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Abstract: Radar high resolution range profiles are widely used among the target recognition

community for the detection and identification of flying targets. In this paper, singular value

decomposition is applied to extract the relevant information and to model each aircraft as a

subspace. The identification algorithm is based on angle between subspaces and takes place

in a transformed domain. In order to have a wide database of radar signatures and evaluate

the performance, simulated range profiles are used as the recognition database while the

test samples comprise data of actual range profiles collected in a measurement campaign.

Thanks to the modeling of aircraft as subspaces only the valuable information of each target

is used in the recognition process. Thus, one of the main advantages of using singular

value decomposition, is that it helps to overcome the notable dissimilarities found in the

shape and signal-to-noise ratio between actual and simulated profiles due to their difference
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in nature. Despite these differences, the recognition rates obtained with the algorithm are

quite promising.
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1. Introduction

The goal of a non cooperative identification (NCI) system is to reliably identify unknown targets with

no need to establish communication with them. These systems compare the observed target data with a

database of potential targets in order to determine the closest match. High range resolution radar data

have been shown to provide plenty of information to identify unknown targets [1–5]. A high resolution

range profile (HRRP) is a one-dimensional radar image where the reflectivity of a target is projected onto

the radar line of sight. Profiles are comprised of range bins and contain the distribution of the scattering

centers of a target providing information about target structure such as its size, scatterers distribution

and so on [6]; moreover, radar provides the ability to recognize targets at long distances and under any

weather conditions, thus, the use of HRRPs for target identification has been a key research domain in

the Defense industry and the radar automatic target recognition (ATR) community during the last two

decades [2,3,7–11]. However, the use of HRRPs for classification purposes is still a challenging task due

to the extreme within-class variability and the high dependency of the shape of these profiles with the

target aspect angle.

Since the aircraft will be moving while collecting range profiles, the aspect angle and the distance

between radar and aircraft will change. This leads to the appearance of three main sources of variation:

speckle, rotational range migration (RRM) and translational range migration (TRM). Speckle occurs

when the same range bin contains information about more than one scatterer. Then, a slight motion of

the aircraft can cause the scatterer contribution to turn from constructive to destructive interference or

vice versa causing the peak amplitudes to change rapidly between sequentially collected profiles. RRM

is caused if HRRPs are collected during a wide rotation of the aircraft, making the scatterers move from

one range bin to the other. These effects are referred to as target-aspect sensitivity. On the other hand,

TRM is due to the translational motion of an aircraft which changes the distance between radar and

target and causes scatterers to move from one range bin to the next. In this case, the relative distance

between two scatterers does not change since they are all moved the same amount. This is known as the

time-shift sensitivity, which causes a cyclically shift in consecutive profiles, implying that the position

of the target signal within a HRRP sample vary with each measurement. Another effect that should be

accounted for is the amplitude-scale sensitivity. It comes from the fact that the intensity of a HRRP is a

function of the radar transmitting power, target distance, radar antenna gain, receiver gain, system losses

and so on, thus, profiles measured by different radars or under different conditions will have different

amplitude scales. Consequently, some preprocessing techniques are needed in order to deal with this

target-aspect, time-shift and amplitude-scale sensitivity of a HRRP [2,3]. Despite these inconveniences,

not only is much easier to obtain reliable range profiles than focused 2D radar images, such as inverse
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synthetic aperture radar (ISAR), but also, the computational time needed to obtain a recognition output

is much shorter.

After the application of preprocessing techniques to improve the quality of profiles and in order to

preserve relevant information, remove redundancies and capture significant attributes of aircraft in the

range profiles, feature extraction techniques (including dimensionality reduction) are needed before the

identification process takes place. With feature extraction, redundant information that range profiles

may have is removed and only a reduced representation of data is needed to perform classification.

Thus, non cooperative target recognition gets less computationally intensive and has potential for real

time processing.

In the literature, different methods for feature extraction in HRRP have been studied. The traditional

dimensionality reduction algorithms for HRRP recognition are based on a reconstruction model like

principal component analysis (PCA) [3]. Wavelet transformation can also be applied as a feature

selection method [12]. Hidden Markov models (HMMs) have been employed in [13] to statistically

characterize the sequential information in HRRPs while the features are extracted via a RELAX

algorithm. The differential power spectrum, which was originally used in speech recognition, is

introduced to extract features from range profiles in [14]. Another common approach is feature extraction

in the frequency domain and the use of the Fourier transformed range profiles as feature vectors [15,16].

Zyweck and Bogner [17] compute the dimensionality reduction with a linear discriminant function. As

a time-shift invariant feature, bispectra have also been studied in [18,19], however the computational

burden needed to compute the bispectra is too high. In [20], a dictionary learning algorithm based on

K-SVD for sparse signal approximation is proposed as a new method for dimensionality reduction in

radar target recognition.

Bhatnagar et al. [8] showed that using singular value decomposition (SVD), the eigenvectors

corresponding to the m largest eigenvalues of the correlation matrix of range profiles constitute the

optimal basis feature set in the minimum mean square error sense. Equivalent to PCA, SVD transforms

a matrix into different subspaces, but instead of using the method as a reconstruction model, in the

methodology presented here SVD is used in order to work in the transformed domain, i.e., directly with

eigenvectors and eigenvalues. Then, dimensionality is reduced to extract the main features of the range

profiles and to reduce the unwanted information; additionally, this approach lightens the computational

burden since there is no need to reconstruct the initial profile.

SVD has been also previously applied to image processing for image compression, image denoising

or even for watermarking applications [21]; to reduce the noise in digital receivers [22]; to 3D object

classification [23] where application of SVD is used in order to model static images as subspaces and

reduce dimensionality, and also to target recognition with range profiles as in [8], where the application

of SVD to ATR was first used (algorithm extended later in [24]); or in [25] where SVD is used for the

reduction of noise. In this study, with the application of SVD, targets are modeled as subspaces so as to

reduce dimensionality and to define metrics based on the angle between subspaces.

This paper is organized as follows: Section 2 first presents the construction of the database used

for recognition followed by an introduction of the SVD technique and the definition of the proposed

algorithms. Once the algorithms are introduced, the section gives an insight about the dataset used in
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the experiments. Section 3 provides a discussion and the results obtained with the proposed method and

finally, Section 4 presents the conclusions and future work.

2. Methodology

2.1. Database construction

Traditionally, target recognition algorithms are validated via comparison of a test set of actual HRRPs

with a database of potential targets previously collected via cooperative measurements [3,26]; on the

contrary, there are some authors that validate their algorithms via comparison of a test set of predicted

HRRPs with a database of profiles predicted also via electromagnetic simulations [8,27]. The principal

disadvantage in proving the accuracy of the algorithms lies in the fact that comparison is done in the

same domain, that is, actual measurements vs. actual measurements or simulated profiles vs. simulated

profiles. In both cases, the test and training samples have similar nature and usually a similar high

signal-to-noise ratio (SNR) resulting in good recognition results.

In a real hostile situation, e.g., at battle time, the range profiles of an unknown target are collected in

a scene where high SNR cannot be guaranteed due to the measurement collection conditions like long

radar distance, thus, actual target signatures will be less clear than those in the database; additionally,

in order to guarantee the right recognition, the unknown target must have been previously measured

in a similar aspect angle and configuration (pods, missiles, etc.) and loaded to the target database.

Thus, comparison with actual measurements implies the previous collection of information from a great

number of flying targets in different aspect angles and configurations and even so, the main problem lies

in the fact that not all existing aircraft may have been measured. Therefore, the aircraft to be identified

would unlikely be included in the database and so, it would be incorrectly classified. It is important

to develop a recognition system with a database of targets that holds the generalization capability, that

is, a database with information about the vast majority of existing targets in as many trajectories as

possible. In order to obtain this wide database, its population with HRRP simulations is thought to be

a good choice.

But, why is the use of predicted profiles as database interesting for classification? As noted,

it is impossible to fill a database only with measured profiles since among other reasons, aircraft

from hostile nations will never participate in measurement campaigns. Populating a database with

synthetic target signatures has certain advantages: target signatures of any target in any aspect angle

and configuration can be obtained with the use of radar cross section (RCS) prediction software so the

database can be as wide as required, the database population is fast and low-cost and its update (addition

of new targets, configurations or aspect angles) only implies CAD modeling and simulation instead of

planning expensive and lengthy cooperative measurements campaigns. On the other hand it also has

disadvantages: simulations are run in ideal environments, software simulation tools may not take into

account all electromagnetic (EM) effects and aircraft models may not be exact replicas of real ones.

These imply that synthetic signatures will be very clean compared to an actual measurement of the same

target, hindering the identification process. Thus, the identification algorithms to be developed must be

robust with the difference in shape and SNR between test and training samples.
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According to that, in this paper identification of HRRPs coming from data of real in-flight targets

is carried out by comparison with a database of simulated/synthetic HRRPs. This approach is barely

applied in the open literature [2,28,29] but it is a very interesting field due to the ease in the database

population and the fast evaluation of algorithms. The main drawback found, as noted, is that predictions

have a very clean signature while actual HRRPs suffer from noise and other unwanted effects, making

the recognition process similar to a real situation where collected profiles could be noisier than those in

the database. In order to overcome the differences between HRRPs and to keep only the main features

of a target, SVD [30] is applied to matrices of consecutive range profiles.

2.2. Singular Value Decomposition

SVD is a robust technique for the decomposition of any matrix into orthogonal basis spaces [30]. With

SVD it is possible to find the best approximation of the original data points using fewer dimensions.

Let X ∈ ℜN×M be a matrix of consecutively collected real HRRPs of dimension N × M (assuming

N > M), with M being the total number of profiles and N the number of range bins. There exist

orthogonal matrices

U = [u1, ..., uN ] ∈ ℜN×N (1)

V = [v1, ..., vM ] ∈ ℜM×M (2)

such that

UTXV = diag(σ1, ..., σp) ∈ ℜN×M ; p = min {N,M} (3)

where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 are the singular values of X , diag stands for diagonal matrix and vectors

ui and vi are the ith left and ith right singular vectors of X respectively. The left singular vectors in U

span the orthogonal basis space in the range domain while the right singular vectors in V span the basis

space in the angle domain. Larger singular values, σi, imply larger contribution of the corresponding

singular vector in forming the target signal. The Eckhart and Young theorem [30] guarantees that the

top singular vectors with the highest singular values provide the best approximation of the data. Thus,

the N-dimensional vector space (when referring to matrix U, or M-dimensional, referring to V) can

be divided into two subspaces, a dominant subspace, namely the signal subspace, and a subdominant

subspace, namely the noise subspace. Therefore, the singular vectors associated with the largest singular

values are the basis that span the signal subspace while the rest are the basis that span the noise subspace

and will be discarded in the identification process.

2.3. Algorithm Definitions

Since HRRPs present the target reflectivity into the range domain, only the left singular vectors will

be used in the identification process. Taking into account the singular values, σi, and setting an energy

threshold η (0 < η < 1) as in Equation (4), the signal subspace is defined as the K most significant ui

singular vectors, while the noise subspace is discarded.
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∑K

i=1
σi

∑p

i=1
σi

≥ η (4)

In order to clarify the metrics used in this research, let us introduce the simplified concept of subspace

division and angle between subspaces shown in the example of Figure 1. In this paper we call test set

to the actual profiles to be identified and training set to the data that populate the synthetic database of

already known targets.

e1

e2

e3

XY − plane

u2

α = π/3

β = π/6

u1

Figure 1. The signal subspace is defined by vectors e1 and e2.

Let vectors e1, e2 and e3 in Figure 1 be the left singular vectors, as defined in Equation (1), obtained

after applying SVD to the test set to be identified. Imagine that the threshold η is set to 0.95. Assuming

that according to their associated singular value the 95% of the energy is focused on e1 and e2, then these

are defined as the K = 2 first left singular vectors that form the basis of the signal subspace, while e3 is

discarded; hence, the signal subspace of the test set in this example corresponds to the XY plane. After

the application of SVD to the training set, vectors u1 and u2 in Figure 1 are obtained as its left singular

vectors as defined in Equation (1). In order to know the level of dependency of these vectors to the test

set signal subspace, the angle between them and their projection onto it is obtained. Notice that u1 is

closer to the XY plane than u2, in this example the angle found for u1 is β = π/6 while the angle found

for u2 is α = π/3; the smaller the angle, the closer to the subspace.

Denoting XR as the signal subspace of the test set containing its K first left singular vectors and

us
i as the ith left singular vector of the training set corresponding to target s; function F1s, given by

Equation (5), is defined as the accumulated angle between a singular vector us
i in the training set and the

signal subspace of the test set, where 6 (XR, us
i ) is the angle between the test set signal subspace and

each singular vector of the training set as stated in [30].

F1s(k) =

k
∑

i=1

6 (XR, us
i ) ; k = 1, . . . , K (5)

F1s shows the evolution of the angle formed by each synthetic singular vector and its projection onto

the signal subspace resulting in a monotonically increasing function. The recognized aircraft, s, will be

the one with the lowest final value of F1s. In the case of function F1s, the angle of every singular vector

in the training set contributes equally to the final result, i.e., singular vectors are equally important.

Imagine our training set consists of S = 2 different aircraft, A and B, and let vectors u1 and u2 in
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Figure 1 be the left singular vectors obtained for these aircraft after applying SVD to their respective

matrices of range profiles, such that:

aircraftA =

{

uA
1
= u1 =⇒ σA

1
= 0.8

uA
2
= u2 =⇒ σA

2
= 0.2

aircraftB =

{

uB
1
= u2 =⇒ σB

1
= 0.8

uB
2
= u1 =⇒ σB

2
= 0.2

where the superscript represents the aircraft s (s = A,B;S = 2) to which the singular vectors and

singular values are related. With the application of function F1s there would be confusion in the

identification result since:

F1A(K) = F1B(K) = π/3 + π/6

However, their associated singular values reveal that not all singular vectors in the training set have

the same importance since the energy is focused on the top ones. This means that the obtained angle

between us
i and XR should be weighted in a way that the singular value σs

i associated with us
i sets the

importance of this angle in the final solution. For instance, angles of π/2 mean that the singular vector

is orthogonal to the subspace. Thus, obtaining results of this order when us
i is associated with a high

singular value would mean that the aircraft (s) to be recognized will not belong to that class. On the

contrary, if an angle of π/2 is obtained with a vector with a very low singular value it will not contribute

to a great extent to the final solution. According to this, function F1s is modified in order to add some

kind of weighting to the angles between subspaces found. Function F2s given in Equation (6) returns the

accumulated weighted angle F2s between the signal subspace of the test matrix and the singular vectors

ui for each synthetic aircraft s in the training set.

F2s(k) =
1

∑K

j=1
σs
j

k
∑

i=1

σs
i · 6 (X

R, us
i ) ; k = 1, . . . , K (6)

In Equation (6) σs
i,j are the K first singular values associated to each synthetic aircraft in the training

set and, as in Equation (5), 6 (XR, us
i ) is the angle between the test set signal subspace and each

singular vector of the training set. Finally, the algorithm decides the test sample belongs to the target

that minimizes the cost function (6). In the previous example, in contrast to F1s the application of

Equation (6) would result in the identification of aircraft A since:

F2A(K) = 1 · (0.8 · π
6
+ 0.2 · π

3
)

F2B(K) = 1 · (0.8 · π
3
+ 0.2 · π

6
)

}

F2B(K) > F2A(K)

So, by applying SVD to HRRP matrices and selecting the singular vectors of the signal subspace not

only is the reduction of the amount of data achieved, but the identification process is also improved due

to the rejection of the noise subspace and the use of the transformed domain.
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2.4. Datasets

For the purpose of classification, two collections of range profiles are used in this research, a test

set and a training set. The test set consists of measured HRRPs from a civil aircraft measurement

campaign [31], while the training set is made of a collection of simulated HRRPs using the

RCS-prediction code FASCRO [32]. FASCRO predicts the monostatic RCS of a target based on high

frequency (HF) techniques (Physical Optics, PO, and Physical Theory of Diffraction, PTD).

The test set includes measurements of 5 civil in-flight aircraft in different flighpaths, the Boeing

747-400, the Airbus A310, the Boeing B767-300, the Fokker 28 and the Fokker 100, a large, two

medium and two small-sized aircraft. These data were collected with the FELSTAR S-Band radar at

TNO-FEL located in The Netherlands. During acquisition, information from a secondary radar was

available providing the target type and an estimate of its flightplan. The error on the estimated aspect

angle of the aircraft does not exceed 5 degrees in both azimuth and elevation. Rapid changes in elevation,

or if the aircraft was making a long turn in its trajectory, would affect the profiles, nevertheless, in the

measurement campaign, only targets under conditions of no long turns nor approaching or leaving an

airport runway were measured. Moreover, the measured profiles are free of influences of radial velocity

since the FELSTAR radar used a velocity tolerant waveform (the times at which the pulses are transmitted

are chosen such that the resulting range profiles are focused irrespective of the velocity). Since the

generalization capability is sought, for the creation of the training set the CAD models of the same 5

aircraft have been developed at INTA (Spanish National Institute for Aerospace Technology) and the

profiles have been predicted by FASCRO using the information of the estimated aspect angles given in

the test set. Figure 2 shows the CAD models used to obtain the simulated profiles.

Figure 2. CAD models used for the RCS predictions.

The training set has been developed considering every aircraft as perfect electric conductors (PEC)

with no protruding elements. It is also worth noting that FASCRO, as it uses high frequency techniques,

does not take into account all EM effects when predicting RCS. Therefore, noticeable difference between

test and training sets is expected hindering the identification process. An example of the differences

between synthetic and actual profiles can be found in Figure 3 where profiles at a certain aspect angle of

two types of aircraft are depicted.
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Figure 3. Difference between actual and synthetic range profiles. (a) Measured vs.

Simulated Profile—F100; (b) Measured vs. Simulated Profile—A310.

One source of error in the resemblance is the target aspect estimate. As mentioned before, the

synthetic profiles are predicted in the same aspect angles than the measured ones, however, there exist

an error in both azimuth and elevation on the predicted aircraft orientation and, as said, the aspect

angle under which the aircraft is seen affects the shape of the HRRP. Another observation is that the

amplitudes of the profiles in Figure 3 do not match very well; CAD modeling defined as PEC is only a

first approximation to the actual scattering mechanisms and is therefore, likely to produce inaccuracies

in the HRRP predictions. Moreover, although in both cases amplitude normalization is applied, the SNR

difference between them is noteworthy; as seen in Figure 3, actual profiles are noisier between peaks than

the simulated ones, which influences the amplitudes when normalizing; additionally, as no noise-power

is present in the synthetic profiles its normalization pushes the signal components to higher values.

Finally, another reason of the HRRP differences is that several scattering processes that occur in reality

are not accounted for in FASCRO since it is based on HF techniques. A full wave EM software would be

needed to properly run all these effects with the associated increase in time and memory requirements.

A total number of 21 trajectories are considered in this study for classification. With the purpose of

avoiding RRM, each trajectory has been split into frames, each frame (sequence of collected profiles

ordered in time and time-shift compensated [33] in order to palliate TRM) cover approximately a

variation of 2.5◦ in azimuth in the aircraft aspect angle. If two profiles have aspect angles whose

difference is less than ∆αRRM = ∆R/TD[rad] the profiles do not differ due to RRM [34]. According to

the FELSTAR specifications and the longest aircraft in the database, in this study ∆αRRM = 0.3◦. With

the division of trajectories into frames, the effects of RRM are compensated since it is guaranteed that

no pair of consecutive profiles exceed this ∆αRRM .

Figure 4 shows the aspect angles of the trajectories used in the process, where nose-on aspect angles

corresponds approximately to (θ = 90◦, α = 0◦). Note that since the method pretends to be validated for

any aspect angle, this study is not only focused on trajectories in nose-on, any trajectory is valid.

Most studies tend to classify one profile at a time [8,10,24]. Here, the identification is carried out

using a sequence of profiles so as to have more information about the position of the scattering centers
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of the target and their evolution along its trajectory. As stated, frames of synthetic profiles are the same

as the actual profiles meaning that they are predicted in the same estimated aspect angles as the profiles

in the test set. Figure 5 shows the flow chart of the recognition algorithm proposed in this paper, where

S is the number of different targets in the database, (S = 5), Fs can be any of the two metrics (F1s or

F2s) and the synthetic singular values (σs
i ) are only needed when the chosen metrics is F2s.
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Figure 5. Flow chart of the proposed recognition algorithm.

When a test sample is to be identified, an HRRP preprocessing stage should be carried out before

feature extraction in order to mitigate the target-aspect, time-shift and amplitude-scale sensitivity of the
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profiles. Time-shift compensation is carried out with an alignment of profiles. The amplitude-scale

sensitivity is compensated with a normalization to unit energy of each HRRP by applying L2-norm.

In order to offset the target-aspect sensitivity the trajectories are divided into small frames with a

variation of at most 2.5◦ in azimuth. So, in the preprocessing stage of the test set, one must find the

corresponding frame into which the test sample is included. The average profile of a real HRRP frame

can also reduce the target-aspect sensitivity of real HRRPs. In fact, the average vector of a frame and

the first principal component of the correlation matrix of the same frame are similar [3]. Accordingly,

instead of calculating the mean vector of a frame, the further application of SVD will help reduce the

target-aspect sensitivity.

In the case of the training samples, their preprocessing stage differs from the former in two substages.

First, the frames in which trajectories are divided into are defined in this stage, and second, time-shift

compensation is not needed since the profiles come from ideal simulations where the aircraft motion is

already compensated. After the preprocessing stage, there still exist some sources of variation between

profiles of the same and different aircraft, mainly caused by noise, approximation of CAD models as

well as software prediction errors. By applying SVD at this point, it is possible to separate the essential

information from the redundant one.

As noted, the preprocessing and SVD of the training samples is done off-line, which means a

reduction in the computational burden since the singular values and vectors of the potential targets will

be already loaded in the database. Taking into account the singular values of the test samples and setting

an energy threshold η as in Equation (4), the signal subspaces of both sets are defined as the K most

significant ui singular vectors (XS and XR in the figure), and the noise subspaces are discarded resulting

in a dimensionality reduction. Finally, using the defined signal subspaces the algorithm will identify the

test sample as the target s that minimizes the chosen metrics (F1s or F2s).

3. Experimental Results

As presented in Section 2.4 the 21 trajectories are split into frames. For each frame and trajectory, the

test and training sets are defined as matrices of range profiles of size N ×M , with N = 324 number of

range bins and M number of profiles. The number of profiles on each set depends on the trajectory and

frame chosen; as Figure 4 shows, some trajectories have more rapid variation in azimuth than others and

thus, to capture a variation of 2.5◦ in azimuth a less number of profiles will be needed. It also affects

the number of K eigenvectors taken as signal subspace, as the number of profiles in a set decreases, the

energy of the eigenvectors obtained by SVD is concentrated in a less number of eigenvectors. After the

split of the trajectories, a total number of 175 frames are obtained for classification; 42 corresponding

to aircraft class B747, 43 to F100, 32 to B767, 38 to F028 and 20 to A310. Recognition rates applying

function F1s for the classification of the 175 frames of the test set with different energy thresholds can

be found in Table 1.

The results given in Table 1 are obtained by simply computing the accumulated angle between

subspaces as in Equation (5) and they show a very high error rate when comparing actual vs. synthetic

profiles, that is, when comparing HRRP with different shapes and nature. As it can be seen, the lower

the percentage of energy taken as signal subspace the better the average recognition rate, it rises from
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56% when η = 0.99 to 65.1% when η = 0.85. If a high threshold is chosen (η = 0.99) almost all the

eigenvectors are considered as signal subspace, that is, the signal subspace can contain information that

actually belongs to the noise subspace. That is the reason why a reduction in the threshold returns better

recognition rates, because the defined signal subspaces will be more accurate and the noise information

will be truly discarded.

Table 1. Average recognition rates with F1s.

Class η = 0.99 η = 0.9 η = 0.85

B747 54.8 % 57.1% 61.9%

B767 43.8% 87.5% 75.0%

A310 40.0% 55.0% 55.0%

F100 62.8% 46.5% 55.8%

F028 68.4% 73.7% 76.3%

AVER. RECOGNITION RATE 56.0% 63.4% 65.1%

Nonetheless, there is a limit when choosing η; if it is too low the signal subspace will be composed

of very few singular vectors and the decision interval is very small, that is, the metrics’ final results

for each aircraft are very close, which makes it difficult to distinguish between the winning aircraft

and the following one even when the identification is correctly accomplished. So, when choosing η a

parametric sweep should be executed in advance and a trade-off between recognition rate and decision

interval should be taken into account. Consequently, in this study the chosen energy threshold is set to

85% (η = 0.85). According to Table 1, the recognition rates found for F1s are not high enough to be

considered as a good classification; thus, in order to improve these results the need for using the singular

values as weights in the cost function, as in F2s, is evident.

In Table 2 the recognition rates of the 175 frames in the test set obtained with F2s with different

energy thresholds are presented. Also in this case, the recognition rates are enhanced with the decrease

of the percentage of energy taken as signal subspace; in this experiment, the average recognition rate

obtained when η = 0.99 is 75.4% and it rises to 82.3% when η = 0.85, but as noted, a lower limit in

η must be set. As expected, the recognition rates have been improved with the addition of weighting

elements in the metrics’ definition.
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Table 2. Average recognition rates with F2s.

Class η = 0.99 η = 0.9 η = 0.85

B747 90.5% 90.5% 92.9%

B767 59.4% 75.0% 78.1%

A310 85.0% 85.0% 90.0%

F100 65.1% 72.1% 72.1%

F028 78.9% 81.6% 81.6%

AVER. RECOGNITION RATE 75.4% 80.6% 82.3%
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Figure 6. Example of identification results for two different aircraft in two

different trajectories with a threshold of η = 0.85. (a) F100—identification results;

(b) B767—identification results.

Figure 6 depicts an example of the identification curves obtained with function F2s for two different

measurements in the test set. Each one is compared against the 5 synthetic aircraft in the database for

the respective frame with a threshold of η = 0.85. As seen, the curves have a monotonically increasing

tendency until they eventually reach a point of saturation; from that point on, the synthetic singular vector

us
i , due to its corresponding singular value, does not add almost any new information to the recognition

process. Figure 6a shows the recognition results of a F100 in a frame. The chosen threshold results,

for that specific frame, in K = 23 singular vectors out of 83 that hold the 85% of the total energy and

define the signal subspace. In this case, as F028 and F100 have similar geometry one could expect F2s

to result in a similar value. However, in this example, the final values of these two aircraft differ the

most. The geometric configuration of an aircraft has to do with the information returned from it but there
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are other factors that influence the formation of a HRRP. For a specific aspect angle, each range bin has

information about all the scattering effects. These effects, as said in previous sections, are sometimes

constructive, sometimes destructive, and make HRRPs very variable. This can cause, in a specific aspect

angle, aircraft with similar configuration to be quite different. Additionally, as noted, FASCRO does not

take into account all EM effects and this may have a more notable effect in some angles than in others.

In order to illustrate that not always similar aircraft return very different results, Figure 6b, shows the

recognition results of a B767 in a specific frame. Here, the K = 29 first singular vectors out of 132

hold the 85% of the energy and define the signal subspace. The aircraft that minimizes F2s(K) is the

recognized target, therefore, in both examples of Figure 6 the identification is correctly accomplished.

Comparing the results of function F2s (Table 2) with the results of F1s (Table 1), each aircraft has

obtained better recognition results when the singular values are used as weights in the cost function; this

improvement in the recognition rates is more evident with a higher energy threshold, e.g., when η = 0.99

classification with F1s returns an average recognition rate of 56% while classification with F2s obtains

a 75.4%, almost a difference in 20 percentage points.

When the threshold is set to be η = 0.85 this experiment shows a total average recognition rate of

82.3% with F2s, that is to say a 17.7% of error rate. This implies not only an improvement in the

identification rate for a particular aircraft, but also an improvement in the global recognition rate of more

than 15 percentage points (from 65.1% with F1s to 82.3% with F2s), enhancing the global recognition

performance of the system when weighting elements are used. It is worth noting, one more time, the

lack of resemblance between measured profiles and synthetic ones. As noted, actual profiles suffer from

noise and unwanted information while synthetic ones, since they are run in an ideal environment without

considering all electromagnetic effects and with CAD models which are not an exact replica of real

aircraft, have a very high SNR and the signature is much clearer.

Real aspect angles are, at the most, 5◦ different from the estimated ones. This discrepancy is another

add-on to the profiles dissimilarity and proves that, since recognition rates are up to 80%, SVD extracts

the main information of a target along a trajectory near to the one that an aircraft is really following,

i.e., in order to obtain a fairly good recognition rate it is enough with the comparison of profiles in a

surrounding of the real trajectory. If the estimated aspect angles were very accurate to the real ones in

the trajectory an increase in the results would be expected.

Therefore, can it be affirmed that 82.3% is a good average recognition rate when identifying actual

profiles by means of a synthetic database? Studies like the one presented in [3], which presents a

method based on PCA for the recognition of complex measured HRRPs, obtain a high recognition

rate of around 91%. However, they identify measurements from 3 flying airplanes with a database

of actual measurements. That is, the identification is carried out between data of the same nature and

with a small set of measurements, while the study presented in this paper identify data of different

nature and with a quite bigger database. Yet, the method in [3] only outperforms F2s in 9 percentage

points. On the other hand, among the studies in the open literature where identification of HRRPs

of different nature is studied, the one in [2], although focused on translational motion compensation

methods, carries out a preliminar study in recognition of predicted profiles previous to the classification

of actual measurements with a synthetic database. Results show that when comparing simulated with

simulated profiles the overall recognition rate reached 98%, however, when identifying actual aircraft
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measurements with predictions, the average recognition rate decreased to 70%. In both experiments

the database is made of a collection of simulated range profiles of 5 aircraft models. As expected, the

identification of predictions using predictions as a database clearly outperforms the identification rates

shown in Table 2. However, in a similar scenario, where the experiment in which comparison has taken

place between actual and simulated profiles, results in [2] are outperformed by 12 percentage points with

the algorithm presented in this paper (82.3% vs. 70%).

The intention of this comparison is to check whether the recognition rates obtained here are close

to those presented so far in the literature. Thus, it can be concluded that despite the obstacles found,

recognition is accomplished with a good rate.

4. Conclusions

In this paper, a methodology for HRRP target recognition based on Singular Value Decomposition

is shown. As noted, the main drawback of using actual measurements against simulated ones is the

lack of similarity between range profiles, making identification not an easy task. Due to the extraction

of the main information by reducing dimensionality, SVD not only helps to overcome these difficulties

but also to reduce the computational burden since it is not necessary to store the unwanted information.

Two methods based on SVD have been presented and compared. It has been proved that finding the

angle between singular vectors and signal subspaces is not sufficient for obtaining good recognition

performance. Nevertheless, the addition of a weighting element (singular values) in the cost function

produces a rise in the identification rates, implying that recognition performance has been improved by

introducing weighting. Considering the differences in nature of the test and training sets used in this

research, the identification results obtained with the weighting method are quite promising and future

experiments with larger sets are expected to be conducted in order to prove the accuracy of the method

proposed here.
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