sheppard, J.W. System Test and Diagnosis; Springer: Berlin, Germany, 1994. 

15. Wei, W.; Daren, Y.; Qinghua, H. Test Sequencing Strategy with Imperfect Test. In Proceedings of the 

8th International Conference on Electronic Measurement and Instruments, Xian, China, 16–18 August 

2007; pp. 744–747. 

16. Yang, P.; Qiu, J.; Liu, G. Optimization method for diagnostic strategy with unreliable test. Chin. J. 

Sci. Instrum. 2008, 29, 850–854. 

17. Yang, P. Optimization Technology of Design for Diagnostic Strategy Based on Dependency 

Model. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2008. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


