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Abstract: Rice is one of the staple foods for more than three billion people worldwide. Rice 

paddies accounted for approximately 11.5% of the World’s arable land area during 2012. 

Rice provided ~19% of the global dietary energy in recent times and its annual average 

consumption per capita was ~65 kg during 2010–2011. Therefore, rice area mapping and 

forecasting its production is important for food security, where demands often exceed 

production due to an ever increasing population. Timely and accurate estimation of rice 

areas and forecasting its production can provide invaluable information for governments, 

planners, and decision makers in formulating policies in regard to import/export in the event 

of shortfall and/or surplus. The aim of this paper was to review the applicability of the 

remote sensing-based imagery for rice area mapping and forecasting its production. Recent 

advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability 

of remote sensing imagery have allowed us timely collection of information on the growth 

and development stages of the rice crop. For elaborative understanding of the application of 

remote sensing sensors, following issues were described: the rice area mapping and 

forecasting its production using optical and microwave imagery, synergy between remote 

sensing-based methods and other developments, and their implications as an operational 

one. The overview of the studies to date indicated that remote sensing-based methods using 

optical and microwave imagery found to be encouraging. However, there were having some 

limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution 

led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, 
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which potentially would degrade the quality of the images; and also the brightness of the 

backscatters were sensitive to the interacting surface. In addition, most of the methods used 

in forecasting rice yield were empirical in nature, so thus it would require further calibration 

and validation prior to implement over other geographical locations. 

Keywords: microwave remote sensing; optical remote sensing; rice acreage mapping; rice 

yield forecasting 

 

1. Introduction 

Rice is one of the most important crop/food for more than three billion people (i.e., approximately 

50% of the World’s population) [1]. During 2012, rice was cultivated on about 11.5% of the World’s 

arable land; i.e., ~160.5 million hectares of land was under rice [2], while the total arable land was  

~1395 million hectares [3]. It is usually grown almost everywhere in the World, and its production in 

2012 was ~730 million tonnes [2]. However, most of the rice (i.e., ~88% of the World’s total production 

in 2010 [4]) has been grown in Asia where ~60% of the World’s population lives [5]. Among the 

prominent rice-producing countries, the seven largest producers were China (197.22 million tonnes), 

India (120.62 million tonnes), Indonesia (66.41 million tonnes), Bangladesh (49.36 million tonnes),  

Viet Nam (39.99 million tonnes), Myanmar (33.20 million tonnes), and Thailand (31.56 million tonnes); 

which accounted together for ~80.12% of the 2010 World production [4]. In recent times, rice has 

provided ~19% of the global dietary energy [6] and its annual average consumption per capita during 

2010–2011 was ~65 kg [7].  

Despite the large global cultivated rice area and growing rice production in many countries, the total 

demands often exceed the production. In addition, the global rice consumption is projected to be  

~873 million tonnes in 2030 [8]. In the recent decades, two major issues like population growth  

(in particular in the major rice producing/consuming countries) [5] and climate change put enormous 

pressure on the global food demand and its production [9,10]. Since problems with food security persist 

in many areas of the World [9], in particular in the heavy rice consuming regions, robust and reliable 

tools for mapping and early forecasting of rice production are thus critical. This is the case as reliable and 

timely estimates of rice crop areas and its production are essential for providing information for planners 

and decision makers to formulate policies in the case of shortfall or surplus. 

It is interesting to mention that the most common and widely used methods for estimating rice 

cultivated areas are the use of agricultural statistical data acquired through field visits and interviewing 

the farmers. The methodology for mapping area under rice cultivation is basically done through 

annual/seasonal sample surveys based on a number of sample clusters that are constituted all over the 

country for measuring cultivated area during the crop growing season. Each cluster is visited many times 

and areas are recorded by the field staffs, checked, and then processed by regional statistical officers. 

Despite its invaluable ability for understanding historical trends in rice area, this method is extremely 

tedious, time-consuming, less precise, costly, inconsistent, and labour-intensive [11,12]. 

On the other hand, in terms of yield/production forecasting, it also depends upon the data collection 

technique from ground-based field visits that constituted sample surveys based on crop harvesting 
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experiments. These yield surveys are extensive as plot yield data are collected through stratified multistage 

random sample techniques. From the data obtained in this way yields can be forecasted at the regional 

and national level [13]. However, such a technique has three major drawbacks: (i) it is time-consuming, 

subjective, and prone to significant discrepancies as a result of insufficient ground observations that 

cause poor crop production assessment [11,12]; (ii) the outcomes are usually made available to the 

government and public after several months of the harvesting of the crop, and thus not useful for food 

security purposes [14]; and (iii) it is costly, depending on the survey areas, e.g., a quarterly field survey 

for the entire Philippines required about CAD$50,000 [15]. Currently, the ground-based data collection 

method is in practice in various countries across the world and some of the responsible organizations 

include National Bureau of Statistics of China, Central Statistical Office of India, and Bangladesh 

Bureau of Statistics. These organizations collect data at the basic administrative level/unit and then 

aggregate at the district, region and country-levels [16–18]. 

In this context, remote sensing-based methods have already been proven as an effective alternative 

for mapping rice area [19–33] and forecasting rice production [14,15,34–37]. The benefits of remote 

sensing technology include: (i) spatial coverage over a large geographic area; (ii) availability during all 

seasons; (iii) relatively low cost, since some optical images are freely available (i.e., MODIS, Landsat); 

although radar data are usually a bit costly (e.g., CAD$4000 per scene); (iv) efficient analysis;  

(v) they provide information in a timely manner; and (vi) they are capable of delineating detailed spatial 

distributions of areas under rice cultivation. In addition, remote sensing-based methods for forecasting 

rice production may help the governments, planners, and decision makers to formulate appropriate 

policies to: (i) quantify either how much to import in the event of shortfall or optionally to export in case 

of a surplus [14]; and (ii) purchase rice sooner at a relatively cheaper price as other rice producing 

countries do not have information about this upcoming need. For these methods, either optical remote 

sensing-based surface reflectance or microwave remote sensing-based backscattering is usually used in 

both mapping and forecasting processes. One of the most important issues is that regardless the 

employed method (i.e., ground or remote sensing-based) the user requires fast, reliable (accurate), less 

costly, and least labour-intensive ways; and also forecasting should take place prior to harvesting of  

the crop. 

In this paper, our objective was to provide an overview of the use of remote sensing imagery for 

mapping rice crop areas and forecasting its production. The specific goals were to review three major 

issues, such as: (i) suitable remote sensing-based methods for mapping rice areas and their limitations; 

(ii) remote sensing-based methods for forecasting rice yield and their functional implications; and  

(iii) the synergy between remote sensing-based methods and other developments for mapping rice area 

and forecasting its yield. In case of mapping rice areas, remote sensing images acquired over either entire 

growing season or some of the critical stages (e.g., transplantation, tillering, heading/booting, flowering, 

etc.) were used, as shown in Figure 1. On the other hand, the images acquired during the peak/maximum 

greenness stage (see Figure 1) were commonly used in the event of forecasting rice yield. Figure 1 also 

shows that a remotely sensed vegetation index of normalized difference vegetation index (NDVI) would: 

(i) be low at the transplantation stage; (ii) increase over the vegetative-to-reproductive stage; and  

(iii) gradually decrease with the progression of the ripening stage. 
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Figure 1. Growing stage of a typical rice crop and their associated greenness conditions 

(modified after [38]). The red curve shows a typical temporal dynamics of very commonly 

used remote sensing-based vegetation greenness index [i.e., normalized difference 

vegetation index (NDVI)]. 

2. Remote Sensing-Based Methods for Mapping Rice Area 

Due to the ability of viewing the Earth’s surface by the remote sensing platforms in a repetitive 

manner, several remote sensing-based methods were developed for mapping the rice areas in different 

parts of the World. Both optical and microwave remote sensing systems offer practical means for 

mapping rice areas which are described in the following sub-sections. 

2.1. Optical Remote Sensing-Based Mapping Methods  

Optical remote sensing sensors were widely used for mapping rice areas worldwide [19–33]. It was 

used in discriminating land use/land cover and measuring crop areas due to their ability to view the Earth 

surface in the spectral range 0.4 to 2.5 μm. The most commonly applied optical sensors include: Landsat 

(mainly MSS, TM and ETM+), SPOT-VGT, NOAA/AVHRR, MODIS, etc. These satellite sensors have 

the potential of obtaining multi-temporal and multi-spectral reflectance data over croplands that can be 

used for deriving time-series of vegetation indices (VIs), calculated as a function of red, blue, and 

infrared spectral bands (see the major VIs in Table 1). A number of studies have explored the usefulness 

of optical remote sensing sensors to identify rice areas; and some of the example cases are briefly 

described in Table 2.  
  

Harvesting 
stage

Peak/ 
maximum 
greenness 

stage

Initial/ 
seedling 

stage

G
re

en
n

es
s 

co
n

d
it

io
n

s

Growing stages

Often takes 60 to 100 days
depending on the variety

Often takes 30 
days

Vegetative stage Reproductive stage                Ripening stage

T
ra

ns
pl

an
ta

tio
n 

st
ag

e

T
il

le
ri

ng
st

ag
e

S
te

m
 e

lo
ng

at
io

n

P
an

ic
le

 in
iti

at
io

n

B
oo

ti
ng

/h
ea

di
ng

 
st

ag
e

F
lo

w
er

in
g 

st
ag

e

M
il

k 
st

ag
e

D
ou

gh
 s

ta
ge

M
at

ur
e 

st
ag

e



Sensors 2015, 15 773 

 

 

Table 1. List of the common vegetation indices, and their mathematical formula, which 

have been used in mapping and yield/production forecasting. 

Index Abbreviation Formula Reference 

Normalized 
Difference 

Vegetation Index 
NDVI  [39] 

Ratio Vegetation 
Index 

RVI  [40] 

Enhanced Vegetation 
Index 

EVI  [41] 

Soil-Adjusted 
Vegetation Index 

SAVI  [42] 

Land Surface Water 
Index 

LSWI*  [22] 

Normalized 
Difference Built-up 

Index 
NDBI  [43] 

Triangular 
Vegetation Index 

TVI  [44] 

Difference 
Vegetation Index 

DVI  [45] 

Infrared Percentage 
Vegetation Index 

IPVI 
 

[46] 

Perpendicular 
Vegetation Index 

PVI  [47] 

Rice Growth 
Vegetation Index 

RGVI  [28] 

Note: ρ is the surface reflectance values for blue (B), red (R), near infrared (NIR), Shortwave infrared (SWIR1 

and SWIR2 are centered at ~1.64 and 2.22 μm respectively); L = 0.5; a (gain) and b (offset) are derived from 

NIR vs. RED scatter plot. * In fact, Gao [48] developed the LSWI first, however the name was normalized 

difference water index (NDWI) using SWIR1 centered at 1.24 μm. 
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Table 2. Examples of optical remote sensing-based methods used for rice area  

mapping, which were usually evaluated against the agricultural statistical dataset unless  

stated differently. 

Sensor Method Outcomes 

Landsat MSS 

Evaluated two classification schemas using four images 
(comprised of G, R, and two NIR spectral bands) acquired 
during the transplantation to canopy development stages.  
The first one was the use of maximum likelihood classifier  
for generating the rice maps. The second one was the use  
of a vector classifier using two nodes (i.e., water and green  
canopy response).  

Between the two schemas, the vector 
classifier was found to have better 
agreements (i.e., ~94%) during the 
calibration phase (i.e., during 1983/84 
season) over New South Wales, 
Australia. It was then applied during 
1984/85 season and found similar 
agreements (i.e., ~95%) [49]. 

FORMOSAT-2 

Used two images consisting of R, G, B, and NIR bands 
acquired during transplanting and tillering stages. Two 
classifiers were used: (i) geographic information system (GIS) 
object-based post classification (GOBPC); and  
(ii) pixel-based hybrid classification (i.e., both unsupervised 
and supervised).  

GOBPC was found superior than the 
pixel-based approach. The accuracy of 
rice mapping was found to be more 
than 94% over Yilan, Hualien, and 
Kaohsiung; and 82% in Yunlin, 
Taiwan [50]. 

Landsat TM 

Employed one image comprising of R, G, and B bands 
acquired during the early growing season. Unsupervised 
classifier was used under two conditions: (i) cut the study area 
first then classify; and (ii) classify the entire image then cut the 
study area.  

Between the two conditions, the later 
condition (classify and cut) 
demonstrated better accuracies of 
~81% for semi-late rice and 90% for 
early rice crop over Hubei, China [51]. 

Carried out three procedures: (i) land use map and town 
boundaries were created; (ii) optimal combination of three 
bands (i.e., B, NIR, and SWIR1) were selected based on 
optimum index factor using one image acquired during the 
booting stage; and (iii) then ISODATA, parallelepiped, and 
maximum likelihood classifiers were applied.  

Parallelepiped classifier was found the 
best (i.e., an accuracy of 82.85%) 
among all the employed classifiers 
over Longyou County, China [52]. 

Landsat ETM+ 

Implemented two masks: (i) desert area outside the irrigation 
boundary using an irrigation schema map; and (ii) cloudy area 
using supervised classifier of B, and thermal bands. They 
employed supervised classifier over two scenes (i.e., one 
during the growing stage and the other during the harvesting 
stage) comprising of all spectral bands (except the thermal one) 
individually. They also fused the optical bands of the both 
scenes and then applied supervised classifier.  

Observed better outcomes (i.e., an 
accuracy of 98%) in case of using the 
fused images over Mali,  
West Africa [53]. 

Used six images spanning from the plantation to the harvesting 
period. They evaluated relations between rice age and several 
vegetation indices such as NDVI, RVI, IPVI, DVI, TVI,  
SAVI and RGVI. Note that they introduced the concept of 
using RGVI. 

Observed the best relation (i.e., r2 of 
0.90) existed between the rice age and 
RGVI during the calibration phase. The 
application of the model showed 
significant relations (i.e., r2 of 0.97) 
over Bali, Indonesia [28].  

Huan Jing  
(HJ-1A/B) 

Deployed twenty seven images comprised of B, G, R, and NIR 
bands during the growing season of three rice types, such as 
early-, medium-, and late-season rice. In determining the pure 
rice pixels, they used support vector machine classifier. In 
addition, they used “rice area fraction index” in identifying the 
mixed pixels (i.e., mix of rice with other crops).  

Validated against Rapid Eye-derived 
rice maps and found accuracies of 
99%, 99%, and 97% for early-, 
medium-, late-season rice, respectively 
over Hunan, China [54]. 

NOAA 
AVHRR 

Employed NDVI images, i.e., one image during the peak 
greenness stage in 1989; and four images during the vegetative 
to peak greenness stage in 1999. In both of the years, they 
implemented a density slicing approach for the area estimation. 

Found over estimations, i.e., ~23.3 and 
27.5% in 1989 and 1999 respectively 
for boro rice acreage over  
Bangladesh [55]. 
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Table 2. Cont. 

Sensor Method Outcomes 

SPOT XS 

Used three images comprising of G, R and NIR bands during 
the pre-flood and first half of the flood period (i.e., the earlier 
stages of the rice season). They evaluated two classification 
approaches. The first one was the integration of supervised and 
unsupervised classification of a database formed by the 
principal component reduction. The second one was 
implementation of a series of steps, such as unsupervised 
classification, stratification, and supervised classification. 

The second approach provided better 
accuracy (i.e., ~70%) over Niger Delta, 
Mali, West Africa [56]. 

SPOT VGT 

Developed a “peak detector algorithm” to differentiate 
between rain-fed and irrigated rice crops. The 10-day 
composite NDVI images over three calendar years were used 
to determine cropping intensity (i.e., number, timing, and peak 
values). Then the peak NDVI-values were lag-correlated with 
the long-term average rainfall regimes. They found a “single” 
peak NDVI for rain-fed rice; and “multiple” peak for the 
irrigated rice. 

Found overall accuracy of 89% over 
Suphanburi, Thailand [57]. 

MODIS 

Used forty six 8-day composite of three vegetation/wetness 
indices (that included LSWI, NDVI, and EVI) over the entire 
calendar year. The LSWI was in particular used to identify the 
initial period of flooding and transplantation of the rice; while 
NDVI and EVI was used for understanding greenness 
conditions of the crop. 

Observed reasonable agreement (i.e., r2 
values ranging from 0.80–0.88) with 
Landsat ETM+ derived rice maps over 
Southern China [22]. 

Employed ten 16-day composite of NDVI images over the 
entire growing season. The methods consisted of three steps, 
i.e., (i) determining rice signatures using ISODATA clustering 
techniques; (ii) formulating a mathematical model for 
extracting rice areas on the basis of the signatures determined 
in the first step; and (iii) model calibration and its validation. 

Observed reasonable agreements (i.e., 
percentage error in the range −0.83 to 
1.42% at country-level; and r2 in the 
range 0.69%–0.89% at district levels) 
over Bangladesh [58]; and an example 
boro rice acreage map of 2010 season 
is shown in Figure 2.  

Generated a potential rice cultivation area by digitizing a 
hardcopy land use map, and then used to mask two NDVI 
images acquired during early and late stage of rice plantation. 
Finally, maximum likelihood classifier was applied on the 
combined image for extracting the rice area. 

Observed an overall accuracy of 95.7% 
over Zhejiang, China [59]. 

IRS LISS-III 

Used two images per year comprising of G, R, and NIR 
acquired during the early and vegetative stages of rice. The 
employed methods consisted of: (i) maximum likelihood 
classifier; (ii) establishing relationship between classified 
image and GPS measured area; and (iii) estimation of the  
rice area under hill shades and non-visible area based on  
field survey. 

Found a good relationship between:  
(i) classified image and GPS measured 
area (i.e., r2 value of 0.91); and (ii) eye 
estimates and actual measurement (i.e., 
r2 value of 0.95) within the buffer zone 
over Ri-Bhoi, Meghalaya, India [60]. 

Utilized: (i) digital elevation model to calculate the slope 
classes and considered the classes between 0%–25% slopes;  
(ii) multi-date LISS and land use maps to identify rice 
cultivation areas; (iii) soil maps to extract suitable soils for rice 
crop. Finally all of the layers were overlaid to generate 
potential rice areas.  

The use of LISS improved the 
assessment, i.e., an additional  
746.44 km2 potential rice areas were 
identified over Mizoram, India [61]. 
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Figure 2. Example of MODIS-derived boro rice cultivation area (indicated using green 

shades) mapping during 2010. 

2.2. Microwave Remote Sensing-Based Mapping Methods  

One of the prime advantages of microwave remote sensing is associated with its ability of acquiring 

images theoretically under any weather conditions, such as cloud cover, rain, snow, and solar irradiance. 

Therefore, the radar images collected from microwave sensors provide an excellent imagery source for 

mapping rice areas, where rice cultivation takes place during rainy season with dominant cloudy 

conditions. Since the 1990s, researchers have explored the usefulness of microwave data retrieved from 

different satellites (e.g., ERS-1 and 2, RADARSAT-1 and 2, ENVISAT ASAR, etc.). In general, the 

temporal variation of radar backscatter over the growing season was the key factor in delineating rice 

areas; and some of the example studies are briefly described in Table 3. 
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Table 3. Examples of microwave remote sensing-based methods used for rice area mapping, 

which were usually evaluated against the agricultural statistical dataset unless stated differently. 

Sensor Method Outcomes 

ERS-1 (C-band 

with VV 

polarization)  

Implemented maximum likelihood classifier using four 

multi-temporal images acquired between 25–30 days of 

transplantation to the initiation of flowering stage  

(i.e., 60–70 days). 

Found accuracy of 90 and 91.5%  

over Howrah and Hughly districts, 

respectively in West Bengal, India [62]. 

Applied maximum likelihood classifier along with 

principal component analysis over six multi-temporal 

images acquired during the entire growing season. 

Obtained an accuracy of 90% in 

comparison with the land use survey 

and Landsat TM-derive maps over 

Akita, Japan [63]. 

ERS-2 (C-band 

with VV 

polarization) 

Generated five change index (CI) maps from seven images 

acquired during the growing season. Then each pixel in 

these CI maps was classified into one of three classes: 

increasing, decreasing, or constant backscattering.  

Compared against SPOT-derived rice 

maps and found 93.2% agreements over 

Mekong River Delta, Vietnam [64]. 

RADARSAT-1 

(C-band with HH 

polarization) 

Deployed three multi-temporal images for each of the 

standard and fine beam modes acquired during 

transplanting and reproductive stages. 

Found strong relation with an 

accuracy of 87% when compared to 

the available land cover map over 

Java Island, Indonesia [65]. 

Applied a neural network classifier and post classification 

filtering over three multi-temporal images acquired during 

early growth/transplanting, flowering, and harvest stages.  

Observed accuracy of 97% over 

Zhaoqing and Guangdong,  

China [66]. 

Implemented a knowledge-based decision rule classifier 

based on the temporal variations of SAR backscatter of all 

land-cover classes using three multi-temporal images 

acquired during transplanting, and vegetative stages.  

Noted an accuracy of >98% over 

Baleshwar and Bhadrak districts, 

Orissa, India [67]. 

Used nine and ten multi-temporal images acquired during 

dry and wet seasons respectively. They carried out four 

classification approaches (i.e., neural network 

classification; maximum likelihood classification; change 

detection; and an integration of change detection and neural 

network).  

Revealed that the integrated method 

performed well with an accuracy of 

>96% over Munoz and Santo 

Domingo, Philippine [68]. 

Executed a combination of entropy decomposition and 

support vector machine methods using three multi-temporal 

images acquired during vegetative, reproductive/peak, and 

ripening stages. 

Found an accuracy of 95.3% when 

compared to the maximum likelihood 

classifer-dervied maps over Sungai 

Burung, Selangor, Malaysia [69]. 

ENVISAT 

ASAR (C-band 

with HH/HV 

polarizations)  

Developed empirical relationships between backscattering 

coefficient, height, and biomass of rice using four 

multi-temporal HH and HV polarized images. 

Observed an accuracy of 81% over 

Southern China [70]. 

ENVISAT 

ASAR (C-band 

with VV and HH 

polarization)  

Implemented image difference technique using three pairs 

of images acquired during flooding, reproductive/peak, and 

ripening stages for each of the VV and HH polarization.  

Found the best results from the 

difference image of HH polarization 

(i.e., producer’s and user’s accuracies 

were 94% and 87% respectively) over 

Fuzhou, China [71]. 

ALOS PALSAR 

(L-band with HH 

polarization) 

Applied support vector machine classifier based on the 

temporal variation of the backscatter using three 

multi-temporal images acquired during transplanting, 

vegetative, and heading stages. 

Obtained user’s and producer’s 

accuracies of 90% and 76% 

respectively over Zhejiang, southeast 

China [72]. 



Sensors 2015, 15 778 

 

 

2.3. Integration of Optical and Microwave Remote Sensing-Based Mapping Methods 

In addition to the independent use of optical and microwave remote sensing-based methods, several 

studies have been conducted upon combining both of the methods together for mapping rice areas; and 

some of the example cases are briefly described in Table 4. 

Table 4. Examples of integrating the optical and microwave imagery remote sensing data in 

mapping rice areas; which were usually evaluated against the agricultural statistical dataset 

unless stated differently. 

Sensor Method Outcomes 

Landsat TM (visible and 
shortwave infrared bands) 
and JERS-1 SAR (L-band 
with HH polarization) 

Applied unsupervised classification over 
TM image to determine arable land area 
during dry season; and used SAR data to 
delineate rice areas during rainy season. 

Found the estimated rice areas 
were 12%–14% smaller over 
Indramayu, Indonesia [73]. 

IRS-1D LISS-III (G, R, 
and NIR bands) and 
RADARSAT-1 SAR  
(C-band with HH 
polarization) 

Employed: (i) maximum likelihood 
classifier using LISS-III data acquired 
during dry and summer seasons to map  
dry-to-summer rice; and (ii) temporal 
analysis using SAR data to determine rainy 
season rice map. The outcomes were 
combined to produce map year-round rice.  

Noticed agreements of about 
96.6% for the year-round rice 
over West Bengal, India [74]. 

Landsat TM (visible and 
shortwave infrared bands) 
and RADARSAT-1 SAR 
(C-band with HH 
polarization) 

Used three fusion algorithms (i.e., principal 
component analysis, multiplicative, and 
Brovey) to merge TM acquired during 
growing period and three multi-temporal 
radar images acquired during early, 
vegetative, harvesting stages; and then 
applied three classification schemas (i.e., 
maximum likelihood, Mahalanobis 
distance, and minimum to mean distance). 

Observed that the Mahalanobis 
distance over the Brovey fused 
image provided the best results 
(i.e., 87.41%) in comparison to 
the rice maps, that was produced 
through extensive ground truthing 
and TM images acquired earlier 
than the ones used in this study 
over Mazandarm, Iran [75].  

Visible-to-shortwave 
infrared bands of MODIS 
and Landsat 7 ETM+; and 
ALOS PALSAR (L-band 
with HH polarization) 

Employed both of the multi-temporal 
PALSAR and MODIS images to define rice 
phenology and inundation patterns; and 
then a single ETM+ image to characterise 
“lake/water bodies masking”.  

Revealed a high overall accuracy 
of 89% over Poyang lake 
Watershed, China [76]. 

AWiFS (G, R, NIR, and 
SWIR1 bands) and 
RADARSAT-1 SAR  
(C-band with HH 
polarization) 

Implemented hierarchical decision rule 
classification technique using: (i) two SAR 
images acquired during transplanting 
period; and (ii) AWiFS-derived NDVI, 
SWIR1/R and NIR/G ratios during the peak 
greenness stage. 

Noticed that the deviation in  
the area calculated was 1.93 and 
−10.5% over Bargarh and 
Sonepur districts respectively in 
Orissa, India [77]. 

2.4. Limitations of Remote Sensing-Based Mapping Methods 

For most of the optical remote sensing-based methods, the spatial resolution of the employed images 

(i.e., MODIS, AVHRR, and SPOT-VGT) were relatively low (i.e., in the range 500 m to 1.1 km). This 
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particular issue would be critical as the dimension of some rice fields might be smaller than the spatial 

resolution of these satellite platforms. In the context of spatial resolution, the use of Landsat imagery 

would compensate the spatial resolution; however, sometimes it would be very difficult to obtain 

cloud-free images over some of the rice growing regions of the World. Also, temporal resolution  

(i.e., 16 days) of the Landsat images and its swath coverage (i.e., approximately 180 km) might  

restrict their application in rice mapping. These impose a problem for rice mapping especially when the  

period of interest falls in rainy season and during which heavy cloud greatly influences the image  

quality [21–23,58,78]. Another factor, such as variable topography would significantly impact the 

delineation of the rice areas as the surface reflectance from the hill terrain might be influenced by the 

adjacent areas [22,23,50,55]. In general, the microwave remote sensing platforms usually provide 

relatively higher spatial resolution images; however, several limitations exist, such as: 

(i) It has an inherent problem of speckles, which look as a grainy “salt and pepper” texture in the 

image. These are formed due to random constructive and destructive interference from the 

multiple scattering returns that occur within each pixel/cell. These speckles degrade the quality 

of an image and make the interpretation process (visual or digital) more difficult [79]. 

(ii) The brightness of the radar backscatters are highly influenced by several factors, such as, volume 

scattering over vegetation, surface moisture conditions, surface roughness, local incidence angle, 

surface cover density, surface scattering properties, structure of the scattering surface, dielectric 

constant of the scattering material, and double bouncing from the right angle surface [80]. 

(iii) Geometric distortions, such as foreshortening, layover, and shadowing, exist in almost all radar 

imagery. For example, radar shadow occurs when the radar beam is not able to illuminate the 

ground surface [81]. Thus, all these factors have its influence during mapping rice cultivated 

areas, particularly in regions with steep topography and rough terrain. 

(iv) Most of the studies of mapping rice area are based on single polarized image, where similar 

backscattering can occur from different land cover types. Hence, the multi-temporal dual 

polarization SAR imagery could be a promising source for rice mapping particularly in highly 

fragmented agricultural lands [66,82]. For example, Inou et al. [83] used a multifrequency (Ka, 

Ku, X, C and L) polarimetric (HH, VH, HV, and VV) scatterometer with four incident angles 

(25°, 35°, 45° and 55°) for the entire rice crop period, i.e., before transplantation until 

postharvest cultivation in understanding the relation between backscattering and rice-related 

growth variables over Tsukuba, Japan. However, conducting a similar study like Inou et al. [83] 

would be quite expensive.  

(v) Mapping rice area at large scale using radar data is costly, where the high cost of using 

continuous radar imagery making it inappropriate for seasonal rice crop monitoring and mapping. 

3. Remote Sensing-Based Methods for Forecasting Rice Yield/Production 

3.1. Optical Remote Sensing-Based Forecasting Methods 

Researchers have dedicated significant efforts to forecasting rice yield using optical remote sensing 

images. The pre-harvest yield estimation could be possible as some of the spectral bands of the optical 

remote sensing satellites would be responsive to the vegetation conditions. For example, vegetation 
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absorbs energy in the spectral range 0.45–0.70 µm, and reflects in the range 0.70–0.90 μm. By use of 

these spectral ranges, several vegetation indices have been employed, such as NDVI, RVI, DVI, IPVI, 

SAVI, vegetation condition index (VCI), vegetation health index (VHI), temperature condition index 

(TCI), and green normalized difference vegetation index (GNDVI) to estimate yield before harvesting 

and their applications are described in Table 5. 

Table 5. Examples of optical remote sensing-based methods used for forecasting  

rice yield/production. 

Sensor Method Outcomes 

IRS  
LISS-1A 

Used the ratio between NIR and R spectral 
bands derived from IRS LISS images in order 
to develop an empirical relationship with 
ground-based yield data. 

Found the deviation of the estimated yield varied 
from 2% to 14%, with r2 of 0.52 and RMSE of 2.62 
at the district level over Cuttack and Puri of Orissa, 
India [84]. 

MODIS 

Used 8-day composite of NDVI values to 
determine NDVImax at around 45–60 days 
since the plantation; and compared with the 
actual yield data.  

Revealed strong relationship, i.e., r2 of 0.89 over 
Tabanan Regency, Bali province, Indonesia [85].  

Utilized 8-day composite of EVI and leaf 
area index (LAI) during the heading stages. 
Eight models (i.e., derived from linear, 
interaction, quadratic, and pure quadratic) of 
rice crop yield, EVI and LAI were developed.

Observed that the quadratic model based on EVI 
and LAI produced the best results during the 
ripening period for the spring-winter and  
autumn-summer rice crop, that is, r2 of 0.70 and 
0.74, respectively over Mekong Delta,  
Vietnam [86]. 

Landsat 
ETM+ 

Established relations between NDVI-values 
at 63 days since the plantation and  
ground-based yield observation. 

Found strong exponential relations (i.e., r2 ≈ 0.85) 
with rice yield during model development phase. 
The application of the model revealed strong 
relations (i.e., r2 ≈ 0.93) between ground-based 
estimate and the forecasted rice yield over Bali, 
Indonesia [87]. 

NOAA 
AVHRR 

Used 7-day composite of NDVI and 
brightness temperature-values at 16 km 
resolution to calculate a set of vegetation 
health indices (i.e., VCI, TCI, and VHI) in 
order to forecast yield for Aus and Aman. 

For the Aus, both of indices VCI and VHI-values 
between the plantation and early growing season 
had similar relationship (i.e., r2 ≈ 0.62) with the 
yield. In addition, comparison of ground-based and 
predicted rice yield was found to have r2 of 0.56. On 
the other hand, combination of VCI and TCI during 
the period of reproductive phase (i.e., one/two 
months prior to harvesting) had strong relations 
(i.e., r2 ≈ 0.97) for Aman yield. Also, the 
relationship between ground-based and predicted 
rice yield was found strong (i.e., r2 ≥ 0.89) over 
Bangladesh [34,35]. 

SPOT-4 

Employed various reflective spectral bands 
and their derivatives in the form of several 
vegetation indices (i.e., red, near infrared, 
and vegetation indices of DVI, IPVI, RVI, 
NDVI and SAVI). 

Showed strong relations (i.e., r2 in between 0.75 to 
0.89) with the yield at 90 days from sowing (i.e., 
maximum vegetation growth stage). Further 
comparison between actual and predicted rice yield 
showed high correlation (i.e., r2 in between 0.90 to 
0.95) over Kafr El-Sheikh Governorate, Egypt [14].
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3.2. Microwave Remote Sensing-Based Forecasting Methods  

Several studies have been conducted since 1990’s for rice crop forecasting using microwave imagery 

and demonstrated encouraging results. Some relevant studies are described as follows: 

• Shao et al. [66] used three RADARSAT-1 (C-band with HH polarization) images at different 

stages (i.e., the end of the seedling period, flowering period, and beginning of the harvesting 

period) for rice yield estimation over Zhaoqing in Guangdong Province, Southern China. The 

temporal dynamics of the backscatter-values were investigated and found an accuracy of 91% 

compared with actual yield.  

• Li et al. [88] used three RADARSAT-1 (C-band with HH polarization) images acquired during 

early, middle, and prior-to-harvesting stages for rice yield estimation over Guangdong Province, 

Southern China. A multi-regression model was developed between backscatter coefficients and 

yield (i.e., rice biomass); and found a strong relation (i.e., r2 ≈ 0.91) with actual yield. 

• Chen and McNairn [68] utilized RADARSAT-1 (C-band with HH polarization) for rice 

forecasting over Munoz and Santo Domingo, Philippine. They applied a neural network-based 

model to predict rice yield using the relationship between rice growth and radar backscatter; and 

found an encouraging prediction accuracy of 94% in comparison to actual yield.  

3.3. Limitations of Remote Sensing-Based Forecasting Methods 

It would be interesting to note that the limitations we discussed regarding the remote sensing-based 

methods for rice mapping (see Section 2.4) would also applicable for forecasting rice yield. In addition, 

the following factors would also be critical: 

• All of the methods described above (i.e., see Sections 3.1 and 3.2) were empirical in nature so that 

further calibration and validation would be required prior to implementing over other geographical 

locations. Technologically, empirical models were found to be relatively simple to build or 

develop, but these models could not take account of temporal changes in crop yields without  

long-term field experiments [89]. 

• These methods didn’t describe the mechanism of delineating the rice acreage. Thus it might be 

possible to observe misclassification in case of mixing crop types [90].  

• These methods were based on empirical/statistical models that needed to be performed on 

continuing basis and for different agro-climatic zones (i.e., due to changing environmental 

conditions and weather shifts at different locations) [14,36]. 

• In general, a specific value of either optical remote sensing-based indices or microwave remote 

sensing-based backscattering coefficients might represent variable yield. This would be due to:  

(i) genetic variations; (ii) climatic conditions; (iii) soil types; and (iv) intra-species competitions. 

For example, Boro rice (which grows in winter) in Bangladesh demonstrated yields in the range of 

1.93 to 4.69 metric ton per hectare during 2012 [91].  
  



Sensors 2015, 15 782 

 

 

4. Synergy between Remote Sensing-Based Methods and Other Ones 

Upon reviewing the existing literature, we found that the synergy between remote sensing and other 

methods could broadly be classified into two categories: synergy between remote sensing-based 

methods and (i) meteorological parameters; and (ii) crop growth models. These categories are briefly 

discussed in the following sub-sections. 

4.1. Synergy between Remote Sensing-Based Methods and Meteorological Parameters 

This approach is based on the integration of meteorological parameters with remote sensing-based 

methods for forecasting rice yield/production; and some example cases are summarized as follows:  

• Prasad et al. [89] used AVHRR-derived 10-day composite of NDVI images integrating with 

meteorological parameters (i.e., surface temperature, and rainfall) and soil moisture over India. A 

non-linear iterative multivariate optimization approach was used to derive an empirical piecewise 

linear crop yield prediction equation. The crop yield prediction model showed a high correlation 

coefficient that achieved accuracy greater than 90%. 

• Sarma et al. [92] examined the importance of meteorological variables, i.e., annual rainfall, 

southern oscillation index, sea surface temperature, growing degree day, combined with the 

AVHRR-derived NDVI in developing the statistical agro-climatic model in predicting the rice yield 

for kharif and rabi seasons over Andra Pradesh, India. The multi-regression model was employed; 

and found reasonable agreements between the actual and estimated rice yield (i.e., r2 ~ 0.71).  

• Savin and Isaev [93] used a process-based model where the input variables included 

MODIS-derived 10-day composite of NDVI, fraction of absorbed radiation (fPAR), and 

meteorological variables (i.e., temperature, and incident solar radiation) over the Republic of 

Kalmykia. During the period of maximum plant greenness, the model outcomes were the best (i.e., 

always shown over prediction in the range 14%–48% in comparison to the actual yield). 

4.2. Synergy between Remote Sensing-Based Methods and Crop Growth Model  

The integration of remotely sensed data and rice crop growth models have become increasingly 

recognized as a potential tool for rice yield forecasting [94]. This approach relies on retrieval of 

biophysical crop parameters from remotely sensed data, which have been used as a direct input in rice 

crop models [95]. Various methods were found in the literature; some of such examples are as follows: 

• Ribbes and Le Toan [96] used ERS-1 (C-band with VV polarization) and RADARSAT-1 (C-band 

with HH polarization) data to establish relationship between the backscattering coefficient and rice 

growth parameters, such as rice plant age, height, and biomass over Semarang and Jatisari, 

Indonesia. The sowing date and rice plant biomass values were determined from the relationships, 

and used as inputs in a rice crop growth model ORYZA1 (i.e., simulates crop growth under irrigated 

conditions with optimum supply of nutrients, and without pest and disease infestation [97]) to 

estimate the rice yield. Good agreements were found between the simulated and no stress yield 

[i.e., error below 15% (around 1.5 ton/ha) using RADARSAT; and 9% (around 0.7 ton/ha) using 

ERS data, respectively].  
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• Jing-Feng et al. (2002) [98] considered three types of AVHRR-derived NDVI-values, such as  

local area coverage (LAC)-NDVI, global area coverage (GAC)-NDVI, and radiometric 

measurements-NDVI; which were subsequently used as an input in the rice growth simulation 

model ORYZA1 [97] to develop a new model (called Rice-SAS model) to estimate rice yield  

for different growing seasons over Shaoxing province, China. The LAC-NDVI showed best 

estimates for rice yield with an estimation error of 1.03%, 0.79% and −0.79% for early, single, and 

late season, respectively.  

• Shen et al. [99] used multi-temporal and multi-polarized ENVISAT ASAR (C-band with HH/VV 

polarization) data acquired during vegetative, reproductive, and ripening stages integrated with 

rice crop model ORYZA2000 (i.e., simulates the growth and development of rice in situations of 

potential production, water, and nitrogen limitations [100]) for rice yield estimation over Xinghua, 

Jiangsu Province, China. The employed methods consisted of two steps: (i) generating a rice 

acreage map using ASAR dataset; and (ii) extracting the temporal dynamics of backscattering 

coefficients over the rice areas and assimilated with the ORYZA2000 model to predict rice yield. 

The obtained rice yield map was found to have over estimations by 13% on an average with a root 

mean square error of approximately 1133 kg/ha.  

• Guo et al. [101] used multi-temporal MODIS data and HJ environment satellite-derived NDVI and 

EVI with LAI measurements integrated with rice production model ORYZA2000 [100] to 

estimate regional rice yield over Jiangsu Province, China. The obtained rice yield was found to 

have relative error of 6.31% compared with actual statistical data. 

4.3. Limitations of Synergy between Remote Sensing-Based Methods and Other Ones 

The synergy between remote sensing-based methods and other ones (i.e., meteorological parameters, 

and crop growth models) provided promising results in both mapping and forecasting of rice crop. 

However, they have several limitations, such as: 

(i) Utilization of meteorological data has several implications that include: spatial distribution of 

meteorological stations (i.e., located sparsely in a large geographic landscape), incomplete  

and unavailable in a timely manner, and do not adequately represent the diversity over large  

areas [102,103];  

(ii) Forecasting of rice production in the vicinity of the meteorological stations might be more 

accurate compared to other parts of the landscape, if the meteorological parameter-based models 

would be properly calibrated and validated. However, it would not be possible to install more 

and more meteorological stations across the landscape due to the expenses related to the 

installation, maintenance, data collection, and its processing [104]; 

(iii) Long-term meteorological data are hard to find in most of the rice crop growing countries in the 

world [35], which are inadequate for reliable forecasting of rice production;  

(iv) In generating the spatial dynamics for a meteorological variable of interest, GIS-based 

interpolation techniques are usually used, which can produce different map outputs using the 

same input datasets [105]. Therefore, forecasting of rice production thus limits the use of 

meteorological based information over large geographic extent; and  
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(v) Crop growth models are found to be more complex and require many input parameters. These 

include: several biophysical parameters (e.g., soil and meteorological variables) and plant 

parameters (e.g., biomass, LAI, and height, age etc.); which are usually expensive, 

labour-intensive, time consuming in acquisition [106]. 

5. Concluding Remarks 

Here, we have provided an overview of using remote sensing sensors and their limitations in mapping 

the rice crop area and forecasting its production. In terms of the mapping the rice areas, the optical 

remote sensing imagery has relatively low spatial resolution, which results in over- and underestimation 

of the area under cultivation. The SAR imagery has several limitations in mapping rice areas, such as the 

fact speckles degrade the quality of the images, brightness of the backscatters is highly sensitive to the 

interacting surface, geometric distortions (particularly in irregular topography), low classification 

accuracy due to use of single polarization, and costly mapping of large geographic areas. In addition, the 

temporal resolution of microwave imagery was relatively low (i.e., ranging between 24 to 44 days), 

which make it unfit for forecasting rice crop production prior to harvesting. Furthermore, the use of 

optical imagery in forecasting rice production was found to be encouraging, but mostly empirical-based. 

It is to be noted that most of the methods suffer from various aspects in particular how to implement 

them in other geographical locations i.e., not transferable/extendable due to climatic variability (i.e., 

temperature, precipitation amount, duration, and timing); soil characteristics (i.e., texture, moisture 

capacity, etc.); management practices (i.e., levee construction, fertilizer, irrigation, etc.); and selection of 

rice varieties (i.e., tolerance to submergence, drought, salinity, disease and insect). Climate change is 

also evident in many regions of the World (i.e., the average global temperature has increased by 0.74 °C 

in the last 100 years; rainfall has trended downward during 1960–2000 [107]) which will impact the rice 

crop productivity. Therefore, to assess and address the effect of climate change on the rice varieties (and 

its productivity), it is necessary to determine their genetic coefficients through carefully controlled 

experiments, trend of climate variation during the growth stages, and necessary to improve management 

practices to offset the adverse effects of climate change [108]. In addition, studies are required to 

evaluate the potential of applying multi-year remote sensing data for quantifying inter-annual variations 

of rice fields and its production due to extreme climate events (e.g., flooding, drought, cyclone, etc.) 

and/or human-driven land use changes. Also, factors such as plant diseases and insect infestation could 

be responsible for production losses, which could be monitored using remote sensing platforms [109]; 

however these were beyond the scope of this paper.  

Despite the reasonable accuracies of rice area mapping and forecasting its production using remote 

sensing-based methods, such developments have many challenges as an operational one, which can be 

viewed as: (i) data acquisition; and (ii) development of appropriate methods. It is quite difficult to obtain 

cloud-free chronology of remote sensing data over the entire growing season of rice crop due to weather 

conditions (i.e., humidity, cloud, and rainy conditions), which sometimes limit the availability and make 

acquisition problematic. Also, the availability of the satellite data must be assured. The development of 

image classification methods must be effective, efficient, and easy to implement. Based on the literature, 

upcoming satellites such as future MODIS and the RADARSAT constellation will enhance the temporal, 

spectral, and spatial resolutions that could be a good fit in mapping rice areas and forecasting its production. 
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