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Abstract: In this paper, we present a pseudo optimization method for electronic nose

(e-nose) data using region selection with feature feedback based on regularized linear

discriminant analysis (R-LDA) to enhance the performance and cost functions of an e-nose

system. To implement cost- and performance-effective e-nose systems, the number of

channels, sampling time and sensing time of the e-nose must be considered. We propose a

method to select both important channels and an important time-horizon by analyzing e-nose

sensor data. By extending previous feature feedback results, we obtain a two-dimensional

discriminant information map consisting of channels and time units by reverse mapping the

feature space to the data space based on R-LDA. The discriminant information map enables

optimal channels and time units to be heuristically selected to improve the performance and

cost functions. The efficacy of the proposed method is demonstrated experimentally for

different volatile organic compounds. In particular, our method is both cost and performance

effective for the real implementation of e-nose systems.
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1. Introduction

Electronic nose (e-nose) systems classify different odors, chemical components and vapors with

sensor arrays and have been widely studied and developed [1–18]. In particular, diverse studies

have researched the materials, chemical reactions, packaging, sensor arrays, pattern recognition and

embedded system designs of e-nose systems.

Pattern recognition and data mining processes are essential for e-nose systems. Since

two-dimensional data are obtained from numerous sensor channels with different characteristics, it is

important to utilize efficient and suitable pattern-recognition methods [19–29]. Processing e-nose data

effectively can potentially improve the performance of the designed hardware. Moreover, the results can

be used to design additional sensors.

Numerous studies have applied pattern-recognition methods, such as feature extraction or selection,

to e-nose systems [8–18]. In [11], template matching was adopted to classify e-nose data into

two-dimensional image form. In [12–15], linear discriminant analysis (LDA), support vector machine

(SVM) and relative vector machine (RVM) were used for classification. Various optimization-like

techniques have also been proposed to reduce the number of sensor arrays [16,17] and the processing

time-horizon [18]. In [17], the rough set-based optimization technique was proposed to select sensor

channels. In [16,18], feature feedback-based pattern-recognition methods were proposed for e-nose

systems. In [24], feature feedback is introduced as a data refinement technique to reduce the redundancy

of a high-dimensional face image dataset. For the e-nose dataset used in our paper, by reverse mapping

from the feature space to the original data space, using principle component analysis (PCA) and LDA

(PCA + LDA), channel selection [16] and time-horizon selection [18] can be achieved. By retaining

the important parts of the original data and discarding redundant data, the sensor array was further

optimized, and the classification process was made more efficient; specifically, the classification rate,

processing time, memory size, etc., demonstrated that the recognition performance was preserved or

slightly improved.

We present a pseudo optimization method for e-nose data using feature feedback based on regularized

LDA (R-LDA) [28,29] to enhance the performance and cost functions of the e-nose system. Since

R-LDA [20] outperforms PCA + LDA in face recognition problems, we expect that the feature feedback

using R-LDA will outperform that using PCA + LDA [16,18].

By extending previous feature feedback results [16,18], we obtain a two-dimensional discriminant

information map, which is subsequently used to implement a region-based data selection method. In the

two-dimensional map, each rectangular region consists of continuous rows and columns that correspond

to continuous sensor channels and time units, respectively. In this scheme, important data are defined

based on the region from which data are selected from the two-dimensional map; the sensor channels

and time units that form the selected region are considered important data. This important information

facilitates the improvement of the performance and cost functions. Experimental results for different

volatile organic compounds [11] show that our method can classify data better than other existing

methods. Furthermore, our method is both cost and performance effective for the real implementation of

e-nose systems.
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This paper is organized as follows. In Section 2, we review existing literature on R-LDA-based

feature feedback. We present region selection methods in Section 3 and present our experimental results

in Section 4. In Section 5, we state our concluding remarks.

2. Feature Feedback Using R-LDA

2.1. Feature Feedback

In [24], feature feedback is proposed as a data pre-processing algorithm to identify important and

eliminate redundant data in training and test sets. To reduce the dimension of input data, feature feedback

uses several common feature extraction techniques, such as PCA, LDA or R-LDA, to create a feature

mask that is then used as a reverse mapping from the feature space to the input space. Figure 1 illustrates

the principle idea of utilizing feature feedback compared with other feature extraction methods in a

classification system. Instead of directly using the extracted features for the classification, in feature

feedback, these features are used to revert to the original data as a data-refinement process.

Figure 1. Concept of using feature feedback as a data-refinement method in a classification

system.

To accomplish this, as shown in Figure 2, feature feedback uses these extracted features to create a

feature mask and multiplies this mask to the original data. The feature mask obtained from the feature

feedback stage is a binary mask in which “1” elements indicate important pieces of the mask and the

“0” elements represent unimportant parts. Consequently, the pixels in the input samples that are

important for the classification can be selected in this form of feature mask.

Figure 2. Vapor classification based on feature feedback.
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2.2. Regularized Linear Discriminant Analysis

In this section, we briefly introduce the concept of R-LDA from the viewpoint of improving the LDA

method [19]. R-LDA attempts to solve the small sample size (SSS) problem.

Let Z = {Zi}
C
i=1

be a training set consisting of C classes Zi. Each class Zi consists of Ci samples

{zij}
Ci

j=1
. Overall, a total of N =

∑C

i=1
Ci samples are available. For convenience, each sample is

represented as a J-dimensional matrix, where (J = Ix × Ih). The lexicographic ordering operation of

LDA locates the set of feature vectors (Fisherfaces), denoted by {Wm}
M
m=1

, which are used to construct

the feature space for classification. LDA performs dimensionality reduction, while preserving as much

of the class discriminant information as possible. This is achieved by simultaneously maximizing the

determinant of the between-class scatter matrix and minimizing the determinant of the within-class

scatter matrix. The objective function of LDA can be written as follows:

W = argmax
W

|W TSBW |

|W TSWW |
,W = [W1,W2, ...,WM ],Wm ∈ R

J , (1)

where SB and SW are the between and within-class scatter matrices, respectively, defined as follows:

SB =
C
∑

i=1

Ni(µi − µ)(µi − µ)T (2)

SW =

C
∑

i=1

Ci
∑

xk∈ci

(xk − µi)(xk − µi)
T (3)

here, µi =
1

Ci

∑Cj

j=1
zij and µ are the mean of the class Zi and entire training data, respectively. The

optimization problem in Equation (1) is equivalent to the following generalized eigenvalue problem,

SBWm = λmSWWm, m = 1, ...,M. (4)

The PCA + LDA method attempts to solve the SSS problem by performing PCA [23] before LDA,

which results in SW being non-singular. However, since the PCA step may discard dimensions that

contain important discriminative information, the PCA + LDA method does not give the best solution to

the SSS problem. To overcome this problem, R-LDA was developed [20]. R-LDA is the extended version

of LDA, which aims to solve the SSS problem. The regularized Fisher’s criterion can be expressed

as follows:

W = argmax
W

|W TSBW |

|η(W TSBW ) +W TSWW |
, (5)

where 0 ≤ η ≤ 1 is a regularization parameter. The proof of the equivalence between Equations (1) and

(5) can be found in [20].

The scatter matrices and objective functions for PCA, LDA and R-LDA are shown in Table 1. In

Table 1, the columns of W F = [wF
1

wF
2
..wF

n′], where F ∈ {P, L,R}, are the projection vectors. These

vectors are used to represent the sample xk as a low-dimensional feature vector yk = (W F )Txk, where

F ∈ {P, L,R}, in the n′-dimensional feature space.
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Table 1. Characteristics of PCA, LDA and regularized linear discriminant analysis (R-LDA).

Method Scatter Matrix Used Objective Function

PCA ST =
∑C

i=1(xi − µ)(xi − µ)T WP argmaxW |W TSTW |

LDA
SB =

∑c

i=1 Ni(µi − µ)(µi − µ)T
WL argmaxW

|WT SBW |

|WT SWW |SW =
∑c

i=1

∑
xk∈ci

(xk − µi)(xk − µi)
T

RLDA
SB =

∑c

i=1 Ni(µi − µ)(µi − µ)T
WR argmaxW

|WT SBW |

|η(WT SBW )+WT SW W |SW =
∑c

i=1

∑
xk∈ci

(xk − µi)(xk − µi)
T

µ: mean of the whole training samples; µi: mean of the samples belonging to class ci that has Ni ;

η: regularization parameter (0 ≤ η ≤ 1).

2.3. Feature Feedback Using R-LDA

In [28,29], a basic form of R-LDA-based feature feedback is introduced. To evaluate the relative

importance of the information in each variable for classification, the relationship between the basis of

the feature space and the input variables are analyzed. After the useful features from the training data are

extracted using R-LDA, a feature mask from the feature-related region is constructed. This is then used

to refine the input data, including both the test and training sets. Since the R-LDA method has the ability

to extract significant features for classification, the feedback step using the feature mask can effectively

identify important regions, as well as eliminate redundant regions from the input data. Consequently, the

classification performance of feature feedback based on the R-LDA method is expected to be better.

All of the necessary steps regarding the experiment are shown in Figure 3. The overview procedure

is as follows:

Figure 3. Overall procedure of the R-LDA-based feature feedback.

• Step 1: The discriminant features used in the feature feedback stage are extracted using R-LDA.

Since the projection vectors corresponding to large eigenvalues are more significant feature bases,

the first nf projection vectors with large eigenvalues are selected to use for feature feedback.

• Step 2: A feature mask is constructed by summing nf projection vectors extracted in Step 1. In

the feature mask, N elements with large values are set to one, while the remaining elements are set

to zero, i.e., the final mask from R-LDA contains only one and zero elements.
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• Step 3: The input data are refined using the final mask. The elements in the input data

corresponding to one in the final mask are selected and utilized for classification, and the remaining

elements in the input data are eliminated.

3. Channel and Time-Horizon Selection Using Feature Feedback with R-LDA

In this section, we present a method to extract the important data from a two-dimensional

discriminant information map for classification. In [18], a one-dimensional discriminant information

map, considering only the time-horizon dimension, is proposed to implement the time-horizon data

selection method. On the other hand, the channel selection method in [16] considers only the channel

dimension for the implementation of data selection. Since the region selection method in this paper

considers both channel and time-horizon dimensions for data selection, a corresponding two-dimensional

discriminant information map is created to implement the data selection process. Our method consists

of two stages: In the first stage, we derive a two-dimensional discriminant information map using

feature feedback based on R-LDA. In the second stage, the channels and time-horizons are selected

simultaneously based on the two-dimensional map for classification. The procedure of our channel and

time-horizon selection method is shown in Figure 4.

Figure 4. Overall procedure of the proposed method.

3.1. Two-Dimensional Discriminant Information Map for Channels and Time Units

We first measure the distribution of the discriminant information in the data sample by using the

feature feedback [18,24]. We then construct a two-dimensional discriminant information map MD,

which is used as a reference for selecting the channel and time section.

The amount of discriminant information in each element of the data samples is based on projection

vectors of R-LDA, wR
l , where l = 1, ..., nf . For each projection vector wR

l , the magnitude of wR
li reflects

the amount of discriminant information in the data sample. Therefore, we construct a map mR
l for

each wR
l representing the distribution of discriminant information in the data sample. We then merge

mR
l s, l = 1, ..., nf to obtain a single map mD. Each value of mD

i , i = 1, .., J , of mD indicates the

relative amount of discriminant information in element xki of xk = [xk1, .., xkJ ]
T . For data reduction and
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normalization, we replace the values of the N largest elements in mD
i s with one and set the remaining

entries to zero.

In our e-nose system, we use a gas sensor array chip consisting of 16 separate channels to collect vapor

data samples [16]. Each data sample is acquired through 16 channels over 2000 time points ranging from

0 to 2 s. In this scheme, one data sample is represented by a vector xk ∈ R
32000 in 32,000-dimensional

input space. The typical multi-sensor time-response of the toluene vapor [16] is shown in Figure 5. The

discriminant information map mD is represented by a 32,000-dimensional vector, similar to the input

space and projection vectors produced by R-LDA.
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Figure 5. Typical time-responses of 16-channel sensor array with respect to the inflow

of toluene.

After several data processing steps, the distribution of the one-dimensional discriminant information

map mD can be observed according to the channel and time-horizon. First, the map mD is re-arranged as

a 16× 2000 matrix MD. Each row of MD represents the data of each channel through 2000 time points,

and each column represents the data in each time point of the 16 channels. After the transformation, we

divide the time-horizon [0,2] into 20 time units TUi,i = 0, ..., 19, of 100 ms each; overall, there are a

total of 320 units for all 16 channels. Let UD be the discriminant unit map consisting of 320 units uD
ij ,

where 0 ≤ i ≤ 15, 0 ≤ j ≤ 19. Each uD
ij indicates the number of elements that equal one in the j-th unit

of the i-th row. In this scheme, the higher value of uD
ij , the more important of a role that the j-th unit in

the i-th row of map MD plays. The above process is implemented as follows:

• Step 1: From the training data xk = [xk1, .., xkn]
T , k = 1, .., N , using R-LDA to obtain nf

projection vectors wR
l , l = 1..nf .

• Step 2: For each projection vector wR
l , construct the dimensional map mR

l = [mR
l1, .., m

R
lJ ]

T ,

as follows:

mR
li = |wR

li |. (6)

• Step 3: Construct a discriminant information map mD by summing mR
l for l = 1, ..., nf :

mD =

nf
∑

l=1

mR
l (7)
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• Step 4: To effectively distinguish important parts based on the magnitude of mD
i , we define an

order vector o = [o1, ..., oJ ]
T . In the vector o, the i-th component oi indicates the order of the

absolute value |mD
i |, sorted in ascending order. For example, if oi is assigned the value (n−k+1),

then mD
i is the k-th largest value in {mD

i |i = 1, ..., J}. Finally, the elements of the discriminant

information map mD are modified as follows:

{

mD
i = 1, if oi ≥ n− N

mD
i = 0, otherwise.

(8)

Here, N is denoted as the total number of selected pixels. In this scheme, if the element

mD
i = 1, it means that the i-th pixel of mD is considered to be important in this discriminant

information map.

• Step 5: Transform the discriminant information map mD into a 16 × 2000 matrix form MD.

Divide the overall time-horizon [0, 2] into 100-ms intervals, and the rearrange map MD contains

16 channels, each separated into 20 time units. Count the number of elements mi’s that equal one

in each unit.

• Step 6: Define the discriminant unit map UD = {uD
ij}, 0 ≤ i ≤ 15, 0 ≤ j ≤ 19, where uD

ij is the

number of elements mis that equal one in the j-th unit of the i-th row of MD.

3.2. Pseudo Optimization of E-Nose Data Based on the Two-Dimensional Discriminant Map

The two-dimensional discriminant information map UD defined in the previous section can be used

to represent the rearranged discriminant information map MD at the unit level. In map UD, an element

with value one indicates that its corresponding unit in MD has high discriminant information.

High value elements in UD are distributed heterogeneously. This means that they mainly concentrate

on certain channels and time-horizon frames, rather than dispersing over the whole map. Thus, we only

use elements of UD with high distributions, i.e., we only choose the elements in important channels and

time-horizon frames. The pseudo optimization of e-nose data based on the two-dimensional discriminant

information map UD is implemented as follows:

• Step 1: Divide the two-dimensional discriminant information map UD into two parts, important

and unimportant information, using window W = {[Ci, Cj], [TUm, TUn]}, where [Ci, Cj]

represents all of the channels from i to j and [TUm, TUn] is all of the time-horizon frames

from m to n. Elements inside W containing all of the channels from channel i to j and

all of the time-horizon frames from m to n are important, while the remaining elements are

discarded because they are unimportant. To do this, we construct a new map, denoted by

UM = {uM
ij }, 0 ≤ i ≤ 15, 0 ≤ j ≤ 19, from UD as follows:

{

uM
ij = uD

ij , if uD
ij ∈ W

uM
ij = 0, otherwise.

(9)

• Step 2: From the modified two-dimensional map UM , reconstruct the modified rearranged map

MM (16× 2000 matrix). If uM
ij = 0, all data points in the j-th unit of the i-th row in MM are set to
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zero. Otherwise, if uM
ij = 1, all elements in the corresponding position of MM are set to the value

of their equivalent elements in MD.

• Step 3: Convert the modified rearranged map MM into the modified one-dimensional discriminant

information array mM . This final map is used for the feature extraction and classification stage.

4. Experimental Results

In this section, we present the applications of the proposed method to the e-nose system described

in [11]. Since the efficacy of the proposed region selection method is evaluated based on the comparison

with previous works in [16,18], we apply our method to the same e-nose dataset for the implementation.

The volatile organic compound (VOC) measurement data consisted of eight classes: acetone, benzene,

cyclo-hexane, ethanol, heptane, methanol, propanol and toluene. The dataset contained 160 samples,

and each sample (xk ∈ R
32000) consisted of 32, 000 variables that were measured through 16 channels

over 2000 time points. To evaluate the classification rates, we performed five-fold cross-validation [25]

and computed the average value. There were 128 data samples in the training set and 32 data samples in

the testing set.
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Figure 6. The classification rates with different η values.

For the experiment using the proposed method, we first found a suitable value of the regularization

parameter η in the R-LDA equation. To do this, we first applied the R-LDA-based feature feedback

mentioned in Subsection 2.3 to e-nose data for different values of η. For each value of η, we

used a different number of selected value in the feature mask obtained using R-LDA. We compared

the performances of all cases to determine the best value of η. Figure 6 shows the comparison of

classification rates for various values of η. As depicted in Figure 6, the classification rate changes

according to the value of η, and the number of selected elements in the feature mask N also changes.

Based on these results, we chose η = 0.01 for our experiments.
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4.1. Construction of Two-Dimensional Discriminant Information Map

To construct the one-dimensional discriminant information map mD, we set nf = 3, because the sum

of the three largest eigenvalues of xL
l , l = 1, .., 3, accounted for approximately 99% of the total sum

of the eigenvalues. Among the 32,000 elements of the discriminant information map mD, we perform

experiments using only 8000, 9600, 12,800, 16,000 and 19,200, according to 25%, 30%, 40%, 50% and

60%, respectively, of the highest values in map mD. All of the selected elements were set to one, and the

remaining elements were set to zero. By doing this, the discriminant information map mD was divided

into two parts: the important part with all 1 elements and the unimportant part with all 0 elements.

As mentioned in Section 3, in the rearranged discriminant information map MD, we divided the

time-horizon [0, 2] into periods of 100 ms and obtained 20 time units TUi, i = 0, .., 19; in other words,

each channel was divided into 20 units. The discriminant information map MD was represented at the

unit level by introducing the two-dimensional discriminant information map UD.

Figure 7 shows an example of a two-dimensional discriminant information map UD obtained from

128 training samples of the first experiment. As mentioned earlier, in UD, each element uD
ij indicates the

number of high elements in its corresponding location in the rearranged discriminant information map

MD. As a result, the higher the value of uD
ij in UD, the more important of a role the j-th unit of the i-th

channel plays in the rearranged discriminant information map MD.

Figure 7. Two-dimensional discriminant information map.

4.2. Region Selection Based on the Two-Dimensional Discriminant Information Map

For the region selection process, we first divide map UD into two parts using window W. Figure 8

gives an example to illustrate how we used window W and two-dimensional discriminant information

map UD for the region selection method. In this figure, the vertical and horizontal edges of W indicate

which channels and time-horizon frames are used to extract the important elements from UD. Figure 9

shows the resulting map after the channel and time selections are applied. As mentioned in Section 3.2,

we denote this new discriminant map as UM .
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In our experiment, for different values of N, the window W was determined heuristically by changing

the selected region or selected channels and time frames. We compared all of the results to choose the

best window W for each case. Note that for each map UD, we use only one window W for the selection,

i.e., we extracted the elements of continuous channels, as well as time frames. Doing this made our

method more practical and easier to implement for real-life applications.

Figure 8. Discriminant information map UD with region selection using window W.

Figure 9. The two-dimensional discriminant information map UM .



Sensors 2015, 15 667

4.3. Classification Using the Selected Region

In this section, we discuss the results from two experiments conducted to evaluate how our proposed

method affects the classification rate. In the first experiment, we compared the classification rate when

R-LDA-based feature feedback, with and without the region selection method, was used during the

classification stage. In the second experiment, we compared our selection method with other selection

methods, such as channel selection and time-horizon selection.

For each experiment, the variables of all samples in the training set were normalized using the mean

and variance of the training set. The features used for classification were extracted using the region

selection from the discriminant information map created by R-LDA. For the classification stage, the one

nearest neighbor algorithm was used as a classifier, the same as in [16,18]. Since the proposed region

selection method focuses on the data optimization problem at the feature extraction stage, a simple

classifier, such as one nearest neighbor, is used at the classification stage to make it easier to evaluate

the effects of our data selection method on the e-nose system performances. In both experiments, the

distances between the pairs of samples were measured using the l2 norm.

Table 2 shows the results from the first experiment. We implemented the R-LDA-based feature

feedback with and without the region selection for different values of N. For each value of N, we

obtained a different two-dimensional discriminant information map UD; this required using a different

window W for region selection. The results in Table 2 clearly show the effects of region selection on

the e-nose system. When more than 30% of the highest pixels in map mD are selected, the recognition

rate of the proposed selection method is always higher than that of the R-LDA-based feature feedback

without any selection method. In the best case, the average recognition rate when data from regions

containing three to 12 channels and seven to 20 time-horizon frames is 1% higher than that when all of

the channels and time-horizons are considered.

Note that when using the region containing Channels 3 to 12 and time-horizon Frames 7 to 20, only

44% of the whole data is utilized, and the recognition rate improves by 1%. This suggests that the

proposed method has the ability to enhance performance, specifically the processing time, memory size

and recognition rate.

Table 2. Each classification rate from the five-fold cross-validation for selected channels and

time-horizon (%).

Channel and Time

Horizon
Feature (1,2, 5–7) Average

N = 8000 (25%)
All data [29] 84.4 96.9 90.6 90.6 90.6 90.6

[C3, C10],[TU12, TU20] 65.6 87.5 84.4 90.6 90.6 84.4

N = 9600 (30%)
All data [29] 72.5 93.1 97.5 97.5 97.5 93.2

[C3, C10], [TU12, TU20] 76.9 93.1 98.1 98.1 98.1 94.1

N = 12800 (40%)
All data [29] 78.8 97.5 97.5 97.5 97.5 94.6

[C3, C12], [TU7, TU20] 83.8 99.4 99.4 99.4 99.4 97.2

N = 16000 (50%)
All data [29] 86.3 96.3 98.1 98.1 98.1 96.2

[C1, C12], [TU9, TU20] 86.3 96.9 98.8 98.8 98.8 96.3

N = 19200 (60%)
All data [29] 83.1 96.9 98.1 98.1 98.1 95.8

[C1, C12], [TU9, TU20] 80 97.5 98.8 99.4 99.4 96
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Table 3 shows the results from the second experiment. In this experiment, we compared the effects of

different methods applied to the e-nose data. When all of the elements in the discriminant information

map (without any selection method) are used for classification, the R-LDA-based feature feedback

obtains a higher classification rate than the PCA-LDA-based feature feedback. The classification rate

improves considerably when a selection method is applied to the discriminant information map. By

applying the region selection method, the classification rate not only improves, but reduces a large

amount of usage data in the discriminant information map. The last row of Table 3 shows the result

when two windows are used instead of one for region selection (shown in Figure 10). In this case,

although the classification rate improves by 0.4%, the usage data are much higher than 17%, which are

the usage data when only one window is used.

Table 3. Average classification rates of different selection methods (%).

.

Methods Feature 1 2 5 6 7 Average Data Size Used (%)

PCA + LDA, All [18] 87.6 95 97.5 97.5 97.5 95.3 100

PCA + LDA, Channel selection [16]
91.1 98.1 98.8 98.8 98.8 97.8 56

Channel {1, 8, 2, 14, 3, 5, 16, 6, 9}

PCA + LDA, Time horizon selection [18]
85.6 96.9 99.4 99.4 99.4 96.9 55

Time horizon {TU9 − TU19}

R-LDA, All [29] 86.3 96.7 98.8 98.8 98.8 96.3 100

R-LDA, Channel and time selection
83.8 99.4 99.4 99.4 99.4 97.2 44

Channel and time {[C3 − C12], [TU7 − TU20]}

R-LDA, Channel and time selection

87.9 99.6 99.6 99.6 99.6 97.6 61Channel and time {[C3 − C12], [TU1 − TU8]},

{[C3 − C12], [TU12 − TU20]}

Figure 10. Utilizing two windows W for region selection.

5. Conclusions

In this paper, we presented a region selection scheme applied to a vapor classification system using

data from a portable e-nose sensor.
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The high-dimensional input data from the e-nose sensor are highly redundant, caused by measurement

noises, sensor errors and unimportant parts of the dataset. As a result, an analysis with the original input

data is used, requiring an enormous amount of memory size, computation time and power consumption.

Once the relative importance of data between channels and the time horizon is determined, we can

efficiently extract important data for the classification process, while removing the redundant information

and, hence, improving the performance of the classification system.

Consequently, we have proposed a region selection method of sensor data using feature feedback.

First, we have created a two-dimensional discriminant information map by using R-LDA. Then, from the

discriminant information map, we extracted important data by merging useful channels and time-horizon

frames. With the region selection method, we can reduce the processing time, required memory, power

consumption, and so on. Furthermore, we can improve the performance of classification by eliminating

the redundant data. From the experiment for the e-nose system, we have shown that the performance

of the classification can be improved in the sense of the classification rate, data processing time and

memory size.

As future work, we require a more systematic algorithm in order to merge the selected channels and

time horizon frames. In addition, a more complex data set for the experiments with the proposed method

is also the subject of future work.

Acknowledgments

The research was supported in part by the MSIP (Ministry of Science, ICT and Future Planning),

Korea, under the ICT/SW Creative research program supervised by the NIPA (National IT Industry

Promotion Agency) (NIPA-2014- ITAH0502140330180001000100100), and supported in part by the

Basic Science Research Program through the National Research Foundation of Korea (NRF), the

Ministry of Science, ICT and Future Planning (No. 2012R1A1A1007658) and also supported in part

by the BK21 Plus Program (Dankook University) through the National Research Foundation of Korea

(NRF) (No. F14SN08T2424).

Author Contributions

Gu-Min Jeong and Nguyen Trong Nghia designed the experiments and drafted the manuscript.

Sang-Il Choi provided useful suggestions and edited the draft. All authors approved the final version

of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T.C., Schffman, S.S.,

Nagle, H.T., Gardner, J.W., Eds.; Wiley-VCH: Weinheim, Germany, 2003.



Sensors 2015, 15 670

2. Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev.

2008, 108, 705–725.

3. Khalaf, W.; Pace, C.; Gaudioso, M. Least square regression method for estimating gas

concentration in an electronic nose system. Sensors 2009, 9, 1678–1691.

4. Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors

2009, 9, 5099–5148.

5. BariC, N.; Bücking, M.; Rapp, M. A novel electronic noise based on miniaturized SAW sensor

arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of

volatile organic comppunds in food quality monitoring. Sens. Actuators B Chem. 2006, 114,

482–488.
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Finazzi-Agrò, A.; D’Amico, A. Lung cancer identificatin by the analysis of breath by means of

an array of non-selective gas sensors. Biosens. Bioelectron. 2003, 18, 1209–1218.

9. Zhang, Q.; Xie, C.; Zhang, S.; Wang, A.; Zhu, B.; Wang, L.; Yang, Z. Identification and pattern

recognition analysis of Chinese liquors by doped nano ZnO gas sensor array. Sens. Actuators B

Chem. 2005, 110, 370–376.

10. Nicolas, J.; Romain, A.-C.; Wiertz, V.; Maternova, J.; André, P. Using the classification model
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