
Sensors 2015, 15, 24862-24885; doi:10.3390/s151024862 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A Bluetooth/PDR Integration Algorithm for an Indoor 
Positioning System 

Xin Li 1,2,*, Jian Wang 2 and Chunyan Liu 2 

1 School of Computer Science and Technology, China University of Mining and Technology, 

Xuzhou 221116, China 
2 School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 

Xuzhou 221116, China; E-Mails: wjian@cumt.edu.cn (J.W.); xzlcy2015@126.com (C.L.) 

* Author to whom correspondence should be addressed; E-Mail: linuxcumt@126.com;  

Tel./Fax: +86-516-8359-1306. 

Academic Editor: Vittorio M. N. Passaro 

Received: 31 July 2015 / Accepted: 21 September 2015 / Published: 25 September 2015 

 

Abstract: This paper proposes two schemes for indoor positioning by fusing Bluetooth 

beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level 

positioning without additional infrastructure. As to the PDR approach, a more effective 

multi-threshold step detection algorithm is used to improve the positioning accuracy. 

According to pedestrians’ different walking patterns such as walking or running, this paper 

makes a comparative analysis of multiple step length calculation models to determine a 

linear computation model and the relevant parameters. In consideration of the deviation 

between the real heading and the value of the orientation sensor, a heading estimation 

method with real-time compensation is proposed, which is based on a Kalman filter with 

map geometry information. The corrected heading can inhibit the positioning error 

accumulation and improve the positioning accuracy of PDR. Moreover, this paper has 

implemented two positioning approaches integrated with Bluetooth and PDR. One is the 

PDR-based positioning method based on map matching and position correction through 

Bluetooth. There will not be too much calculation work or too high maintenance costs 

using this method. The other method is a fusion calculation method based on the 

pedestrians’ moving status (direct movement or making a turn) to determine adaptively the 

noise parameters in an Extended Kalman Filter (EKF) system. This method has worked 

very well in the elimination of various phenomena, including the “go and back” 

phenomenon caused by the instability of the Bluetooth-based positioning system and the 
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“cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. 

Experiments performed on the fourth floor of the School of Environmental Science and 

Spatial Informatics (SESSI) building in the China University of Mining and Technology 

(CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. 

Keywords: bluetooth beacons; pedestrian dead reckoning; adaptive system noise; extended 

kalman filter; map matching 

 

1. Introduction 

Location Based Services (LBS) are mobile applications which rely on a user’s location to deliver 

context aware functionality. Industry forecasts for this area predict huge market growth and revenue. 

The Global Positioning System (GPS) is the most popular positioning system; however, it is not suitable 

for indoor positioning [1–3]. Real-time indoor positioning is still a challenge using existing techniques [4]. 

There are multiple technologies for indoor positioning, e.g., WiFi, ZigBee, Bluetooth, inertial 

navigation systems (INSs), and laser scanning systems (LSSs). Existing technologies for wireless 

indoor location systems such as WiFi or ZigBee system are reviewed by Pahlavan and Li [5–8]. A  

self-contained sensors, such as gyroscopes, accelerometers or magnetometers are used for another kind 

of indoor location system [4,9–11]. Developing a hybrid scheme for real-time indoor navigation is a 

more effective practice [12–15]. Afzal et al. used a relatively stable data aided inertial navigation 

device for the gravity field and geomagnetic field to regard the heading error as the estimated quantity, 

as well as used EKF to achieve data fusion, thereby gaining reliable heading data [16]. Wang et al. 

proposed the algorithm of dividing the region, and used a particle filter and map matching method, 

thereby gaining the navigation results with meter-level error [17]. Aicardi et al. integrated the data 

captured from mobile phone camera into indoor pedestrian dead reckoning, and used image matching 

to achieve positioning [18,19]. Gusenbauer et al. conducted machine learning for the data captured, as 

well as conducting analysis of human movement, thereby obtaining the moving distance and direction; 

the cumulated error of final position after moving 233 m was only 2.76% [20]. On the one hand, most 

of the existing methods may need additional information such as image and magnetic field, which can 

not only increase the volume and power consumption of the system, but also be more easily influenced 

by the external environment. On the other hand, most of the existing methods need large data 

calculation, which is suitable for post processing analysis; furthermore, it requires high operational 

capability of the processor, which is not suitable for application of a low cost processor. This paper 

focuses on researching the integration of PDR and Bluetooth with better practicability, since a 

Bluetooth Beacon that can be deployed easily is able to work immediately as long as it is powered  

by batteries. 

Step detection, step length estimation and heading determination are involved in PDR  

algorithms [4,21]. Three types of step detection algorithms include peak detection, flat-zone detection 

and zero-crossing detection. If the thresholds are not appropriately set, the deficiencies of the peak and 

zero-crossing detection algorithms will create the potential for missing detection; or over-detection 

may occur in the case of the flat-zone detection algorithm as the flat-zone test statistics vary with 
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differences in walking patterns [22]. There are considerable numbers of studies for improving the 

accurate estimation of step length. Techniques that have been developed for this purpose are mainly 

constant/quasi-constant models, linear models, nonlinear models, as well as artificial intelligence  

models [23]. As for a look-up table, a few levels of step length are conveniently stored for a given 

pedestrian on the basis of his/her locomotion mode and time duration of each step [24]. Step length can 

be estimated by the linear relationship between step length and frequency. With utilization of the 

correlation between vertical acceleration and walking velocity, Kourogi and Kurata computed the 

walking speed and estimated the step length through multiplying the walking speed by the time of the 

unit cycle of locomotion [21]. A neural network for step length estimation is presented by Cho, which 

is unaffected by accelerometer bias and gravity acceleration [25]. Both gyroscope and magnetometer 

are two types of heading sensors, which are typically used when the PDR algorithm is applied [26]. 

Xiao and Klingbeil proposed the concept of magnetic azimuth correcting based on gyro data collected 

over a short time; therefore, the heading angles are allowed to be estimated through a combination of 

gyroscope and magnetometer measurements [26,27]. A biaxial magnetic compass can possibly be used 

for calculating the azimuth after compensating for compass inclination using a shoe-mounted 

accelerometer [25]. An Inertial Navigation System/Extended Kalman Filter (INS/EKF) framework 

used to reduce heading drift has been demonstrated [11]. A detector has been proposed to perform 

magnetic field measurements, which can be used for accurate heading estimation. This detector uses 

different magnetic field test parameters which can be analyzed for good magnetic field measurements, 

and the mean error is controlled within 9 degrees or so [28]. There is one factor limiting the use of 

PDR alone for indoor navigation. It is susceptible to cumulative errors over time.  

The Bluetooth Beacon-based positioning technology is a brand-new positioning technology [29] 

proposed in recent years. Through the application of Bluetooth technology with low power 

consumption, a signal zone will be created automatically in a Beacon base station. Then, when the 

devices are brought into this area, their Bluetooth signals will be sensed by the relevant application 

program to serve for such applications as positioning or information forwarding, etc. Since the 

intensity of Beacon signal is indicated with a Received Signal Strength Indication (RSSI) value, then it 

is feasible to evaluate the distance between the user and the Beacon device according to the changes in 

the RSSI values. Actually, the Bluetooth-based positioning system has the absolute advantage in the 

positioning since real position coordinates have been written in it. However, due to the stochastic 

instability of the signal, chattering might occur in the positioning result. 

To overcome these constraints, this paper constitutes a study related to fusion positioning through 

Bluetooth and PDR methods with the details provided below: 

(1) Aiming at the indoor dead-reckoning positioning approach based on inertial technology, this 

paper proposes a peak-valley detection algorithm for multi-threshold step detection to identify the 

pedestrian gait. Through the contrast and analysis of the multiple models regarding the step length 

calculations in the walking mode and the running mode, this paper identifies the optimal step length 

calculation method that is able to satisfy simultaneously the requirement for different movement 

modes in addition to the provision of the relevant parameters. Also, through the research and analysis 

of the heading correction method, this paper proposes a heading estimation method with real-time 

compensation based on a Kalman filter according to the map geometry information to restrain the error 
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accumulation, increasing the accuracy of heading calculation and improving the positioning accuracy 

of PDR algorithm.  

(2) Through the research and analysis of the positioning technology integrated with Bluetooth and 

PDR, this paper proposes two fusion models based on different principles separately through the 

following two methods: one has been integrated with PDR algorithm and the position correction 

through Bluetooth according to map matching and the other method is the adaptive noise extended 

Kalman filter method integrated with PDR and Bluetooth. Through the former approach, there will not 

be too much calculation work with low costs incurred in the deployment and maintenance, as the 

Kalman filtering algorithm and numerous Beacons will not be needed. However, when the latter 

approach is adopted, the deployment and maintenance will be costly. However, it will provide higher 

positioning accuracy, and the mean positioning error can be controlled within 2 m or so. 

The remainder of the paper is organized as follows: In Section 2, we conduct a brief analysis of the 

Bluetooth-based point positioning technology, and in Section 3, propose an improved PDR algorithm. 

Subsequently, two Bluetooth/PDR integration schemes based on Bluetooth-based position correction 

and adaptive system noise EKF are demonstrated in Section 4. Finally, several experiments are 

analyzed in Section 5, and Section 6 concludes the paper. 

2. Beacon-Based Point Positioning 

Here are three values that describe the power of a Beacon’s signal: Broadcasting Power, RSSI and 

Measured Power. Broadcasting Power is the power with which the Beacon broadcasts its signal, i.e., 

the power with which the signal leaves the Beacon’s antenna. The owner of the Beacon can change 

this setting. The value ranges between −23 dBm and +4 dBm, the lowest to the highest power settings, 

respectively. The higher the power, the bigger the Beacon’s range and the more stable the signal, but it 

also shortens the battery life of the Beacon. RSSI is the strength of the Beacon’s signal as seen on the 

receiving device, e.g., a smart phone. In general, the greater the distance between the device and the 

Beacon is, the lesser the strength of the received signal. This inverse relation between the distance and 

RSSI is used to estimate the approximate distance between the device and the Beacon using another 

value defined by the Beacon standard: Measured Power. Measured Power is a calibrated value which 

indicates the expected RSSI at a distance of one meter to the Beacon, called txPower. Combined with 

RSSI, this allows estimating the actual distance between the device and the Beacon. For example, we 

can measure a bunch of RSSI measurements at known distances, do a best fit curve to match the data 

points and convert the best fit curve into an algorithm. 

In an ideal environment, this method is able to guarantee accurate positioning. However, since RSSI 

has been affected by multiple factors including signal reflection, scattering and diffraction, large errors 

will arise in practice. Therefore, it will be very hard to secure a 100% accurate distance measurement 

based on this principle. Meanwhile, when we are using Bluetooth for the positioning, we just want to 

define an approximate position range. Therefore, this paper does not use the distance measuring model. 

Instead, this paper used a pseudo threshold value of “1 m” as the txPower to detect the Bluetooth 

signals within 5 m. 

We turned the power up to 100% (+4 dBm), then measured the RSSI and the accuracy at the 

different varying distances. As shown in Figure 1, we made an observation for 2 min every other meter 
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and recorded the changes in signal intensity to generate an intensity-distance change chart. The figure 

reveals that the further the distance is, the weaker the intensity is. Since we want the Beacon to have a 

sensing range of around 5 m, then it is necessary to set an appropriate distance as the sensing threshold 

for Beacon. In this case, we have set the value of txPower to be −74 dBm, which means that this value 

will be used as a judging threshold of “1 m”. Figure 2 shows the distance measuring result after this 

threshold has been applied. The observation of the changes in signal intensity and distance every 0.8 m 

reveals that basically all of the signal intensities within 5 m have been covered in the sensing range, 

indicating the application of this threshold has contributed to obtaining a sensing area with a radius of 5 m. 
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Figure 1. Changes in the field intensity of the beacon every 0.8 m. 
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Figure 2. Changes in the pseudo-distance between the beacons every 0.8 m. 
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3. PDR Algorithm Based on the Inertial Sensor in Mobile Phones  

According to the PDR algorithm, the accelerometer, the magnetic sensor and the gyroscope 

embedded in a smart phone will be combined into an inertial measurement unit to locate the position of 

the mobile terminal based on the following formula:  

1

1

sin

cos
i i i i

i i i i

X X SL

Y Y SL

α
α

+

+

= + ×
 = + ×

 
(1)

where ( , )X Y  indicates the coordinates of the position, SL  is the step length and α  represents the 

heading angle, thus the PDR algorithm mainly consists of the following three steps including gait 

detection, step length evaluation and the determination of heading angle. 

3.1. Multi-Threshold Step Detection 

In order to make real-time gait detection through data, this paper proposes a peak-valley detection 

based multi-threshold step detection model, where the following two groups of constraint conditions 
( , , , )p p p pva a t tΔ Δ Δ and ( , , , )v v v vpa a t tΔ Δ Δ  will be used to define the peak-valley detection constraints with: 

(1) pa  and va  representing separately the amplitude at the extreme point of the peak and valley on  

the waveform. 
(2) paΔ  and vaΔ representing separately the amplitude difference between the adjacent peaks and 

between the adjacent valleys. 
(3) ptΔ  and vtΔ representing separately the time difference between two adjacent peaks and between 

two adjacent valleys. 
(4) pvtΔ  and vptΔ representing separately the time difference between the adjacent peak and valley or 

between the adjacent valley and peak. 

Judge the pedestrian’s moving state, at rest or moving according to pa  and va , both of which are the 

acceleration amplitude at the extreme point of the waveform. If it is in a static state, it indicates the 

ending of gait recognition. If not, it would become necessary to make a further verification of whether 

this value is the true value (peak/valley) in a gait cycle. Take peak detection as an instance. Set a dual 
time threshold ( , )p pvt tΔ Δ according to the periodicity of a complete gait cycle. In normal cases, it is 

applicable to set 1

2pv pt tΔ = Δ . Therefore, the peak detection model can be expressed as: 

1 & &
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(2)

where 1peak =  means that the acceleration data is also the peak, 0peak =  indicates that it is not a peak 
and ( , , )

p p pva t tδ δ δΔ Δ  represents the threshold set for a peak detection. Generally, they are the empirical 

values. According to the experimental tests, we have 1

2pv pt tδ δΔ Δ= . If two or more continuous peaks are 

compliant with the above conditions (as shown in Figure 3) and are detected without the occurrence of 
valleys that do not conform to the constraint model, then utilize paΔ , the amplitude difference between 

the adjacent two peaks to restrict and control the real peak according to the peak-valley synchronization 



Sensors 2015, 15 24868 

 

 

criterion in a normal gait cycle and the general knowledge of peak coming first. That is to say, the 
following constraint condition, 0paΔ ≥  must be added subsequently. Then, the real peak detection 

model can be expressed as below: 

1
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(3)
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Figure 3. Faulty step detection induced by a pseudo-peak and a pseudo-valley. 

After that, utilize the condition set ( , , , )v v v vpa a t tΔ Δ Δ  to detect the valleys. The judgment on valleys 

will not be made except for the case that Numvy − Numpk = 0, which means that the number of the 

peaks is the same as that of the valleys according to the peak-valley synchronization criterion. 

1
1 , & &

2=
1

0 , || ||
2

vp v v v vp

vp v v v vp

t t v a v t vp t

t t v a v t vp t

a t t
valley

a t t

δ δ δ δ δ

δ δ δ δ δ

Δ Δ Δ Δ

Δ Δ Δ Δ

 = ≥ Δ ≥ Δ ≥

 = < Δ < Δ <


，

，

 
(4)

where 1valley =  means that the acceleration data is also the valley, 0valley = indicates that it is not a 

valley, Numvy represents the number of the detections made on the valley and Numpk is the number of 

the detections made on the peaks. Similarly, if two or more continuous valleys are compliant with the 

above conditions detected, which also means that it complies with the condition of Numvy − Numpk = 1, 
then utilize the amplitude difference between two adjacent valleys, 0vaΔ <  to determine the real valley. 

Hence, the multi-threshold valley detection model can be expressed as below: 
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(5)
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In the formula above, the user’s walking mechanism has been taken into account. 3
vvp tt δΔΔ ≤  

indicates that the time difference between the current valley and the previous peak will not be greater 
than three times as much as the time threshold. ( , , )

v v vpa t tδ δ δΔ Δ  is the threshold set for valley detection, 

then we can get the following relationship, say | | | |
v pa aδ δ=  and 

v pt tδ δΔ Δ= . 

In conclusion, if this multi-threshold peak-valley gait detection method is adopted, only two 
parameters are needed, which separately are δa , the amplitude threshold and δ Δt , the time threshold 

for gaits. When the device is in a static condition or is close to being in a static condition, the 

acceleration extremes will not be greater than 0.3 m/s2. When the device moves with people, the 

acceleration extremes will vary with the movement of people. Hence it is applicable to set the 
parameter δa  to be 1 m/s2 to differentiate the static state of a person from the moving status. As toδ Δt , 

the time threshold for gaits, an experiment is conducted as below. Collect two groups of data when 

people are walking normally under the premise that the devices are held horizontally: the first group of 

data is about people walking 56 steps (walk1) in a straight line normally and the second group of data 

is about people turning a corner in 122 steps (walk2). Also, collect two groups of data about running: 

the first group is about people trotting forward in a straight line in 45 steps (run1) and the second group 

is about people running to turn a corner in 86 steps (run2). The test results for when time threshold 

parameters are set for different gaits are outlined in Table 1. 

Table 1. Gait recognition based on simple parameters’ model. 

 Within 5% Absolutely Accurate Greater than 5% 

walk1 0.04~0.12 0.13~0.36 <0.04 or >0.36 
walk2 0.03~0.10 0.11~0.28 <0.03 or >0.28 
run1 0.03~0.13 or 0.16~0.24 0.14~0.15 <0.03 or >0.24 
run2 0.13~0.15 0.14 <0.13 or >0.15 

Table 1 reveals that it is not feasible to set an extremely low (data in blue) or extremely high (data 

in red) time threshold for gaits, otherwise it will lead to a big error in detection. Especially when the 

threshold is set to be 0 or 0.01, no pedestrian gaits will be detected at all. The reason is that in  

Equation (5), the user’s walking mechanism has been taken into account, then the setting of the 
constraint condition, 3

vvp tt δΔΔ ≤  indicates that the time difference between the current valley and the 

previous peak will not be greater than three times as much as the time threshold. Hence, when an 

extremely low time threshold is set, it would be impossible to detect the reasonable valleys, which 
might lead to a big error in detection. Moreover, since constraint conditions (such as δΔΔ ≥

vv tt  etc.) 

have been applied to both of the detection Equations (4) and (5) under the premise that there is a time 

difference, it is impossible to guarantee the normal gait detection when an extremely high threshold is 

set. Therefore it is necessary to choose an appropriate threshold parameter to achieve the expected 

precision during the detection of pedestrian gaits. 

On the other hand, the time-frequency parameter range in normal walking gaits is broader than that 

in a running state. The reason is that when the moving state is stable, it gives relatively stable 

acceleration data as shown in Figure 4. When the time threshold is set in a certain range (such as any 

number between 0.13 and 0.28 s), it will facilitate the accurate detection of the user’s step frequency. 

However, when people are running, the movement of their bodies (hands) will bring about lots of noise 
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data among the acceleration data. As shown in Figure 5, the amplitudes vary very much in the 

numerical values. Then, it would be very hard to control gait detection when only an amplitude 

threshold parameter is applied. Hence, there are more requirements for time parameters, and the choice 

of an appropriate time threshold has become necessary for the accurate gait detection. For example, in 

run state, we are unable to guarantee an absolutely accurate detection unless the time threshold is set to 

be around 0.14 s. 
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Figure 4. Gait detection based on acceleration data for walking state. 
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Figure 5. Gait detection based on acceleration data for running state. 

As above, in order to unify the parameters that have been applied in the pedestrian gait detection 
model proposed in this paper, δa , the amplitude threshold is set to be 1 m/s2. In terms of δ Δt , the time 

threshold for gaits, it is set to be 0.14 s, which is an appropriate numerical value that is applicable to 

the above four moving states. Moreover, in order to guarantee the accuracy of gait detection, the user  
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must secure the stability of the device no matter at what speed he has walked in the positioning 

application process.  

3.2. Step Length Estimation  

There is a positive correlation between the pedestrian’s step length and the acceleration data in 

terms of certain statistical values such as the following eigenvalues including the extremes, the 

variance and the periodicity of the acceleration, etc. Currently, the step length calculation model can be 

grouped roughly into a linear model and a non-linear model [30]. 

Regarding the linear step length model, Levi [31] proposed the concept of stride frequency detection 

and step length calculation in a pedestrian navigation system to establish the linear relationship between 

the step length and the stride frequency. After that, Ladetto proposed in [32] a linear relationship model 

with three parameters: 

varSL A B f C w= + × + × +  (6)

where f is the stride frequency, var  is the acceleration variance of each step, w  represents the 

Gaussian noise and A–C is the regression coefficient with all of these coefficients able to be obtained 

through learning and training. Moreover, in reference [33], a similar linear model with three 

parameters is proposed: 

maxSL A B p C s= + × + ×  (7)

where P represents the gait cycle of every step and maxs  is the acceleration peak after the smoothing 

process. Same as above, A–C is the regression coefficient that can be obtained through learning and 

training. In reference [34], the step length calculation model has been analyzed according to the 

nonlinear concept. Such a nonlinear step length calculation formula with only two parameters involved 

is provided as below:  

4
max minSL K a a= × −  (8)

where max min( )a a  is the maximum (minimum) acceleration of every step, and K is the coefficient. 

In this paper, an experiment on two linear models has been conducted, Equations (6) and (7), as 

well as a non-linear model, Equation (8), based on the acceleration statistics. Four persons of different 

heights and different sizes in different walking patterns are involved in the experiment for comparison 

and to research the feasibility and reliability of these three models in different walking patterns. Seven 

groups of data were chosen for walking/running at normal speed in the following modes including 

moving straight forward and turning a corner, etc. to accumulate all of the step values for the 

calculation of the user’s moving distances. Then, the calculated value was compared with the real 

distance, taking the distance difference as an index to test the reliability of the step length calculation 

model. The less distance difference proves that this model has better feasibility and reliability. After that, 
the least-squares method was utilized to obtain separately the following regression coefficients, LMSΔ  

and C2 = 0.068 for two linear models in addition to a coefficient K = 0.425 for the non-linear model. 

Then, the step length was calculated to obtain the following calculation results for the above three 

kinds of step length calculation models. 
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Where SLM and SNLM represent separately the displacement value of the pedestrian movement 
obtained after the computation is made based on the linear model and the non-linear model. LMSΔ  and 

NLMSΔ  represent separately the distance difference between the calculated distance and the real 

distance based on the linear model and the non-linear model. Table 2 shows that the distance error 

calculated separately based on these three models can be controlled within ±5 m. Actually, the average 

absolute distance differences obtained based on these three models are separately 1.555 m, 0.931 m 

and 2.032 m with the maximum absolute distance differences separately turning out to be 3.391 m, 2.299 m 

and 3.932 m. Their comparison reveals that the model established based on Equation (7) is the only 

model where the average absolute distance difference is lower than 1 m with all of the distance 

differences within ±3 m. Moreover, after the calculation, the variances of the absolute distance 

differences obtained based on these three models are separately 1.50, 0.61 and 2.04, proving that the 

second linear model is more stable. Hence, this paper takes the priority to adopt the Equation (7)-based 

model to obtain a real-time calculation of the step length. 

Table 2. Normal gait step length calculation (unit: m). 

 
Real Distance 

40.5 71.4 43.2 39.5 81.6 211.68 179 

Linear model (Equation (6)) SLM1 38.608 73.766 43.348 40.421 81.526 213.771 182.391
Distance difference ΔSLM1 −1.892 2.366 0.148 0.921 −0.074 2.091 3.391 

Linear model (Equation (7)) SLM2 41.411 71.372 44.799 38.894 82.381 209.381 178.707
Distance difference ΔSLM2 0.911 −0.028 1.599 −0.606 0.781 −2.299 −0.293 

Non-linear model (Equation (8)) SNLM 38.427 73.065 46.227 39.895 81.520 215.612 175.950
Distance difference ΔSNLM −2.073 1.665 3.027 0.395 −0.080 3.932 −3.050 

3.3. Heading Estimation with Real-Time Compensation Based on Kalman Filter 

When a person is walking with a cell phone held horizontally in hand, generally the azimuth of the 

cell phone can be considered as the heading angle of the person when he moves. The azimuth of the 

cell phone can be obtained through the computation made based on a gyroscope or a magnetometer. It 

is necessary to determine the initial direction before considering the adoption of a gyroscope to 

calculate the direction angle, which might suffer from a large error accumulation. However, the 

adoption of magnetometer is prone to the interference from the external signals, which would also give 

rise to big errors. Therefore, Krach et al. [34] has proposed introducing gyro data that is quite stable 

over a short time to compensate for the magnetometer, which is susceptible to interference for the 

purpose of calculating the temporal heading angle: 

1 ,(1 )( )k k k mag kh W h w dt Wh−= − + +
 (9)

where 1kh −  represents the directional data obtained at the previous moment, kw  is the angular velocity 

in forward direction, ,mag kh  is the directional value currently obtained through the magnetometer and W 

represents the weight. Since gyro data can be represented with the angle variable of the direction, then 

it is feasible to apply g, its accumulated value, to judge the movement attributes of the user including 

turning a corner and moving forward. 
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As shown in Figure 6, starting from the westernmost of Zone B, which is located on the fourth floor 

of the School of Environmental Science and Spatial Informatics (SESSI) building, walk along the 

corridor in the direction of arrow, where it reveals that the heading angle changes from 90° to 180°, 

then from 180° to 270° and finally to 305° according to the geographical orientation. As shown in 

Figure 7, three singular points representing separately the three turning processes when the users are 

walking can be seen in the accumulated gyro values. Hence, when g varies within the threshold range, 

basically it can be considered that the users are moving in a straight line, or else they are turning a corner.  

 

Figure 6. Walking trajectory. 

 

Figure 7. Analysis on the accumulated gyro value. 

Although improvements have been made as above, the deviation between the directional value, the 

output of the above equation and the real azimuth will become increasingly larger over time for the 

reason that the magnetic compass is prone to magnetic interference from the environment or from the 

platform. In [35], the various predictable errors are analyzed in detail including the following seven 

errors caused by the magnetic compass, such as the magnetic declination, the hard and soft-iron 

effects, the scaling factor and fixed bias, the installation misalignment and the movement of the 

pedestrian’s body with the reference of the other relevant documents. In order to simplify the 
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calculation of the heading error model, a simplified expression is deduced in [36] to make an 

approximate determination of δ , which is the heading error: 

sin cos sin 2 cos2A B C D E wδ ξ ξ ξ ξ′ ′ ′ ′= + + + + +  (10)

where ξ ′  is the azimuth value outputted from the digital compass and A–E refers to the five 

coefficients that should be corrected in the model.  

This paper proposes a Kalman filter-based heading estimation method with real-time compensation 

according to the map geometry information. Through this method, it is necessary to re-train and correct 

the direction at each cornering to eliminate the accumulative errors in heading. According to this 
method, the coefficients ( , , , , )A B C D E  provided in Equation (10), which is also a heading error 

model, will be considered as the system state variables and the heading error will be considered as the 

system observation vector for the design of a Kalman filter to obtain the heading error in real time to 

compensate for the heading estimation. 

To be specific, firstly perform filter smoothing on the data from an orientation sensor to get the 

original azimuth value, OriH  by eliminating the error caused by the movement of body. Then, 

accumulate all of the gyroscopic values between peak and valley on the z-axis. After that, make a 

judgment on the moving state of the ith gait, which might be walking forward or turning a corner 

according to the value. In the case of walking forward, utilize the previous 10 steps to train the 
coefficients ( , , , , )A B C D E  in an error model according to the Kalman filter to get the heading error 

δ . In this way, all of the subsequent gait errors will be compensated in real time by δ , the error 

obtained according to the previous 10 steps. That is to say: 

( ) ( ) ( )heading i OriH i iδ= +  (11)

In the case of cornering, use the error mean for azimuth compensation: 

( ) ( ) ( )heading i OriH i mean δ= +  (12)

After every cornering, the coefficients ( , , , , )A B C D E  will be trained again in the error model 

according to the new map geometric direction value obtained when people are walking forward in a 

straight line after the cornering. In this way, the heading error arising in the direct movement after 

every cornering will be controlled perfectly to eliminate the accumulative heading error. In the 10 steps 

of training, the accumulative error at this moment is rather small, making it relevant to use directly the 

initial heading. 

When X, the parameter of the heading error model is obtained through the Kalman filtering method, 

some of the key variables must be designed as below: 

Define the state vector as the five calibration factors in Equation (10): 

[ , , , , ]X A B C D E=  
(13)

The observation vector is defined as:  

[ ]Z FPH H= −  (14)

where FPH is the geometric azimuth that has been stored, and Matrix H represents ( )OriH i , the initial 

observation angle that has been stored. 

The state vector coefficient is: 
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1 sin( (1))    cos( (1))   sin(2* (1))    cos(2* (1))

_                                                                  

1 sin( ( )) cos( ( )) sin(2* ( )) cos(2* ( ))H H H H

H H H H

KF H

H N H N H N H N

 
 =  
  

      (15)

Assume that _KF P , the estimated variance matrix of state vectors is a diagonal matrix with the 

value of the entire diagonal elements set to be 1000, _KF Q , the dynamic noise matrix is a diagonal 

matrix with the value of the entire diagonal elements set to be 0.0001 and _KF R , the noise 

measurement matrix is set to be (5°)2. 

Table 3. Comparative analysis for heading estimation error based on different methods. 

 

The Real Azimuth of 90°  The Real Azimuth of 180° The Real Azimuth of 270° The Real Azimuth of 305° 

Initial 

Azimuth 

Our 

Approach 

Initial 

Azimuth 

Our 

Approach 

Initial 

Azimuth 

Our 

Approach 

Initial 

Azimuth 

Our 

Approach 

Mean 

difference 
17.92 6.20 5.84 1.62 16.17 2.28 10.99 5.06 

Maximum 

difference 
28.63 15.81 12.09 4.06 22.72 17.52 20.54 18.18 

Minimum 

difference 
10.02 0.35 0.34 0.19 8.02 0.05 0.74 0.18 

0 50 100 150 200 250 300 350
50

100

150

200

250

300

350

Step Number

H
ea

di
ng

 A
ng

le

 

 

Original Heading Data
New Heading Data
Map Heading Data

 

Figure 8. Test for heading estimation. 

In Table 3, a comparison of the initial smoothed azimuth and the azimuth obtained after the  

real-time calculation of the compensation can be foubnd. The analysis on the pathway reveals that: On 

average, the heading errors with real-time compensation are separately 34.2%, 27.7%, 13.6% and 

45.1% of the initial smoothed heading errors with the maximum angular difference, respectively, 

taking 53.8%, 33.7%, 77.8% and 90.3% of them and the minimum absolute error having been 

controlled basically within the range of 1°. Figure 8 shows very clearly that, through our heading 

estimation method, the heading has been improved significantly on the basis of the original azimuth in 

terms of the accuracy with the heading angle almost the same as the map heading data in red. 
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4. Positioning Integrated with Bluetooth and PDR 

Set the relevant true position coordinates in the Bluetooth Beacon device according to its 

installation position with the signal emission frequency set to 1 Hz. Such an indoor positioning method 

based on the intensity of Bluetooth signal is able to provide the absolute position coordinates of the 

pedestrian without any error accumulation over time. On the other hand, since Bluetooth signal is 

prone to interference from the external environment, then only simple estimation of the position and 

area can be made through this method. If few Bluetooth Beacons are deployed, then only discrete 

prompts on the position can be provided. However, if too many Bluetooth Beacons are available, 

signal crosstalk will arise between the Beacons, leading to various instability phenomena, such as the 

skip of position or positioning failure, etc. In light of this, this paper has proposed and conducted an 

experiment on two fusion positioning methods based on Bluetooth and the PDR mechanism. 

4.1. PDR Positioning Based on Map Matching and Bluetooth-Based Position Correction 

This solution is completely subject to the map information regarding the direction calculation 

through the PDR method without the integration of Kalman filtering. Since only Bluetooth Beacons 

are required on some key waypoints, this method requires little layout work and maintenance, as well 

as little calculation work. 

An indoor map for positioning purposes is stored in advance in the cell phone. As shown in  

Figure 9, the map is first segmented into several different zones. In our system, the map has been 

segmented into seven zones including Zone A, B, C, Z, BZ, AZ and CA in addition to the 

determination of the boundary coordinates in each zone. In our system, B, Z1, Z2, A1, A2 and C are 

defined as the coordinates of the central position at the entry of each linear zone.  

 

Figure 9. Cartographic zoning plan. 

In the map matching process, first segment the map into different regions, which consist of linear 

region and nonlinear region. The linear region is where users always walk in a straight line, such as in 

a corridor. However, in a non-linear region that is circled in red in the figure, users always turn  

a corner. 

When people are walking, it is inevitable that their hands will swing to some extent, which will 

bring about certain error in heading estimation. In order to reduce such an error caused by hand swing, 
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this paper adopts the mean of the directional values for the positions of the three acceleration extremes 

in a gait cycle, where generally there are two acceleration valleys and an acceleration peak. Then, the 

user’s movement attribute (turning a corner or walking straight on) is judged according to the 

accumulated variable value for the gyro angle during gait detection. If it indicates linear movement in a 

linear region, the direction angle for the region according to the magnetometer data and the map 

information should be adaptively identified. Or else, the mean directional value in a complete gait 

cycle as the heading angle of the step is taken. 

Furthermore, in order to eliminate the heading errors accumulated in the process when the users are 

walking in a non-linear region, it is necessary to calibrate the users’ positions to eliminate error 

accumulation when the users are entering a linear region from a non-linear region. That is to say, when 

the users are moving from the non-linear region into the linear region, their position will be converted 

compulsively to the central position at the entry of the linear region.  

4.2. Fusion Positioning Based on Adaptive Noise Extended Kalman Filter  

Through this solution, the dynamic model noise can be identified adaptively based on the moving 
information (walking forward or cornering). ,N E  represent separately the direction value of the 

acquired terminal coordinate in north and east, s is the step value obtained through gait detection for 

every step and θ  is the angle value in horizontal moving direction. Assume that the position error, the 

step error and the heading error are the state variables of a filter system, then the state vector of the 

system can be expressed as: 

[ , , , ]X dN dE ds dθ=  (16)

Thus, the state equation for the EKF system is: 

1

1

1

1

cos sin

sin cos
k k k k k k k N

k k k k k k k E

k k s

k k

dN dN ds s d dw

dE dE ds s d dw

ds ds dw

d d dwθ

θ θ θ
θ θ θ

θ θ

+

+

+

+

= + × − × × +
 = + × + × × +
 = +
 = +

 (17)

Both the position coordinates and the dynamic displacement noise conform to the Gaussian 
distribution. That is to say, 2(0, )N Nw N δ , 2(0, )E Ew N δ , and 2(0, )s sw N δ . Considering a practical 

situation, the value of θw  is rather big in the case of cornering and it is small in the case of direct 

movement regarding the azimuth. Then, it is applicable to determine adaptively the value of the 

dynamic noise that is related to azimuth through the recognition of the pedestrian’s moving state, 

which is in direct movement or cornering. 

The state-transition matrix is: 

1 0 cos sin

0 1 sin   cos

0 0 1 0

0 0 0 1

k k k

k k k
k

s

s

θ θ
θ θ

− × 
 × Φ =
 
 
 

 (18)
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when the position coordinate of a Bluetooth system is obtained, take the position shift between the 

Bluetooth system and the PDR system as the observation value of the system to have the following 

observation equation: 

, , , ,[ , ] [ , ]T T
b k p k b k p kZ N E N N E E= Δ Δ = − −  (19)

where ( , )Δ ΔN E  represents the position shift between two positioning systems at the moment of k, 

, ,( , )b k b kN E  is the positioning result obtained in a Bluetooth system at the moment of k and , ,( , )p k p kN E  

is the position information obtained through the computation based on the dead-reckoning principle at 

the moment of k. 

The observation matrix is provided as below: 

1 0 0 0

0 1 0 0kH
 

=  
 

 (20)

The dynamic noise matrix is:  

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

N

E
k

s

Q

θ

δ
δ

δ
δ

 
 
 =  
 
  

 (21)

Assume that 2 2 2δ δ= =N E  and 2 1δ =s . As to the value of 2
θδ , it’s applicable to make a dynamic 

adaptive adjustment on it. When the pedestrian is moving forward in a straight line, 2 2(2 )θδ = °  

However, when the pedestrian is cornering, 2 2(15 )θδ = ° . 

The noise measurement matrix is: 

0 0 0

0 0 0
w

w

R
R

R

 
=  
 

 (22)

Through the analysis of the statistical characteristics of the positioning errors in the Bluetooth 
system and the PDR system, an empirical value will be obtained, which is 210=wR . 

In the case that the Bluetooth position has not been updated, take the difference between the 

coordinates predicted by the system and the coordinates observed through the PDR method as the 

observation variables to make a recursive correction on the calculation of the position through PDR 

with all of the others remaining unchanged.  

1 , 1 1 , 1[ , ] [ , ]T T
k p k k p kZ N E N N E E+ + + += Δ Δ = − −  (23)

where the coordinates predicted by the system can be updated through the following approach 

1 ,

1 ,

( ) cos( )

( ) sin( )

k p k k k k k

k p k k k k k

N N dN s ds d

E E dE s ds d

θ θ

θ θ
+

+

= + + + × +

= + + + × +
 (24)

According to the position error obtained through the filtering, Equation (24) is able to update the 

pedestrian’s current position, which is also the final position at the moment of k + 1 obtained after the 

computation made in the fusion model. 
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5. Experimental Section 

A test field has been constructed on the fourth floor of the School of Environmental Science and 

Spatial Informatics (SESSI) building in China University of Mining and Technology (CUMT) to build 

a Bluetooth-based positioning system with the Samsung Galaxy Note3 (SM-N9002) selected as the 

mobile testing device. The Bluetooth Beacon will be deployed along the corridor in the test field. 

During the positioning, the frequency for Beacon positioning is set to be 1 Hz and the data sampling 

frequency of the inertial sensor is 50 Hz. Every time when the positioning system receives new 

Bluetooth coordinates, position correction of the positioning results obtained through the Bluetooth 

and through the PDR method will be made in the appointed fusion model. In the experiment, the 

pedestrian will walk along the corridor from the westernmost of Zone B on the fourth floor to the 

westernmost of Zone C across Zone A at normal speed (1.5 m/s~1.8 m/s). In this process, the 

pedestrian has to walk in total 316 steps with the device held in hand horizontally. Then, through the 

computation on the position errors and the error distribution according to different positioning 

solutions, this paper makes an evaluation of the performance and reliability of these solutions.  

This paper puts forward four solutions to conduct the positioning experiments involved with three 

heading estimation methods: The first method has been used to conduct a smoothing process on the 

data from the orientation sensor in a gait cycle with the adoption of the mean value as the azimuth 

value of this step. The second method is the geographical azimuth-matching method and the third 

method, which is also a heading estimation method with real-time compensation, has been proposed in 

this paper according to Kalman filter with the details provided as below:  

Solution I: This solution is named original heading PDR, flagged as OHPDR, which is a PDR-based 

positioning method based on the original smoothed azimuth.  

Solution II: This solution is named adaptive heading PDR, flagged as AHPDR, which is a  

PDR-based positioning method with real-time compensation for the azimuth based on the filtering. 

Solution III: This solution is named Bluetooth-based PDR, flagged as BEPDR, which is a  

PDR-based positioning method based on map matching with Bluetooth-based position correction. 

Solution IV: This solution is named EKF-based PDR, flagged as EKFPDR, which is a fused 

positioning method integrated with Bluetooth and AHPDR based on the adaptive noise EKF. 

Solution I is a dead-reckoning approach based on the original smoothed azimuth with the 

positioning error turning out to be increasingly bigger over time. Actually, even in an extremely short 

time of around 5 min, the error accumulated from the initial 2 m to 44.85 m as indicated in Figure 10, 

where the trajectory is shown in blue. 

Solution II provides an online solution for the parameters of the heading error model to realize a  

real-time compensation and correction of the pedestrian’s heading information by calculating the 

heading error based on the initial 10 mean azimuth values and the map directional information. On 

average, the PDR method based on such an azimuth is able to control perfectly the positioning error 

within 5 m with the maximum error at only 6.19 m, which proves that such a PDR-based positioning 

solution with heading correction is able to eliminate the problem of error accumulation as shown in 

Figure 10, where the trajectory is shown in red. 
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Figure 10. Positioning trajectory analysis for different solutions associated with PDR. 

 

Figure 11. PDR-based positioning method based on map matching with Bluetooth-based 

position correction. 

In Solution III, the heading trajectory is determined directly based on the map matching method. 

That is to say, the map geometric direction values (such as 90°, 180°, 270° and 305°) will be adopted 

directly in a linear region. Although this method is able to express perfectly the geometric shape of the 

corridor, it requires high-precision gait detection and step length calculation, making it hard to adopt 

the PDR algorithm, which is affected negatively by speed and other personal characteristics. 

Moreover, since there are errors in gait detection and step length calculation, it would be prone to 

deviate from the real building structure. For example, as shown in Figure 11, “cross-wall” 

phenomenon can be found in the walking trajectory at the second corner. In order to make a correction 

to the trajectory, five Bluetooth Beacons are deployed at some key inflection points. The advantage is 

that it will correct the deviated trajectory. However, such a compulsory correction will lead to the 

partial overlapping of the trajectory. That is to say, “go-and-back phenomenon” can be observed on the 

trajectory to make the whole trajectory look unnatural. However, through this method, the mean error 

can be controlled within about 4 m. 
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In Solution IV, 20 Beacons are deployed every 10 m throughout the whole corridor. Then, a fusion 

calculation is made based on the positioning result through these 20 Bluetooth systems according to 

the adaptive noise EKF adopted in AHPDR as shown in Figure 10, where the trajectory is shown in 

green. This solution has worked very well not only in solving the problem of serious error 

accumulation that can be found through the traditional PDR method, but also in the significant 

improvement of the positioning precision. Compared with the previous three solutions, this solution 

has reduced separately the minimum error by 87.5%, 87.5% and 26.1%, reducing the mean error 

respectively by 90.2%, 58.5% and 45.1%. Also, compared with Solution I and Solution III, the 

maximum error has been reduced by 88.4% and 58.3%. However, due to the positioning error in a 

Bluetooth-based system, the maximum error in Solution IV is equivalent to that in AHPDR with a 

difference of only 1.7 m. 

Table 4 and Figure 12 show the positioning errors arising in the above four solutions:  

Table 4. Positioning error analysis for different solutions associated with PDR. 

 OHPDR AHPDR BEPDR EKFPDR 

Min. error/m 2.00 2.00 0.34 0.25 
Mean error/m 22.67 5.42 4.12 2.26 
Max. error/m 44.85 6.79 12.21 5.09 
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Figure 12. Positioning trajectory analysis for different solutions associated with PDR. 

Moreover, in order to verify the relationship between the number of Bluetooth Beacons that have 

been deployed and the positioning result, we deployed separately 20, 15 and 10 Beacons along the 

corridor with the positioning results shown in Table 5 and Figure 13 after the integration of the PDR 

algorithm. According to Table 5 and Figure 13, the more Beacons that are deployed, the better the 

filtering effect is from the perspective of the overall positioning result. Also, from the perspective of 

mean error, the fusion result based on 20 Beacons is better than that based on 15 and 10 Beacons with 

the error reduced separately by 43.8% and 28.9%. However, it is not true that the more Beacons that 

are deployed, the better the effect is due to the crosstalk between the Beacon signals. In an ideal 

situation, the separation distance of the Beacons that have been deployed should be at least twice the 

radius of the specified detection area. 
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Table 5. Positioning error analysis for different numbers of Beacons. 

Beacons 10 15 20 

Min. error/m 0.41 0.36 0.25 
Mean error/m 3.97 3.15 2.26 
Max. error/m 5.95 5.42 5.09 

 

Figure 13. Positioning trajectory analysis for different numbers of Beacons. 

As mentioned above, in order to eliminate the heading error accumulation, it is feasible to make a 

filtering correction through the constraints on map information or based on the PDR result. 

Meanwhile, on the basis of this, the integration of the Bluetooth-based positioning system and the PDR 

method according to EKF is able to achieve a 2 m positioning precision. However, this method will not 

work well in the case that the walking route is irregular or in some irregular and complex fields, where 

only fusion positioning through OHPDR and the Bluetooth-based positioning system can be adopted. 

Moreover, when too many Bluetooth Beacons are deployed, it would be a big burden to replace all of 

the batteries. Therefore in the case that high-precision positioning is not required, Solution III would 

be a compromise with only some key inflection points deployed with the Bluetooth. 

6. Conclusions 

Based on the particular advantages of these two positioning systems using the Bluetooth Beacon 

and the PDR method, this paper proposes two fused positioning solutions following an improvement 

analysis of the corresponding gait detection, step length calculation and heading calculation  

through the PDR algorithm. One is a PDR-based positioning method based on map matching and 

Bluetooth-based position correction and the other method is based on an adaptive system and dynamic 

noise filtering to make a fusion calculation according to the pedestrian’s moving state (walking 

forward or cornering). The experimental results prove that when indoor positioning is conducted 

according to the PDR technology, the correction to the pedestrian’s azimuth is able to efficiently 

inhibit the error accumulation using the PDR method. Meanwhile, the integrated application of 

different technologies in both the Bluetooth Beacon system and the PDR-based positioning system is 
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able to effectively solve the “go-and-back” problem found in the positioning using the Bluetooth 

Beacons and the problem of positioning error accumulation using the PDR method to improve both the 

reliability and robustness of the indoor positioning. 
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