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Abstract: This paper presents a fast adaptive image restoration method for removing spatially 

varying out-of-focus blur of a general imaging sensor. After estimating the parameters of 

space-variant point-spread-function (PSF) using the derivative in each uniformly blurred 

region, the proposed method performs spatially adaptive image restoration by selecting the 

optimal restoration filter according to the estimated blur parameters. Each restoration filter is 

implemented in the form of a combination of multiple FIR filters, which guarantees the fast 

image restoration without the need of iterative or recursive processing. Experimental results 

show that the proposed method outperforms existing space-invariant restoration methods in the 

sense of both objective and subjective performance measures. The proposed algorithm can be 

employed to a wide area of image restoration applications, such as mobile imaging devices, 

robot vision, and satellite image processing. 

Keywords: image restoration; spatially varying blur; truncated constraint least-squares 

(TCLS) filter; point spread function estimation 

 

1. Introduction 

Restoration of spatially varying out-of-focus blur is a fundamental problem in enhancing images 

acquired by various types of imaging sensors [1–4]. Despite the advances in various digital imaging 
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techniques, restoration of spatially varying degradation is still a challenging issue because of the 

inherent limitation of imaging devices and the non-ideal image acquisition conditions. Although 

various image restoration algorithms have been proposed in the literature, most of them work under an 

unrealistic condition that, for example, there is only a single, space-invariant blur. High computational 

load and/or the iterative optimization are another burden on the practical employment of digital image 

restoration algorithms in a general imaging sensor. 

As a well-known, basic image restoration algorithm, the constrained least-squares filter can remove 

space-invariant image degradation with suppressing noise amplification using an appropriately 

weighted smoothing constraint [5]. Kim et al. proposed a practically efficient restoration method by 

truncating coefficients of the constrained least-squares filter [6–8], which can be implemented in the 

form of the finite impulse response (FIR) filter. However, the original version of the truncated 

constrained least-squares (TCLS) filter cannot deal with a spatially varying blur. 

For restoring a space-variant degradation, Kuthirummal estimated the out-of-focus blur using a 

computational camera [9], and Pertuz proposed a spatially adaptive restoration method by estimating a 

local blur from multiple images [10]. Kuthirummal’s method requires a special optical part that is not 

easily implemented in a general camera, whereas Pertuz’s method is not suitable for fast image 

restoration because of the use of multiple input images. Whyte and Xu estimated blurring components 

in small blocks and proposed the correspondingly adaptive restoration method using sparse 

representation, respectively, in [11,12]. Chan proposed a selective image restoration method by 
separating defocused areas [13]. Shen proposed a restoration method using 1  and 2  minimizations [14]. 

The above mentioned adaptive restoration algorithms commonly need enormous amount of computations 

and an indefinite processing time to estimate the degradation parameters and optimization-based 

adaptive restoration. 

In order to minimize the computational overhead of space-variant image restoration while 

preserving the restoration performance, this work assumes that spatially varying degradation can be 

approximated as multiple, region-wise space-invariant Gaussian kernels, and that the restoration 

process can be approximated in the form of an FIR filter. In this context, the proposed algorithm 

consists of two functional modules: (i) estimation of the spatially varying two-dimensional Gaussian 

point spread functions (PSFs) by analyzing the relationship between the first and second derivatives of 

the corresponding region and (ii) spatially adaptive image restoration using optimally selected TCLS 

filters as shown in Figure 1. The major advantage of the proposed method is the fast, robust restoration 

of spatially-varying defocus blur using the parametric model of the PSF and a computationally 

efficient FIR restoration filter. Although the real PSF of an optical lens is not necessarily Gaussian, the 

proposed parametric model is a good approximation of most optical lenses, which will be proved by 

the experiment. 

Since spatially-varying image restoration is a fundamental problem in image filtering, enhancement, 

and restoration applications, there have been many researches in the literature. Some important 

techniques are summarized below with brief comparisons with the proposed work. Early efforts to 

enhance a satellite image assumed that the PSF varies because of a geometric transformation. In this 

context, Sawchuk proposed a space-variant image restoration method that performs a geometric 

transformation to make the blur kernel space-invariant, and then performed a space-invariant inverse 

filtering [15]. Flicker et al., proposed a modified maximum-likelihood deconvolution method for 



Sensors 2015, 15 882 

 

 

astronomical adaptive optics images [16]. It is an improved version of anisoplanatic deconvolution 

using a space-varying kernel and Richardson-Lucy restoration. Flicker’s method, however, differs 

from this work because of pre-required space-varying PSF information and optimization-based 

iterative restoration. Hajlaoui et al. proposed a spatially-varying restoration approach to enhance a 

satellite image acquired by a pushbroom-type sensor where the PSF is spatially varying in only one 

direction [17]. It uses wavelet decomposition with redundant wavelet frames to improve the restoration 

performance. However, MAP estimation and wavelet decomposition are not suitable to be 

implemented in the form of simple linear filtering. Hirsch et al. proposed a class of linear 

transformations called the Filter Flow for blind deconvolution of motion blur with noise, and they 

demonstrated the practical significance by showing experimental results on removing geometric 

rotation, atmospheric turbulence, and random motions [18]. Although this work has a common 

motivation of efficient space-variant deconvolution, PSF estimation of motion blur differs from that of 

the defocus blur. 

 

Figure 1. Block diagram of the proposed adaptive image restoration algorithm. (The 

derivative operations are shown in only the horizontal direction for simplicity but the real 

system computes both horizontal and vertical derivatives.).  

This paper is organized as follows. In Section 2, a general space-variant image degradation process 

is approximated into a region-wise space-invariant model, which serves as a theoretical basis of the 

proposed space-adaptive image restoration. Sections 3 and 4, respectively, present the estimation of 

space-variant blur and the corresponding adaptive image restoration algorithms. After experimental 

results are given Section 5; Section 6 concludes the paper. 
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2. Region-Wise Space-Invariant Image Degradation Model  

If spherical and chromatic aberrations of a lens are ignored, a point on the object plane generates  

a space-invariant point spread function (PSF) in the image plane as shown in Figure 2. The 

corresponding linear space-invariant image degradation model of the out-of-focus blur is expressed as 

a convolution sum as [19] 

( , ) ( , ) ( , ) η( , )
s t

g x y h s t f x s y t x y= − − +  (1)

where ( , )g x y  represents the out-of-focus image, ( , )f x y  the virtually in-focused image assuming  

that the object plane is located at the in-focus position, η( , )x y  the additive noise, and ( , )h s t  the  

space-invariant PSF. 

 

Figure 2. An image formation model of an object plane with distance d  from the lens.  
The point spread function (PSF) ( , )h s t  is invariant throughout the image plane. 

On the other hand, multiple objects with different distances from the lens generate different PSFs in 

the image plane as shown in Figure 3. In the corresponding space-variant image formation model, a 

PSF is determined by the distance of the object point from the lens. Since different object points are 

projected onto different locations in the image plane, a parametric representation of the Gaussian PSF 

is given as 

2 2

2 2

1 ( )
( , ; , ) ( , ;σ ) exp

2πσ 2σG xy
xy xy

s t
h s t x y h s t

 − += =   
 

 (2)

where σ xy  varies with the location in the image plane. Equation (2) is a simplified version of a PSF for 

a single lens proposed in [20]. Elaboration of lens analysis and design is out of scope of the paper, and 

the proposed parametric method can represent other types of PSF with proper modifications.  

The corresponding space-variant image degradation model is given as 

( , ) ( , ; ) ( , ) ( , )G xy
s t

g x y h s t f x s y t x y= σ − − + η  (3)

Assuming that an image includes multiple objects (or regions) with different distances from the 

focus point and background, the space-variant model in Equation (3) can be approximated by a  

region-wise space-invariant version as 
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1

( , ) ( , ) ( , ; ) ( , ) ( , )
K

i G i
i s t

g x y A x y h s t f x s y t x y
=

 = σ − − + η 
 

   (4)

where the binary-valued function ( , )iA x y  is equal to unity only if a pixel at ( , )x y  is degraded by the  

i-th PSF ( , ; )G ih s t σ , and K  the number of different PSFs. The PSF ( , ; )G ih s t σ  in Equation (4) is  

space-invariant in the region where ( , ) 1iA x y = , whereas ( , ; )G ih s t σ  in Equation (3) is space-variant at 

each pixel. Figure 4 shows a real defocused image with multiple different PSFs. The tree and gazebo is 

blurred by different PSFs because they are located in different distances from the camera. 

 

Figure 3. Image formation of two points with different distances from the lens, where 

1 2( , ) ( , )h s t h s t≠ . 

 

Figure 4. An outdoor image acquired by a digital single lens reflected (DSLR) camera.  

The gazebo and trunk of the tree are blurred by different PSFs. 

3. Blur Estimation Based on the Derivative Distribution 

In a sufficiently small region containing only a single, vertical edge as shown in Figure 5a, the ideal 

edge profile along the horizontal line can be expressed as 

( , ) ( )e cf x y au x x b= − + , for c cx p x x p− ≤ ≤ +  and c cy p y y p− ≤ ≤ +  (5)

where ( )cu x x−  represents the unit step function, which is also called Heaviside function, shifted by 

xc, a  the magnitude of the edge, and b  the offset as shown in Figure 5b. If the region eR  is out-

focused by the Gaussian PSF that can be expressed as 
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2 2

2 2

1
( , ) exp

2 2

x y
h x yσ

 += − πσ σ 
 (6)

the correspondingly blurred edge function is given as 

( , ) ( , ) ( , ) ( , ) ( * )( , ) ( , )e eg x y h x y f x y x y h f x y x yσ σ σ= ∗ + η = + η  (7)

where ( , )x yη  represents the additive white Gaussian noise, such as 2( , ) ~ (0, )x y ηη σ . In the rest of 

this section, the shifting components cx  and cy  are omitted for simplicity. 

 
(a) (b) (c) 

Figure 5. (a) A (2 1) (2 1)p p+ × +  region centered at ( , )c cx y , denoted as eR , containing 

only a single edge; (b) the ideal edge function along the horizontal line in eR ; and (c) the 

convolution of the ideal edge function with a Gaussian blurring kernel. 

In order to estimate the variance of the Gaussian PSF, an edge-based analysis approach is used.  

This approach is a parametrically modified version of two-dimensional isotropic PSF estimation using 

one-dimensional edge profile analysis [21]. Although one-dimensional edge can be in any direction,  

we derive the PSF estimation procedure in the horizontal direction, since any non-horizontal edges  

can be expressed as a rotated version of the horizontal edge. From the input degraded edge signal,  

a one-dimensional gradient of the blurred edge signal, that is the derivative of Equation (7) with 

respect to the x -axis without loss of generality, provides an important clue using the fundamental 

properties of the derivative of convolution and normal distribution as 

( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( ) ( , )

( , ) ( , )

( ,0) ( , )

x e x e x

x

x
s t

t

g x y h x y f x y x y

h x y a x x y

a h s t x s x y

a h x t x y

ah x x y

σ

σ

σ

σ

σ

∇ = ∗∇ + ∇ η
= ∗ δ + ∇ η

= δ − + ∇ η

′= + η

′= + η





 
(8)

where 2( , ) ( , ) ~ (0, 2 )xx y x y η′η = ∇ η σ  and the derivative operator x∇  can be replaced by a forward 

difference operator in the horizontal direction as 

( , ) ( 1, ) ( , )x f x y f x y f x y∇ = + −  (9)
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In one-dimensional case, the Gaussian parameter σ  can be directly computed from the derivative 

equation by solving the Lambert W function [22]. However, it is not easy to solve the two-dimensional 

derivative equation given in Equation (8) for the Gaussian parameter. 

Instead of directly solving Equation (8) for the Gaussian parameter σ , an approximate estimation of 

the amount of out-of-focus blur on the horizontal edge is given by the ratio of local variances of the 

first and second derivatives as 

{ }
{ }

( ){ } ( ){ }
( ){ } ( ){ }

( ){ } ( ){ }

2

22

222 2

22

22

2 2

2

var ( , )
( , )

var ( , )

( , ) ( , )

( , ) ( , )

( , 0) ( , ) ( , 0) ( , )

( , 0) ( , ) ( , 0) ( , )

x e
x

x e

x e x e

x e x e

g x y
B x y

g x y

E g x y E g x y

E g x y E g x y

E ah x x y E ah x x y

ax ax
E h x x y E h x x y

a E h

σ σ

σ σ

∇
=

∇

∇ − ∇
=

∇ − ∇

′ ′+ η − + η
=

       ′′ ′′− + η − − + η      σ σ      

=
{ } { } { }

{ } { } { }

22 2

2 2
22 2

4 2 4

( , 0) 2 ( , 0) ( , ) ( , 0)

2
( , 0) ( , 0) ( , ) ( , 0)

x aE h x x y a E h x

a a a
E x h x E xh x x y E xh x

σ σ σ

σ σ σ

′+ η −

′′− η −
σ σ σ

 
(10)

where var{}⋅  represents the local variance and {}E ⋅  the local mean or average operators. The discrete 

approximation of the second order derivative operator 2
x∇  can be expressed as 

{ }2 ( , ) ( , )x x xf x y f x y∇ = ∇ ∇  (11)

In Equation (10), both { }( ,0) ( , )E h x x yσ ′η  and { }( ,0) ( , )E xh x x yσ ′′η  are close to 0 if we assume 

that both ( , )x y′η  and ( , )x y′′η  are uncorrelated with ( ,0)h xσ . We have that, for ( , ) ex y R∈ , where eR  

was defined in Figure 5a, 

{ } { } { }

{ } { } { }

{ } { }
{ } { }

22 2 2

2 2
22 2

4 2 4

22

4
22 2

4

( ,0) 2 ( ,0) ( , ) ( ,0)
( , )

2
( ,0) ( ,0) ( , ) ( ,0)

( ,0) ( ,0)

( ,0) ( ,0)

            

x

a E h x aE h x x y a E h x
B x y

a a a
E x h x E xh x x y E xh x

E h x E h x

E x h x E xh x

σ σ σ

σ σ σ

σ σ

σ σ

′+ η −
=

′′− η −
σ σ σ

−
≈ σ

−

∝ σ

 
(12)

which states that the amount of blur in the neighborhood of edge depends on the squared variance of 
the Gaussian PSF. The amount of blur on the vertical edge, ( , )yB x y , can also be computed in the 

same manner. The amount of the blur in an arbitrary direction is finally computed by combining the 

horizontal and vertical components as 

2 2

( , ) ( , )
( , )

( , ) ( , )

x y

x y

B x y B x y
B x y

B x y B x y
=

+
 (13)
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The size of a local region eR  is related to the range of an out-of-focus blur that is estimated using 

local statistics. If the size of a local region increases, a larger PSF can be estimated at the cost of 
potential mixture with other edges. In this work, 10p =  is used to estimate 4.0σ =  at maximum.  

In flat areas, ( , )B x y  has a small value. It implies that both of a blurry object and a clear object have 

similar ( , )B x y  values in flat areas. However, the flat area does not need to be restored regardless of 

the amount of the defocus blur. 

Figure 6 shows a step-by-step result of the proposed out-of-focus blur estimation process. Figure 6a 

show a synthetic image with gradually increasing amount of blur from left to right according to  

Equation (7). The variance of the Gaussian PSF changes from 0 to 2.5, and the variance of additive 

noise is 0.0001. Figure 6b,c, respectively, show the first- and second-order derivatives of the image. 

Figure 6d,e, respectively, show local variances of the first- and second-order derivatives. As shown in 
Figure 6f, the estimated amount of the blur ( , )B x y  follows the real amount of the blur regardless of the 

magnitude of edges. 

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 6. Computational procedure for estimating the blur component ( , )B x y : (a) a 

synthetically degraded image by spatially varying blur; (b) the derivative of (a); (c) the 

second-order derivative of (a); (d) the local variance of (b); (e) the local variance of (c); 
and (f) the estimated blur component ( , )B x y . 

4. Region-Adaptive Image Restoration Using Optimally Truncated Constrained  

Least-Squares Filters 

Let ( , )H u v  represent the two-dimensional discrete Fourier transform (DFT) of the degradation 

function ( , )h x y  of the space-invariant degradation model, the corresponding constrained least-squares 

(CLS) restoration filter ( , )CLSR u v  is given as 

2 2

( , )
( , )

( , ) ( , )
CLS

H u v
R u v

H u v C u v

∗

=
+ λ

 (14)

where ( , )C u v  represents a high-pass filter, and λ  the regularization parameter for controlling the 

smoothness in the restored image [19]. In order to avoid the frequency domain processing that requires 
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at least one additional frame memory, Kim has proposed the original version of truncated constrained 

least-squares (TCLS) filter [6], and also applied it to multi-focusing image restoration [8]. The TCLS 

filter is generated by truncating the spatial domain coefficients of the CLS filter using the raised cosine 

window. As a result, the TCLS filter can be realized in the form of a finite impulse response (FIR) 

filter in the spatial domain. 
In order to design the TCLS restoration filter for the estimated blur size ( , )B x y , an arbitrary image 

is synthetically blurred by Gaussian function with variance 2σ  to establish the relationship between 
( , )B x y  and σ  in a statistical manner. As shown in Figure 7, since ( , )B x y  and σ  have the one-to-one 

correspondence, the optimum TCLS filter can be selected by calculating ( , )B x y  out of a set of  

a priori generated TCLS filters. 

 

Figure 7. The blur size ( , )B x y  calculated with neighbors in the size of 21 × 21. 

Estimated values of ( , )B x y  share adjacent intervals to select one of multiple TCLS filters for 

practically viable implementation. In this paper, the sharing step depends on the estimated values in a 

synthetically degraded images by Gaussian blurs that have various sizes according to Equation (1). The 

intervals of [0.08, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 0.96), [0.96, 1.2), and [1.2, ∞) 

are used to determine the amount of blur according to the Gaussian functions with variances of 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0, respectively. Although any number of intervals can be implemented 

in theory, we used nine intervals for tractable computational load. 

In order to reduce the blocking artifacts caused by the quantization process, the proposed restoration 

method combines two optimum filters as 

( ){ }ˆ ( , ) 1 ( , ) ( , ) ( , ) ( , ) ( , )B i B jf x y x y R x y x y R x y g x y= − α + α ∗  (15)

where ( , )iR x y  and ( , )jR x y  are two optimally selected TCLS filters, ( , )B x yα  the weighting factor 

for the appropriate fusion of restored images, and 
( , )

( , ) i
B

j i

B x y B
x y

B B

−α =
−

, for 0 ( , ) 1B x y≤ α ≤ . iB  and 

jB , respectively, represent the minimum and maximum values of the section that ( , )B x y  belongs to.  

To reduce common restoration artifacts, such as noise clustering, ringing, and overshoot near edges, 

the spatially adaptive noise-smoothing algorithm [6,8] can also be used on the necessity basis. 
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Figure 8 shows an example for of the proposed region-adaptive image restoration algorithm. A 

spatially variant defocused input image is segmented for selecting optimal TCLS filters according to 

the blur map defined in Equation (10). The blurred image can be restored using Equation (15) together 

with the spatially adaptive noise smoothing algorithm. 

The process of the proposed image restoration is shown as Algorithm 1. The proposed blur 

estimation algorithm corresponds to lines 1–2 in Algorithm 1 and the proposed region-adaptive 

restoration algorithm corresponds to lines 3–5. 

 

Figure 8. Procedure of the proposed region-adaptive image restoration algorithm. 

Algorithm 1 The proposed image restoration 
Inputs: an input image ( , )eg x y , a set of TCLS filters, a table to share interval for selecting optimal filters. 

1. Estimate the amounts of blur as 
{ }
{ }2

var ( , )
( , )

var ( , )
x e

x

x e

g x y
B x y

g x y

∇
=

∇
 and 

{ }
{ }2

var ( , )
( , )

var ( , )

y e

y

y e

g x y
B x y

g x y

∇
=

∇
. 

2. Calculate the blur map ( , )B x y  according to 
2 2

( , ) ( , )
( , )

( , ) ( , )

x y

x y

B x y B x y
B x y

B x y B x y
=

+
. 

3. Select two optimal TCLS filters ( , )iR x y  and ( , )iR x y  using the blur map and the input table. 

4. Restore adaptively the input image by 

( ){ }ˆ ( , ) 1 ( , ) ( , ) ( , ) ( , ) ( , )B i B jf x y x y R x y x y R x y g x y= − α + α ∗ . 

5. Apply the spatially adaptive noise smoothing algorithm. 

Output: a space adaptively restored image. 

5. Experimental Results 

For evaluating the performance of the proposed algorithm, Three sets of test images including a 

synthetic image, standard images of size 768 × 512, and outdoor images of size 1024 × 768 acquired 

by using a digital single lens reflected (DSLR) camera were tested using the peak-to-peak  

signal-to-noise ratio (PSNR), mean structural similarity (MSSIM) [23], and the CPU processing time 

in seconds on a PC equipped with a 3.40 GHz CPU and 16 GB RAM.  
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Experimental results using a synthetic image are shown in Figure 9. As shown Figure 9c,d, the CLS 

filter and Dong’s method result in significant ringing artifacts because of the mismatch between the 

real blur and the restoration filter. Although Yang’s method that minimizes the total variation can 

better remove the defocus blur artifact with suppressed ringing as shown in Figure 9e than the CLS 

filter and Dong’s method, it cannot avoid distortions in high frequency regions, such as corners and 

ridges. Its iterative computational structure is another burden to be implemented in a commercial 

digital camera. The result of Xu’s method include ringing artifact as shown in Figure 9f. Since Xu’s 

method globally estimates a blur kernel in the entire input image and then adjusts the blur kernel for 

each divided region, it is not easy to accurately measure the spatially varying defocus blur that may 

continuously changes throughout the image. Figure 9g,h show that both Shen’s and the proposed 

restoration methods can successfully restore the spatially varying defocus blur without ringing 

artifacts. Although both methods perform restoration based on the blur map, Shen’s method is strongly 

influenced by noise because it uses only maximum and minimum values within a local window for 

generating the blur map, which results in artifacts at boundaries with discontinuity of the blur map. On 

the other hand, the proposed method is more robust to noise since it uses the ratio of variances of the 

first and second derivatives in the corresponding region. The precisely estimated blur map by the 

proposed method results in less ringing artifact with the highest PSNR and MSSIM values.  

Figure 10a,b respectively show the averaged step responses of various restoration methods used in 

Figure 9. The restored step response using the proposed method is the most similar to that of the input 

image with minimum undesired artifacts. 

(a) (b) 

(c) (d) 

Figure 9. Cont. 
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(e) (f) 

(g) (h) 

Figure 9. Comparison of different restoration algorithms using a synthetic image; (a) the input 

image; (b) the degraded image by spatially varying blur; (c) the restored image by the 

constrained least squares (CLS) filter (peak-to-peak signal-to-noise ratio (PSNR) = 33.13, 

mean structural similarity (MSSIM) = 0.94); (d) the restored image by the Dong’s method [24] 

(PSNR = 26.68, MSSIM = 0.84); (e) the restored image by the Yang’s method [25]  

(PSNR = 36.44, MSSIM = 0.97); (f) the restored image by the Xu’s method [12]  

(PSNR = 29.62, MSSIM = 0.93); (g) the restored image by the Shen’s method [14]  

(PSNR = 36.88, MSSIM = 0.98); and (h) the restored image by the proposed method 

(PSNR = 39.19, MSSIM = 0.98). 

 
(a) 

Figure 10. Cont. 
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(b) 

Figure 10. Comparison of different restoration algorithms using the ideal step function;  

(a) the step responses of edge around the rectangle in Figure 9b; (b) the step responses of 

edge around the triangle in Figure 9b. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 11. Comparison of different restoration algorithms using another synthetic image 

generated by a commercial three-dimensional computer graphics software; (a) the input 

image; (b) the restored image by the Dong’s method [24] (PSNR = 22.62, MSSIM = 0.94); 

(c) the restored image by the Yang’s method [25] (PSNR = 29.00, MSSIM = 0.98); (d) the 

restored image by the Xu’s method [12] (PSNR = 26.17, MSSIM = 0.96); (e) the restored 

image by the Shen’s method [14] (PSNR = 30.21, MSSIM = 0.98); and (f) the restored 

image by the proposed method (PSNR = 35.44, MSSIM = 0.99). 
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In addition, the propose method is faster than other restoration methods. More specifically,  

for an image with M  pixels, computational complexities of the proposed defocus blur estimation and 

spatially adaptive restoration algorithms are both equal to O( M ). Thus, computational complexity of 

the proposed algorithm is equal to O( M ). The computational complexities of Dong’s and Yang’s 

methods are both equal to O( NM ), where N  represents the number of iterations. In Shen’s method, 

the computational complexity of the blur estimation image restoration algorithms are respectively 
equal to O( M ) and O( NM ) because of using 1  − 2  optimizations with N  iterations. The 

computational complexity of Xu’s method is also equal to O( NM ) because of its iterative structure. 

Figure 11 shows the results in another synthetic image which was generated using a commercial  

three-dimensional computer graphics software. Distances of the cylinder, cube, cone, and sphere to the 

camera lens is respectively equal to 15.5, 17, 24, and 25.5 cm with the in-focus distance of 17 cm.  

The proposed restoration method shows the best restored result in the sense of PSNR and MSSIM 

values and restores the spatially varying blur with minimum artifacts. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 12. Comparison of different restoration algorithms using a real image with multiple 

objects with different distances from the camera; (a) the input image; (b) the restored 

image by the Dong’s method [24]; (c) the restored image by the Yang’s method [25];  

(d) the restored image by the Xu’s method [12]; (e) the restored image by the Shen’s 

method [14]; and (f) the restored image by the proposed method. 



Sensors 2015, 15 894 

 

 

Experimental results of the proposed method for naturally blurred images acquired by a DSLR 

camera are shown in Figures 12 and 13. Shen’s method cannot avoid ringing artifacts at boundaries 

with discontinuity of the blur map. However, as shown in Figures 12d and 13d, the proposed 

restoration method successfully removes the spatially varying blur with minimized artifacts. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 13. Comparison of different restoration algorithms using another real image; (a) the 

input image; (b) the restored image by the Dong’s method [24]; (c) the restored image by 

the Yang’s method [25]; (d) the restored image by the Xu’s method [12]; (e) the restored 

image by the Shen’s method [14]; and (f) the restored image by the proposed method. 

Table 1 summarizes PSNR/MSSIM values and the CPU processing time in seconds of Dong’s, 

Yang’s, Xu’s, Shen’s, and the proposed methods. To analyze image quality, each image was degraded 

using different Gaussian blurs where σ increases from the outside to the center of the image as shown 

in thumbnail figures of Table 1, and the images are restored using different methods. Dong’s method 

shows lower PSNR and MSSIM values compared with other methods because of the magnified ringing 
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artifacts. When noise variance is large, Yang’s method is effective because it can control the noise by 

minimizing the total variation of the image, whereas its performance is not acceptable when the noise 

is negligible. Xu’s method also shows low PSNR and MSSIM values due to inappropriate blur 

estimation for the spatially varying defocus blur. Although Shen’s method gives almost similar PSNR 

and MSSIM values compared with the proposed method, its performance is limited in the 

neighborhood of the discontinuity in the blur map. The proposed method produces the best restored 

result in the sense of both PSNR and MSSIM values. In addition, the proposed algorithm can be 

implemented in the form of an FIR filter. 

Table 1. Comparison of restoration performance and processing time for three test images, 
where the center region is blurred by Gaussian with 3.0σ = , and the peripheral region is 

blurred with 0.8σ = . 

Input Image Restoration Method 

PSNR [dB] MSSIM 
Average Processing 

Time [second] 
0.001

ησ =
 

0.0001 0.00001 0.001

ησ =

0.0001 0.00001
 

 

768 × 512 

Dong [24] 18.81 20.43 20.59 0.69 0.79 0.81 309.5804 

Yang [25] 22.92 23.29 22.94 0.78 0.87 0.91 5.5511 

Xu [12] 18.77 22.01 22.23 0.75 0.84 0.84 1736.3780 

Shen [14] 23.81 25.62 25.76 0.82 0.90 0.91 66.1389 

Proposed 24.43 26.75 27.47 0.83 0.91 0.92 0.6401 

 

768 × 512 

Dong [24] 17.96 19.46 19.57 0.74 0.83 0.85 315.0760 

Yang [25] 22.13 22.64 22.03 0.83 0.89 0.93 5.8107 

Xu [12] 15.02 18.00 18.10 0.66 078 0.79 1592.6384 

Shen [14] 22.31 23.34 23.35 0.86 0.91 0.92 68.7075 

Proposed 22.38 25.21 25.84 0.87 0.93 0.94 0.5869 

 

768 × 512 

Dong [24] 24.57 28.87 29.88 0.60 0.86 0.93 287.5568 

Yang [25] 25.40 25.88 25.77 0.65 0.79 0.88 4.8221 

Xu [12] 20.29 29.57 30.17 0.73 0.91 0.94 2025.9904 

Shen [14] 26.55 31.72 31.55 0.79 0.93 0.94 72.4971 

Proposed 28.36 31.48 32.78 0.81 0.94 0.96 0.5938 

6. Conclusions 

In order to solve the long-term unsolved digital multi-focusing problem in digital imaging 

technology, a region-wise linear approximation of the general space-variant image degradation model 

is presented. The proposed image degradation model can cover from the space-invariant to pixel-wise 

adaptive image restoration by adjusting the size of the region. Gaussian approximation of the point 

spread function (PSF) of an optical system enables parametric estimation of the blur parameter, which 

is an important factor for the potential application of wide variety of imaging sensors. Based on the 

region-wise space-invariant image degradation model, a novel Gaussian parameter estimation method 

is proposed by analyzing the relationship between the variance of a Gaussian PSF and the first and 

second derivatives of local edges. Since the proposed estimation method uses a set of a priori 
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generated real out-of-focused images in the statistical manner, the estimation process is stable and free 

from amplification of the estimation error due to the ill-posedness of derivative operations.  

The restoration process is implemented in the form of a finite impulse response (FIR) filter, which 

can be embedded in a typical image signal processor (ISP) of a digital imaging devices without using  

an additional hardware such as a frame memory. Although the truncation of the filter coefficients may 

degrade the performance of restoration in a certain degree, the region-based processing minimizes the 

degradation, which was proved by experimental results using a set of real photographs. 

The major contribution of this work is that the multi-focusing problem is decomposed into  

two separate sub-problems: (i) estimation of the PSF and (ii) spatially-adaptive image restoration.  

Since neither perfect estimation of the PSF nor ideal restoration is possible in practice, in a combined 

approach, such as blind deconvolution, the mixed errors from the PSF estimation and restoration 

cannot be removed by an analytic method. On the other hand, in the proposed approach, PSF 

estimation can be improved by extending the Gaussian model to more realistic one without affecting 

the restoration process. In the same manner, the restoration process can be either improved or replaced 

with any advanced one without affecting the PSF estimation process. For example, Wei et al. proposed 

a matrix source coding algorithm for efficiently computing space-varying convolution, and 

demonstrated its performance using the space-variant image restoration results [26]. Since the 

proposed work completely decouples the PSF estimation and restoration sub-problems, Wei’s 

convolution method can be applied to the restoration process to improve the performance. 
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