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Abstract: Due to the wide deployment of wireless local area networks (WLAN), received
signal strength (RSS)-based indoor WLAN localization has attracted considerable attention
in both academia and industry. In this paper, we propose a novel page rank-based indoor
mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS
for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the
observation of the motion patterns of the people in the target environment, we use the
Allen logic to construct the mobility graph to characterize the connectivity among different
areas of interest. Second, the concept of gene sequencing is utilized to assemble the
sporadically-collected RSS sequences into a signal graph based on the transition relations
among different RSS sequences. Third, we apply the graph drawing approach to exhibit
both the mobility graph and signal graph in a more readable manner. Finally, the page rank
(PR) algorithm is proposed to construct the mapping from the signal graph into the mobility
graph. The experimental results show that the proposed approach achieves satisfactory
localization accuracy and meanwhile avoids the intensive time and labor cost involved in the
conventional location fingerprinting-based indoor WLAN localization.
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1. Introduction

Nowadays, people spend more than 80% of their time in the indoor environment, where the signal
from the Global Positioning System (GPS) is generally difficult to receive. In this circumstance, many
indoor localization systems are proposed to guarantee the performance of a variety of location-based
services (LBSs), like the guidance of shopping routes, security and healthcare for the elderly, and
asset management in warehouses and modern buildings. At the same time, various kinds of techniques
have been developed for indoor localization in the recent decade, like Bluetooth [1], ultrasonic
wave [2], radio-frequency ID (RFID) [3], ultra-wideband (UWB) [4], visible light communications
(VLC) [5–7] and wireless local area networks (WLAN) [8–11]. Among them, the received signal
strength (RSS)-based WLAN localization technique is preferred due to the rapid development of WLAN
infrastructures and mobile devices, as well as the wide deployment of WLAN, which is selected as
one of the primary high-speed access networks in the indoor environment. To the best of our knowledge,
trilateration and location fingerprinting are recognized as two of the most representative approaches used
in RSS-based indoor WLAN localization. The performance of the trilateration approach suffers from the
inaccurate estimation of the distance from each access point (AP) to the receiver [12,13]. The first reason
is that the propagation models used for distance estimation cannot always be effective due to the irregular
variation of RSS caused by the signal reflection, scattering and diffraction. The second reason is that
many indoor areas where the APs are actually located are not reachable. In this case, both the AP and
target locations should be estimated simultaneously, and thereby, the precision of distance estimation
generally drops dramatically. On the contrary, the location fingerprinting approach is preferred [14–17].
This approach consists of two phases. In the offline phase, the RSSs at a batch of pre-calibrated reference
points (RPs) with known physical coordinates are collected and then stored as the location fingerprints
into the radio map. In the online phase, the newly-collected RSSs are matched against the radio map to
realize the location estimation. However, the time and labor cost involved in the radio map construction
increases rapidly as the area increases.

To solve the cost problem and to guarantee the accuracy of RSS-based indoor WLAN localization,
we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the
gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). In concrete
terms, we first carry out the observation of the motion patterns of the people in the target environment
to construct the mobility graph by using the Allen logic. Second, we rely on off-the-shelf smartphones
to collect the WLAN RSSs, which are not labeled with physical coordinates. Third, the concept of
gene sequencing is adopted to determine the correlation relations among different RSS sequences, so as
to assemble the RSS sequences into a signal graph. Fourth, we utilize the graph drawing approach to
exhibit the graphs in a more readable manner. Finally, by using the proposed page rank (PR) algorithm,
the mapping from the signal graph into the mobility graph is constructed. After the previous steps,
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the receiver can be located in the area mapped from the node that is matched by the newly-collected
RSSs in the signal space.

The rest of this paper is organized as follows. In Section 2, we show some related work on the existing
SLAM approaches in the indoor WLAN environment. The steps of the proposed PRIMAL are discussed
in detail in Section 3. The extensive experimental results are provided in Section 4. Finally, Section 5
concludes the paper and presents some future directions.

2. Related Work

In response to the cost problem faced by location fingerprinting in the conventional RSS-based indoor
WLAN localization [18–21], many existing works suggested using motion sensing as a candidate to
perform the localization. The authors in [22] collected the WLAN RSSs to construct a logic graph,
which can be used to characterize the physical layout of the target environment, and meanwhile rely
on an accelerator to explore the reachability among different physical areas, as well as to detect the
status of RSSs. After that, based on the constructed mapping relationship between the logic graph
and ground-truth graph, the target location is estimated in a specific area for each location query.
Using a smartphone, the authors in [23] invented a pedestrian tracking system, which can automatically
construct both the floor plan of the anonymous target environment and the corresponding radio map.
An indoor tracking system based on the labeled topological map constructed by SLAM is addressed
in [24]. See [25]: a foot-mounted inertial measurement unit (IMU) is used to perform proprioceptive
motion sensing, and meanwhile, an action recognition system is applied to observe the landmarks of
location-related actions. The authors in [26] proposed a pedestrian tracking system by integrating the
odometry data collected by the foot-mounted IMU and WLAN RSSs. The localization system developed
in [27] is based on the fusion of the image data and data from the IMU in a smartphone. The GraphSLAM
approach proposed in [28] is appropriate for a large-scale environment, since there is no signature
uniqueness assumption in the GraphSLAM. The authors in [29] constructed a multi-modal signal map
from the RSSs collected by all of the available sensors. The work in [30] depended on the IMU sensors
to label the RSSs as the pedestrian walks in the same direction. A new concept of the Wi-Fi fingerprint
(FP), which considers the order relation among the RSS rather than the absolute values of RSSs, is
addressed in [31]. The authors in [32] present a new localization approach, in which the training data are
obtained by means of finite difference time domain (FDTD) simulations of electromagnetic propagation.

To deal with the computational complexity problem for localization, the authors in [33] use decision
trees to minimize the complexity of the localization system. The authors in [34] rely on the joint
clustering technique, which performs the clustering of locations to reduce the computational cost. A
new low-complexity tracking scheme is proposed in [35], which is based on Fano’s sequential decoding
algorithm. The authors in [36] propose the multiple filters (MFs)-based implementation approach, which
achieves a significant reduction of the computational complexity. The authors in [37] compare the
performance of the probabilistic Gaussian kernel fingerprint-based indoor positioning algorithm by using
different types of smartphones. An energy-efficient WLAN-based indoor positioning algorithm, which
factors out every part of the probabilistic fingerprint formulae, is proposed in [38].
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Different from the existing work in the literature, we propose a novel indoor mapping and localization
approach, namely the PRIMAL, which is independent of location fingerprinting and motion sensing.
Furthermore, there is no requirement of extra infrastructure or devices compared to the conventional
approaches. The four main contributions of this paper are summarized as follows. First of all, there is
no requirement of location fingerprinting and motion sensing, which saves much time and labor cost.
Second, based on people’s motion pattern observation, the mobility graph, which is constructed by
using the Allen logic, can help greatly in investigating the motion behavior of the people in the target
environment. Third, we apply the graph drawing approach to exhibit both the mobility and signal graphs
in a more readable manner. Finally, by adopting the PAalgorithm, we conduct the indoor mapping and
localization simultaneously. Table 1 summarizes the main symbols used in this paper.

Table 1. Symbol notation.

Symbols Description

Iz Time duration of the event z
ai The i-th RSS vector in sequence a

bj The j-th RSS vector in sequence b

H (i, j) Matching score between ai and bj

m Length of sequence a

n Length of sequence b

s(ai, bj) Similarity function of RSS pair ai and bj

Wk Gap scoring function with depth k

RSSl The l-th RSS sequence
rssli The i-th RSS vector in RSSl

3. System Description

3.1. Construction of the Mobility Graph

To obtain the connectivity among different areas of interest, we conduct the people’s motion pattern
observation in the target environment. Figure 1 shows the layout of the six areas of interest, and Figure 2
illustrates the people’s 17 motion patterns during a working day. Each motion pattern consists of different
events, which are separated by the break points (BPs).
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Figure 1. Layout of the target area.
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Figure 2. Motion patterns.

In the Allen logic, the relations of events can be represented by 13 different logic operations, as
described in Figure 3. On this basis, by using the Allen logic, we draw the event graphs corresponding
to the people’s 17 different motion patterns in Figure 4. In each graph, we mark the longest path (or the
path involving the largest number of hops) with a dashed line. On each longest path, the event nodes
are connected by the edges with the “m” operation, while the last even node and movement node are
connected by an edge with the “f” operation. The event nodes that are connected by the edges with the
“m” operation indicate the adjacent events happening in chronological order, while the edge with the “f”
operation connecting the final event node and movement node indicates that the last event corresponds
to the movement state. Based on this, the event nodes on the longest path can be used to describe the
connectivity among different areas of interest. For instance, in the first graph, based on the longest path
that is associated with the movement 1, we obtain a motion behavior between Lobby 1 and Lobby 2 and
thereby construct a connection between these two lobbies. Hence, the mobility graph can be constructed
by considering all of the motion behaviors of the people in the target environment, as shown in Figure 5.
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Figure 4. Event graphs.

 

Figure 5. Mobility graph.

3.2. Construction of the Signal Graph

3.2.1. RSS Characteristics

A significant reason for using the WLAN RSSs to conduct the SLAM is due to the property that the
WLAN RSSs collected in two different areas that are separated by a wall could vary greatly. Figure 6
shows an example of the variations of two WLAN RSS sequences as the signal goes through a wall.
We take Sequence 1 (with *’s) as an example. The mean of the RSS before crossing the wall is about
−72 dBm, whereas after crossing the wall, it decreases to −82 dBm. Hence, the variation of WLAN
RSSs can help with characterizing the layout of the target environment.
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Figure 6. Variation of WLAN RSSs.

3.2.2. Gene Sequencing

Based on the people’s motion pattern observation during a working day, we obtain the frequencies
of the area transitions between every two adjacent areas of interest in Figure 7. There are in total nine
patterns of area transitions counted by the path separation, as shown in Figure 8.

Figure 7. Frequencies of area transitions.

In the target environment, we collected 94 WLAN RSS sequences that obey the frequencies of area
transitions shown in Figure 7. Figure 9 illustrates the format of RSS sequences where k is the number of
APs, RSSijl is the j-th RSS vector in the i-th RSS sequence from the l-th AP andm is the number of RSS
vectors in each sequence. Table 2 shows the number of RSS sequences collected on each trace. Hence,
the collected RSS sequences can not only reflect the connectivity among different areas of interests,
but also depict the motion patterns of the people in the signal space. Therefore, by separating each
RSS sequence into different segments of RSSs with high correlation, we can obtain the transitions of
segments and consequently assemble the RSS sequences into a signal graph.
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(RSSi11, RSSi12, …, RSSi1k)

(RSSi21, RSSi22, …, RSSi2k)

(RSSi31, RSSi32, …,RSSi3k)

...

(RSSim1, RSSim2, …, RSSimk)

Figure 9. Format of RSS sequences.

Table 2. Number of RSS sequences on each trace.

Traces Number of Collected RSS Sequences

Lobby 2→ Lobby 1 10
Lobby 2→ Corridor 2 5
Corridor 2→ Lobby 1 7

Lobby 1→ Corridor 2→ Lobby 3 2
Corridor 3→ Corridor 2 9

Lobby 1→ Lobby 2 19
Corridor 2→ Corridor 3 4
Lobby 2→ Corridor 3 1

Lobby 1→ Corridor 2→ Corridor 1 8
Lobby 1→ Corridor 3 3
Corridor 2→ Lobby 2 2
Corridor 3→ Lobby 1 2

Lobby 2→ Corridor 2→ Corridor 1 5
Lobby 1→ Corridor 2 8

Corridor 1→ Corridor 2→ Lobby 1 3
Corridor 3→ Lobby 2 2

Corridor 1→ Corridor 2→ Lobby 2 4
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In gene sequencing, given two sequences, a and b, a scoring matrix, H , is constructed to detect the
segments of RSSs with high correlation, namely the correlation segments, between these two sequences.
The elements in H are calculated by:

H(i, 0) = 0, 0 ≤ i ≤ m,H(0, j) = 0, 0 ≤ j ≤ n

H(i, j) = max


0

H(i− 1, j − 1) + s(ai, bj)

maxk≥1{H(i− k, j) +Wk}
maxl≥1{H(i, j − l) +Wl}


1 ≤ i ≤ m, 1 ≤ j ≤ n

(1)

where H(i, j) is the matching score between the i-th nucleotide in a, ai and the j-th nucleotide in b,
bj . Using this concept, in our system, we view the WLAN RSS sequences as the gene sequences, i.e.,
a ∼ RSSl = {rssl1, rssl2, . . . rsslm} and b ∼ RSSi = {rssi1, rssi2, . . . rssin}, and the RSS vectors as
the nucleotides, i.e., ai ∼ rssli and bj ∼ rssij . Thus, the calculation of the matching score between the
RSS vectors equals the one between the corresponding nucleotides. To detect the correlation segments,
we require that the matching scores between the RSS vectors satisfy:

• H(i, j) ≥ H(i, j + 1) as ai = bj and ai 6= bj+1

• H(i, j) ≥ H(i+ 1, j + 1) as ai = bj and ai+1 6= bj+1

• H(i, j) ≤ H(i+ 1, j + 1) as ai = bj and ai+1 = bj+1

• H(i, j) ≥ H(i+ 1, j + 1) as ai 6= bj and ai 6= bj+1

• H(i, j) ≤ H(i+ 1, j + 1) as ai 6= bj and ai+1 = bj+1

These requirements indicate the characteristics as follows.

(i) If the current RSS vector is matched with an RSS vector, but mismatched with the next one,
the matching score of the current RSS pair is not lower than the one of the next pair;

(ii) if the current RSS pair is matched, whereas the next RSS pair is mismatched, the matching score
of the current RSS pair is not lower than the one of the next pair;

(iii) if the current RSS pair is matched, while the next RSS pair is also matched, the matching score of
the current RSS pair is not higher than the one of the next pair;

(iv) if the current RSS vector is mismatched and still mismatched with the next one, the matching score
of the current RSS pair is not lower than the one of the next pair;

(v) if the current RSS pair is mismatched, whereas the next RSS pair is matched, the matching score
of the current RSS pair is not higher than the one of the next pair.

To satisfy these requirements, we define the similarity function, s(ai, bj), and gap scoring function,
Wk, in Equation (2). Based on this, the matching scores satisfy the previous requirements, as proven
in the Appendix Section. For the collected 94 RSS sequences, we construct in total 4371 scoring
matrices (see Supplementary Material). Figure 10 shows nine of them in which each pixel represents the
matching score of an RSS pair, while the larger pixel values indicate the higher similarities between the
RSS vectors.  s(ai, bj) =

{
α > 0, ai = bj

β < 0, ai 6= bj

Wk = −(α− β)k

(2)
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where α and β stand for the reward score and penalty score, respectively.
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Figure 10. Scoring matrices.

To detect the correlation segments between two RSS sequences, we start from the highest matching
score in the corresponding scoring matrix. The steps of this process are described as follows.

Step 1: Locate the highest score in H , notated as H(i, j), and then store the location (i, j) into the
set L;

Step 2: Set H(i, j) = max{H(i− 1, j), H(i, j − 1), H(i− 1, j − 1)};
Step 3: Repeat Steps 1 and 2 until we obtain H(i, j) = 0. We notate L(r)(1 ≤ r ≤ gb) as the r-th

location in L, and gb is the number of locations stored in L;
Step 4: Set r = gb;
Step 5: Examine the jump relation between the locations L(r) and L(r − 1). If there is a diagonal

jump [39] from L(r) to L(r − 1), the vertical and horizontal coordinates of L(r − 1) are selected to
indicate the IDs of the RSS pair with high correlation;

Step 6: Set r = r − 1;
Step 7: Repeat Steps 5 and 6 until r decreases to two.
Figure 11 gives an example of the scoring matrices with respect to a pair of the same RSS sequences

and a pair of RSS sequences collected in different areas, respectively. Obviously, based on the result
of the diagonal jumps, which are marked with red rectangles in Figure 12, we detect the segments with
high correlation. Hence, we can combine the RSS sequences into different clusters, while the RSSs in
the same cluster are featured with high correlation.
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Figure 11. (a) A pair of the same RSS sequences; (b) a pair of different RSS sequences.
Scoring matrices with respect to the same and different RSS sequences.
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Figure 12. Result of diagonal jumps.

Figure 13 shows the result of RSS sequence combination. There are in total 19 clusters. Based on
the transition relations of different clusters, we can assemble the RSS sequences into a signal graph in
which each node represents a cluster, while each edge represents the transition relation between two
neighboring clusters. The signal graph finally constructed by using the gene sequencing is shown in
Figure 14.
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Figure 13. Result of RSS sequence combination.
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Figure 14. Signal graph.

3.3. Graph Exhibition by Graph Drawing

In graph theory, during the visual exhibition of graphs, we can obtain many different layout structures
with respect to a given graph, namely the isomorphic graphs. The readable, unique and clear graph
exhibition can help greatly in exploring the relations between the graphs in the graph visualization
aspect. To achieve this goal, we apply the graph drawing approach to guarantee the uniqueness of the
layout structures of the mobility and signal graphs with the purpose of avoiding the confusion of the
isomorphic graphs.

Specifically, give a undirected graph G = (V,E), we denote V = {v1, v2, ..., vnd} and
E = {..., eij, ...} as the sets of vertices and edges. nd is the number of vertices, while eij indicates
that the vertices vi and vj(i, j ∈ {1, 2, ..., nd}) are connected by an edge. The steps of the process of
graph drawing are described as follows.

Step 1: Construct the set of vertices, Vs = {. . . , vi, . . .}(i ∈ {1, 2, . . . ,nd}), in which the vertices
have the same smallest degrees. The degree of vertex vi, di, is defined as the number of vertices
connected with vi. If there are two vertices vi and vj in Vs satisfying the relations that for any
vertex vr(r ∈ {1, 2, . . . ,nd}) in V − {vi, vj}, there is at least one path connecting vi and vj , i.e.,
vieikvk · · · vrertvt · · · vj , we denote vi and vj as vs and vt, respectively, and the set of all the other vertices,
Vs − {vi, vj}, as v′s. Otherwise, we select another vertex with the smallest degree in V − Vs, vt′ . Then,
we denote vi and vt′ as vs and vt, respectively, and the set Vs − {vi} as v′s.
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Step 2: After the vertices vs, v′s and vt are obtained, we continue to construct a direct graph G′

from G. In concrete terms, for each vertex vi(i ∈ {1, 2, . . . ,nd}) in V − {vs, v′s, vt}, we construct
the set of all direct paths as PAi = {(vsesyvy...erivi...vjejtvt) ∪ (v′sesy′vy′ ...er′ivi...vj′ej′tvt) ∪ ...} =

{Pa1 ∪ Pa2 ∪ ...Pat}(y, y′, r, r′, j, j′ ∈ {1, 2, ...,nd}) starting from vs (or v′s) to vt and containing vi,
where t is the number of paths in PAi and Paj(j ∈ {1, 2, ..., t}) is the j-th path in PAi. After that,
the set of direct edges, ED, can be easily obtained from PAi. A direct edge eij ∈ ED exists as there is
a path Paj ∈ PAi satisfying eij ∈ Paj .

Step 3: Label the vertices vi(i ∈ {1, 2, . . . ,nd}) in G′, notated as number(vi), based on the criteria as
follows. We set: (i) number(vs) = 0, number(v′s) = 0 and number(vj) = number(vi) +1 for the vertices
vi and vj on the direct edge eij; and (ii) number(vk) = number(vi) +1 and number(vj) = number(vk) +1

for {eij, eik, ekj} ⊂ ED.
Step 4: Eliminate the edges on Pa1, which starts from vs (or v′s) to vt and passes by the largest number

of edges from G′. We repeat this process until all of the edges have been eliminated from G′ or there
is no remaining path starting from vs (or v′s) to vt. If there are remaining edges after the elimination
process, we recognize each remaining edge as a distinct path. After that, we continue to detect all of
the internal faces of G, {Fh}(h = 1, 2, ...,η), where η is the number of internal faces. An internal face
is defined as a closed region (or the region containing no edge) with the boundary consisting of the
edges in the graph. The external face of G, F , has the boundary, C, containing all of the nodes in G,
notated as C = (eijvjejr...vsesl...vtetu...exyvyeyi)(i, j, r, l, u, x, y ∈ {1, 2, ...,nd}). We divide F into
two sub-regions, Fs and Ft, where Fs and Ft satisfy the relation Fs ∩ Ft = {vs, vt}.

Step 5: Construct a undirected graph U = (VU , EU), where VU = {Pai}λi=1 ∪ {Fh}ηh=1 ∪ {Fs, Ft}
= {vU1 , vU2 , ..., vUd

}, EU = {eij} ∪ {elh} ( i, h ∈ {Uλ+1, Uλ+2, ..., Uλ+η, Uλ+η+1, Uλ+η+2}, j, l ∈
{U1, U2, ..., Uλ}), and λ is the number of detected paths in Step 4. We notate the sets of vertices involved
in {Pai}λi=1, {Fh}ηh=1 and {Fs, Ft} as {vU1 , vU2 , ...,vUλ

}, {vUλ+1
, vUλ+2

, ...,vUλ+η
} and {vUλ+η+1

, vUλ+η+2
},

respectively. We regard Pai(1 ≤ i ≤ λ) as a path vertex, vUj
(1 ≤ j ≤ λ). Similarly, vUj

(λ + 1 ≤ j ≤
λ+η+ 2) is regarded as a face vertex. The number of vertices in U equals d = λ+η+ 2. eij determines
whether there is an edge intersection between the boundaries of the faces of {Fh}ηh=1 ∪ {Fs, Ft} and
{Pai}λi=1. For simplicity, we notate vUλ+η+1

and vUλ+η+2
as vUs and vUt .

Step 6: Denote U , vUs and vUt as G, vs and vt, respectively, and then, construct the direct graph
U ′ = (VU ′ , EU ′) from U = (VU , EU) based on Step 2.

Step 7: Label the vertices in U ′ based on the criteria as follows. We set: (i) number(vUs) = −0.5

and number(vj) = number(vi) + 0.5 for the vertices vUi
and vUj

(i, j ∈ {1, 2, ..., d}) on eij; and (ii)
number(vk) = number(vi) +0.5 and number(vj) = number(vk) +0.5 for {eij, eik, ekj} ⊂ EU ′ .

Step 8: Determine the coordinates of the vertices and edges in G based on the criteria as follows.
(i) For each vertex, vi(1 ≤ i ≤ nd), the Y coordinate is the assigned value of vi in G, while the range of
X coordinates is from the minimum to maximum values assigned to the path associated with vi in U ′;
and (ii) for each edge, eij(i, j ∈ {1, 2, ..., nd}), the X coordinate is the assigned value of eij in U ′, while
the range of Y coordinates is from the minimum to maximum values assigned to the vertices associated
with eij in G′.
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Figure 15 shows the results of graph drawing for the mobility graph and the signal graph, respectively.
From this figure, we observe that by applying the graph drawing approach, the layout structure of graphs
becomes unique and more readable in the visualization aspect.
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Figure 15. (a) Mobility graph; (b) signal graph. Results of graph drawing.

3.4. Page Rank Algorithm

After the mobility and signal graphs are obtained, we propose to use the PR algorithm to construct
the mapping from the signal graph into the mobility graph with the purpose of investigating the relation
between the physical layout and signal distribution in the target environment.

First of all, based on the results of path separation in Figure 8, we focus on the detection of the hot
areas, which appear frequently in the people’s motion patterns. To achieve this goal, we define Pz(i) as
the probability that the individual has visited the i-th area at the timestamp z. Thus, we have:

Pz+1(i) =
∑

j
Pz(j)(Pj→i/Nj) (3)

where Nj is the number of paths starting from the j-th area; and Pj→i is the area indicator function
calculated as follows.

Pj→i =

{
1 when there is a path starting from the j-th area to i-th area

0 otherwise
(4)

Second, by assuming that there are g areas in the target environment, we can obtain:

Pz+1 = MPz (5)

where Pz = [PZ(1), PZ(2), ...,PZ(g)]T; and M is a g×g matrix in which the element on the i-th row and
j-th column is calculated as mij = Pj→i/Nj(1 ≤ i, j ≤ g).

In M, mij(1 ≤ i ≤ g) becomes zero when Pj→i(1 ≤ i ≤ g) is zero, which indicates that there is
no path starting from the j-th area involved in the people’s motion patterns. In this case, we name the
current area as the hung area and then distribute the same probability to all of the areas of interest at the
next timestamp. On this basis, we modify the matrix M into:

S = M + ecT/g (6)
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where e = [1, 1, ..., 1︸ ︷︷ ︸
g in total

]T; and c = [c1, c2, ..., cg]
T is an indicator vector in which each element,

ci(1 ≤ i ≤ g), is calculated by:

ci =

{
1 when the i-th area is a hung area

0 otherwise
(7)

After this modification, we can find that the sum of each column in S equals one, which indicates that
the individual must appear in one of the areas of interest at the next timestamp. Due to the observation
constraint, the area where the individual appears at the next timestamp may not be detected. To solve this
problem, we set a probability factor, θ, to describe the probabilities that the individual appears nearby or
in other areas at the next timestamp. Hence, we continue to modify the matrix S into:

G = θS + (1− θ)eeT/g (8)

Based on Equation (8), we can find that G is a primitive matrix. Since:

Pz+1 = GPz → Pz = GzP0, (9)

we calculate the probability distribution of areas as P = limZ→∞ PZ . By setting
P0 = [1/g, 1/g, ..., 1/g︸ ︷︷ ︸

g in total

]T, which indicates that each area has the same probability to be visited at the first

timestamp, we can detect the hot areas, which have been visited frequently based on the P. Similarly,
the probability distribution of clusters in the signal graph can also be calculated based on the results of
cluster separation in Figure 16. Table 3 shows the probabilities of the areas and clusters, respectively, in
the mobility graph (MG) and the signal graph (SG), respectively.
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Figure 16. Cluster separation.
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Table 3. Results of probability distributions. MG, mobility graph; SG, signal graph.

IDs in MG 1 2 3 4 5 6

Probabilities 0.27 0.11 0.05 0.22 0.03 0.09
IDs in SG 1 2 3 4 5 6 7

Probabilities 0.19 0.03 0.026 0.03 0.026 0.01 0.02
IDs in SG 8 9 10 11 12 13 14

Probabilities 0.02 0.02 0.01 0.02 0.01 0.02 0.02
IDs in SG 15 16 17 18 19

Probabilities 0.01 0.02 0.01 0.02 0.01

Finally, we construct the mapping from the signal graph into the mobility graph based on the PR
values of the areas and clusters, as shown in Figure 17. In concrete terms, we map the clusters into the
areas with the same rank of PR values to preserve the consistency of the hot nodes in the mobility and
signal graphs. In our experiments, Area 5 (i.e., Lobby 3) cannot be mapped by any cluster, which means
that this area is not a hot area, and meanwhile, there are very few RSSs collected in this area. Therefore,
by using the PR algorithm, we not only construct the relation between the signal graph and the mobility
graph, but also detect the hot areas that appear frequently in the people’s motion patterns.

 

Figure 17. Mapping from the signal graph into the mobility graph.

3.5. Target Localization

After the mapping from the signal graph into the mobility graph is constructed, we conduct the
localization by using the Kullback–Leibler (KL) divergence. Specifically, first of all, we calculate the
distribution of RSS value i in each area, Qr

j(i), where r(1 ≤ r ≤ g) is the area ID, j(1 ≤ j ≤ f) is the
AP ID and f is the AP number. Second, we calculate the KL divergence between the distribution of the
newly-collected RSSs, T (i), and the RSS distribution with respect to each area, DKL(T ||Qr), by:

DKL(T ||Qr
j) =

∏f

j=1
(
∑ηr

i=1
T (i)In

T (i)

Qr
j(i)

) (10)

where ηr is the maximum of RSSs.
Finally, we locate the target in the area that corresponds to the smallest KL divergence.
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4. Performance Evaluation

4.1. Localization Accuracy

Based on the mapping relation between the signal and mobility graphs, we can obtain the RSS
distribution with respect to each area, as shown in Figures 18–22. In our experiments, we find that
the number of RSSs mapped into Lobby 1 is much larger than the number of RSSs mapped into the other
areas, which means that Lobby 1 is a hot area that appears frequently in the people’s motion patterns,
as expected. Figure 23 shows the result of localization accuracy. In this figure, the value on the i-row
and j-th column represents the probability of the RSSs in the i-th area that have been estimated in the
j-th area. As can be seen from Figure 23, the probabilities of correct area localization for Areas 1,
2, 3, 4 and 6 approach 100%, 85%, 64%, 64% and 80%, respectively. For the RSSs that have been
wrongly estimated, the estimated areas are rather adjacent to the correct one, which means that the
proposed approach is featured with satisfactory localization accuracy. We take Area 5 as an example.
Although all of the RSSs in this area have been wrongly estimated in Area 6, Areas 5 and 6 are rather
physically adjacent.
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Figure 18. (a) From Access Point 1 (AP1); (b) from AP2; (c) from AP3; (d) from AP4;
(e) from AP5. RSS distributions in Lobby 1.



Sensors 2015, 15 24808

-87 -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -69 -43 -41
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

RSS values (dBm)

P
ro

ba
bi

lit
ie

s

(a)

-87-81-80-79-77-76-75-74-73-71-69-67-66-65-64-60-58
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

RSS values (dBm)

P
ro

ba
bi

lit
ie

s

(b)

-69 -64 -58 -54 -53 -52 -50 -49 -48 -47 -46 -45 -44 -43 -39
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

RSS values (dBm)

P
ro

ba
bi

lit
ie

s

(c)

-87-85-82-81-80-78-77-75-72-71-70-68-67-65-62-61-60-56
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

RSS values (dBm)

P
ro

ba
bi

lit
ie

s

(d)

-87 -85 -84 -83 -82 -81 -80 -79 -78 -76 -73 -53 -49 -44 -43
0

0.05

0.1

0.15

0.2

0.25

RSS values (dBm)

P
ro

ba
bi

lit
ie

s

(e)

Figure 19. (a) From AP1; (b) from AP2; (c) from AP3; (d) from AP4; (e) from AP5. RSS
distributions in Corridor 2.
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Figure 20. (a) From AP1; (b) from AP2; (c) from AP3; (d) from AP4; (e) from AP5. RSS
distributions in Lobby 2.
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Figure 21. (a) From AP1; (b) From AP2; (c) From AP3; (d) From AP4; (e) From AP5.RSS
distributions in corridor 1.
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Figure 22. (a) From AP1; (b) from AP2; (c) from AP3; (d) from AP4; (e) from AP5. RSS
distributions in Corridor 3.
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Figure 23. Probabilities of area localization.

4.2. Parameter Discussion

Based on Equations (8) and (9), we can find that the value P is determined by the parameter θ.
To illustrate this result more clearly, Figures 24 and 25 show the variations of PR values for the mobility
graph and signal graph, respectively, under different values of θ. From these figures, we observe that θ
has a slight impact on the rank of PR values. Therefore, we conclude that the value of P seriously relies
on the calculation of S, which means that the localization and mapping performance is significantly
influenced by the observation on the motion patterns of the people in the target environment.
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Figure 24. Page rank (PR) values under different values of θ for the mobility graph.
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Figure 25. PR values under different values of θ for the signal graph.

5. Conclusions and Future Work

In this paper, we propose to use a novel indoor SLAM approach, namely the PRIMAL, to
characterize the layout of the target environment and consequently achieve area-level localization
accuracy. Compared to the existing SLAM approaches, the PRIMAL is independent of location
fingerprinting and motion sensing. In addition, the PRIMAL can not only detect the hot areas that
have been visited frequently by people, but also conduct effective mapping from the signal graph into
the mobility graph. Furthermore, with the help of the Allen logic, we rely on the concept of gene
sequencing to investigate the correlation between different RSS sequences and meanwhile use the PR
algorithm to rank the nodes in the mobility and signal graphs for better understanding of the people’s
motion patterns in both the physical and signal space. For future work, how to explore the people’s
motion patterns in a large-scale environment, as well as how to locate the target at the coordinate level
form two interesting topics.
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Appendix

Proof of the Scoring Function

The flow chart of the proofs is shown in Figure A1.

∈
∈

Φ  
Figure A1. Flow chart of the proofs.

(1) Condition 1: i = 1.

There are two cases to be considered as follows.
Case 1: a1 = b1;
Case 2: a1 6= b1.
In Case 1, we have H(1, 1) = max{0,α} = α. Then, if j = 2 and a1 6= b2, we have H(1, 2) =

max{0,β,max{H(1−k, 2)+wk},max{H(1, 2−l)+wl}} = 0 < α; ...; if j = Q−1 and a1 6= bQ−1, we
haveH(1, Q−1) = max{0,β,max{H(1−k,Q−1)+wk},max{H(1, Q−1−l)+wl}} = 0 < α; and if
j = Q and a1 = bQ; we haveH(1, Q) = max{0,α,max{H(1−k,Q)+wk},max{H(1, Q−l)+wl}} =

α > 0.
In Case 2, we have H(1, 1) = max{0,β} = 0. Then, if j = 2 and a1 6= b2, we have H(1, 2) =

max{0,β} = 0; ...; if j = Q − 1 and a1 6= bQ−1, H(1, Q − 1) = max{0,β} = 0; and if j = Q and
a1 = bQ, H(1, Q) = max{0,α,max{H(1− k,Q) + wk},max{H(1, Q− l) + wl}} = α > 0.
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Therefore, we can easily obtain that H(1, j) satisfies 1© 2© 3© 4© 5©under Condition 1.

(2) Condition 2: i = 2.

There are two cases to be considered as follows.
Case 1: a2 = b1;
Case 2: a2 6= b1.
In Case 1, we haveH(2, 1) = max{0,α,max{H(2−k, 1)+wk},max{H(2, 1−l)+wl}} = α. Then,

if j = 2 and a2 6= b2, we have H(2, 2) = max{0, H(1, 1) +β,max{H(2− k, 2) + wk},max{H(2, 2−
l)+wl}} ∈ {0,α+β} <α; ...; if j = Q−1 and a2 6= bQ−1, we haveH(2, Q−1) = max{0, H(1, Q−2)+

β,max{H(2−k,Q−1)+wk},max{H(2, Q−1−l)+wl}} ∈ {0,α+β} <α; and if j = Q and a2 = bQ,
we have H(2, Q) = max{0, H(1, Q − 1) + α,max{H(2 − k,Q) + wk},max{H(2, Q − l) + wl}} ∈
{α, 2α} ≥ α.

Then, we can easily obtain that H(2, j) satisfies 1©. Furthermore, the relationship between H(2, j)

and H(3, j + 1) is equivalent to the relationship between H(1, j − 1) and H(2, j). Thus, based on the
results in Condition 1, if a1 = bj−1 and a2 = bj , we have H(1, j − 1) = α < 2α = H(2, j); and if
a1 6= bj−1 and a2 = bj , we have H(1, j − 1) = 0 < α = H(2, j). Hence, H(2, j) satisfies 3© 5©. On the
other hand, if a1 = bj−1 and a2 6= bj , we haveH(2, j) ∈ {0,α+β} < α = H(1, j−1); and if a1 6= bj−1

and a2 6= bj , we have H(2, j) = 0 = H(1, j − 1). Hence, H(2, j) satisfies 2© 4©.
In Case 2, we haveH(2, 1) = max{0,β,max{H(2−k, 1)+wk},max{H(2, 1−l)+wl}} = 0. Then,

if j = 2 and a2 6= b2, we have H(2, 2) = max{0, H(1, 1) +β,max{H(2− k, 2) + wk},max{H(2, 2−
l) +wl}} ∈ {0,α+β}; ...; if j = Q− 1 and a2 6= bQ−1, we have H(2, Q− 1) = max{0, H(1, Q− 2) +

β,max{H(2− k,Q− 1) +wk},max{H(2, Q− 1− l) +wl}} ∈ {0,α+β}; and if j = Q and a2 = bQ,
we have H(i, j) = max{0, H(i − 1, j − 1) + α,max{H(i − k, j) + wk},max{H(i, j − l) + wl}} ∈
{α, 2α} > {0,α + β}.

Then, we can easily obtain that H(2, j) satisfies 1©. Similarly, we equate the relationship between
H(2, j) and H(3, j + 1) to the relationship between H(1, j − 1) and H(2, j). Based on the results in
Condition 1, if a1 = bj−1 and a2 = bj , we have H(1, j − 1) = α < 2α = H(2, j); and if a1 6= bj−1 and
a2 = bj , we have H(1, j − 1) = 0 < α = H(2, j). Hence, H(2, j) satisfies 3© 5©. On the other hand, if
a1 = bj−1 and a2 = bj , we have H(2, j) ∈ {0,α + β} < α = H(1, j − 1); and if a1 6= bj−1anda2 6= bj ,
we have H(2, j) ≥ 0 = H(1, j − 1). Hence, H(2, j) satisfies 2© 4©.

Therefore, we obtain that H(2, j) satisfies 1© 2© 3© 4© 5© under Condition 2.
In the results that follow, we only focus on the situation that j ≥ i in H(i, j). Similar results can be

easily obtained with respect to the j < i in the H(i, j) situation.

(3) Condition 3: i = 3.

In this condition, if j = 3 and a3 6= b3, we have H(3, 3) = max{0, H(2, 2) + β,max{H(3− k, 3) +

wk},max{H(3, 3− l) +wl}} = max{0, H(2, 2) +β, H(2, 3) +β−α} ∈ {0,α+β, 2α+β}; if j = 4

and a3 6= b4, we haveH(3, 4) = max{0, H(2, 3)+β,max{H(3−k, 4)+wk},max{H(3, 4−l)+wl}} =

max{0, H (2, 3)+β, H(3, 3)+β−α} ∈ {0,α+β, 2α+β,α+2β}; ...; if j = Q−1 and a3 6= bQ−1, we
haveH(3, Q−1) = max{0, H(2, Q−2)+β,max{H(3−k,Q−1)+wk},max{H(3, Q−1−l)+wl}} ∈
{0,α + β, 2α + β,α + 2β}; if j = Q and a3 = bQ, we have H(3, Q) = max{0, H(2, Q − 1) +

α,max{H(3 − k,Q) + wk},max{H(3, Q − l) + wl}} = max{0, H(2, Q − 1) + α} ≥ H(3, Q − 1);
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and if j = Q+ 1 and a3 6= bQ+1, we have H(3, Q+ 1) = max{0, H(2, Q) +β,max{H(3− k,Q+ 1) +

wk},max{H(3, Q+1−l)+wl}}. To obtain the relationship betweenH(3, Q) andH(3, Q+1), we need
to examine the relations of four neighboring elements, H(3, Q), H(3, Q+ 1), H(4, Q) and H(4, Q+ 1).
If a4 = bQ, the calculation of H(4, Q) is equivalent to the calculation of H(3, Q + 1) with a3 = bQ+1.
Since H(3, Q+ 1)|a3=bQ+1

> H(3, Q+ 1)|a3 6=bQ+1
, we have H(4, Q) ≥ H(3, Q+ 1); and if a4 = bQ+1,

we haveH(4, Q+1) = max{0, H(3, Q)+α,max{H(4−k,Q+1)+wk},max{H(4, Q+1−l)+wl}} =

max{0, 2α + H(2, Q − 1),max{H(4 − k,Q + 1) + wk},max{H(4, Q + 1 − l) + wl}} ≥ 2α + β ≥
H(3, Q+ 1).

Therefore, we can easily obtain that H(3, j) satisfies 1© 2© 3© 4© 5© under Condition 3.

(4) Condition 4: i = n ≥ 4.

In this condition, if j = n and an 6= bn, we haveH(n, n) = max{0, H(n−1, n−1)+β,max{H(n−
k, n)+wk},max{H(n, n− l)+wl}} ∈ {0,α+(n−1)β,α+(n−2)β, ...,α+β, 2α+(n−2)β, ..., 2α+

β, ...(n − 1)α + β}; ...; if j = Q − 1 and an 6= bQ−1, we have H(n,Q − 1) = max{0, H(n −
1, Q − 2) + β,max{H(n − k,Q − 1) + wk},max{H(n,Q − 1 − l) + wl}} ∈ {0,α + (n − 1)β,α +

(n − 2)β, ...,α + β, 2α + (n − 2)β, ..., 2α + β, ...(n − 1)α + β}; if j = Q and an = bQ, we have
H(n,Q) = max{0, H(n− 1, Q− 1) + α,max{H(n− k,Q) + wk},max{H(n,Q− l) + wl}}; and if
j = Q+ 1 and an 6= bQ+1, we assume that H(n,Q+ 1) satisfies 1© 2© 3© 4© 5©.

Then, under the an+1 6= bQ−1 and an+1 = bQ conditions, ifH(n+1, Q) < H(n+1, Q−1), we obtain:

max



0

{H(n+ 1, Q− 1)−
α+ β}

H(n,Q− 1) + α

H(n,Q)− α+ β


< max



0

{H(n+ 1, Q− 2)−
α+ β}

H(n,Q− 1) + β

H(n,Q− 1)− α+ β


(11)

Based on Equation (11), since under the an 6= bQ−2, an = bQ−1 and an 6= bQ conditions, we have
H(n,Q− 1) ≥ H(n,Q− 2) and H(n,Q− 1) ≥ H(n,Q), Equation (11) can be simplified into H(n+

1, Q − 2) > H(n + 1, Q − 1). Thus, the range of the value H(n + 1, Q − 2), F (H(n + 1, Q − 2)), is
not overlapped with the range of the value H(n+ 1, Q− 1), F (H(n+ 1, Q− 1)), notated as F (H(n+

1, Q− 2)) ∩ F (H(n+ 1, Q− 1)) = Φ.
On the other hand, the relations ofH(n+1, Q−2) ∈ {0,α,α+β, ...,α+nβ, 2α, 2α+β, ..., 2α+(n−

1)β, nα, nα+β, (n+1)α} andH(n+1, Q−1) ∈ {0,α+β, ...,α+nβ, 2α+β, ..., 2α+(n−1)β, nα+β}
indicate that F (H(n+1, Q−2))∩F (H(n+1, Q−1)) 6= Φ, which conflicts with the previous assumption
in (Equation (11)). Therefore, we obtain that H(n+ 1, Q) ≥ H(n+ 1, Q− 1), and thereby, H(n+ 1, Q)

satisfies 1© 2© 3© 4© 5© under Condition 4.
In conclusion, it is proven that the definition of H(i, j) satisfies 1© 2© 3© 4© 5©.
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