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Abstract: This paper presents a Fitts’ law-based analysis of the user’s performance in
selection tasks with the Leap Motion Controller compared with a standard mouse device.
The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based
human-computer interaction with declared sub-millimeter accuracy. Up to this point, there
has hardly been any systematic evaluation of this new system available. With an error rate
of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for
a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as
an input device for everyday generic computer pointing tasks is rather limited, at least with
regard to the selection recognition provided by the LMC.
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1. Introduction

Effective, efficient human-computer interaction (HCI) is strongly influenced by input devices, which
sense the physical interaction of users. There is a large variety of classical input devices, e.g., mouse,
trackball, joystick, touch pad or touch screen. Besides the classical input devices, there are more
and more contact-free input systems available, e.g., gesture-recognition [1], eye-gaze control [2] or
speech input [3]. Such sensors become significant for sterile environments, e.g., medical or industrial
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applications [4]. Different input device characteristics, however, make different requirements of human
abilities. Therefore, the compatibility between device characteristics and the abilities of the user
determines the objective and subjective input performance to a large extent.

This paper evaluates the Leap Motion Controller (LMC) as a new three-dimensional (3D) contact-free
pointing device. The Leap Motion Controller introduces a new gesture and position tracking system
with sub-millimeter accuracy. In contrast to standard multi-touch solutions, this touch-free sensor is
discussed for use in realistic stereo 3D interaction systems [5], especially concerning the direct selection
of stereoscopically-displayed objects [6]. Further, exploration of the suitability of the Leap Motion
Controller for Australian Sign Language (Auslan) [7] and handwriting recognition [8] are discussed.
Design issues and opportunities for bare-hand 3D controlling techniques with the LMC are evaluated [9].
The performance of a mouse device and the LMC for 3D manipulation tasks is analyzed [10], and
an LMC-supported Augmented Reality (AR) interface is proposed [11]. Evaluations of a device as a
pointing device is according to the International Organization for Standardization (ISO) 9241-9:2000
standard [12]. The norm depicts the necessary issues to calculate the device performance (throughput).
This is performed in different studies, e.g., [13–23]. Six mouse devices with small variations in size
and shape are analyzed without significant performance differences [14]. An isometric joystick and
a touchpad are evaluated as pointing devices, finding non-significant differences for one-dimensional
tasks and 27% higher throughput for the joystick in two-dimensional tasks [15]. Different designs for
isometric joysticks are discussed and evaluated for handheld information terminals [16]. Pino et al. [17]
are evaluating the performance of computer-based pointing tasks for a Microsoft Kinect device and a
mouse. In 2D pointing tasks, throughput is almost 39% lower than using the mouse, and the missed
clicks count is almost 50% higher. New devices, including the Wii Remote, are discussed as devices for
the manipulation of 3D scenes [18,19]. A classical game controller and the Wii Remote are evaluated
using a mouse as a baseline condition [20]. The evaluation of a standard game controller and a modified
trackball game controller is presented by Natapov and MacKenzie [22], showing a performance gain
of 60% compared to the standard device. Three pointing devices for remote pointing are evaluated for
applicability to interactive TV environments and compared to a standard mouse device [21] with poor
performance compared to the baseline condition, and a computer-controlled laser pointer is discussed as
a pointing device in a collaborative environment. Results show approximately 75% of the performance
of a standard mouse device [23]. Bérard et al. [19] found superior performance for a standard mouse
device in the accuracy of 3D positioning tasks, while Balakrishnan et al. [18] propose a modified
mouse device that is 30% faster than a standard mouse in a custom-designed positioning task. In
general, an improvement of human-computer interfaces is necessary in view of the increased complexity
of computer-based systems [24]. Especially, touch-free devices, like the Leap Motion Controller,
will now also be important, e.g., to prevent contamination from pathogens in medical and biological
workplaces [25] or as an interaction device in telemedicine [26].

To the knowledge of the authors, the user performance with the Leap Motion Controller has not been
systematically analyzed yet.
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One important aspect of computer input research is to measure and characterize the performance of
various input systems. Given the great potential diversity of input devices, as mentioned above, a critical
need is to be able to compare and characterize them from a human performance perspective. Numerous
researchers have used concepts from information theory to describe interactions with information
technology. Fitts’ law is arguably the most widely-known example [27–29] and is frequently used to
compare the human performance with input devices. It describes the relationship between movement
time, distance and accuracy in rapid aimed movements [30] and, thus, applies to the pointing and
dragging interactions of a wide variety of standard devices, like a mouse, trackball, stylus, etc., as well
as of contact-free devices.

It implies a tradeoff between speed and accuracy, suggesting that movement time increases as
navigation distance increases or the size of the target decreases [30]. In the context of Fitts’ law, each
attempt to select a target is viewed as being a success or failure. Selection time and error rate are used to
describe the efficacy of interaction solutions.

This paper presents a study of the Leap Motion Controller’s abilities as a pointing device. To compare
pointing tasks performed with the two devices, participants were instructed to execute pointing and click
interactions as they are provided by the two devices. Therefore, in the mouse movement conditions,
the cursor had to be moved to the actually labeled target and the selection had to be performed by a
click. Analogously, in the LMC movement conditions, the cursor also had to be moved to the actually
labeled target by the index finger and selection had to be performed by a quick vertical finger movement.
However, the latter gesture, which is supposed to be an analogy of the mouse click, is more difficult to
control than a mouse click and, thus, may cut down the performance of the LMC device. The main focus
of this paper therefore is on:

• Performance: Evaluation of the performance differences between mouse and the LMC for click
and pointing gestures. More degrees of freedom have to be controlled for the Leap Motion
Controller compared to the mouse. Furthermore, the execution of pointing movements with
the LMC is more complex. Thus it is hypothesized that the performance may suffer from the
additional load.
• Practice: Given that there are performance differences between mouse and LMC, it is evaluated if

practice may help to overcome such differences.
• Gender: Rohr [31] found some effects for gender-specific movement strategies in the context of a

computer-pointing task. Therefore, this study also aims to control for gender effects.

The aim of this study is to provide an experimental approach that focuses on the main axis (horizontal
axis) of interaction only. Horizontal movements are required independently of the interaction device
(e.g., mouse, touch pad, touch screen) and the manipulation plane (horizontally vs. vertically).
Furthermore, additionally to the performance analyzes provided by Fitts’ task, it is discussed to what
extent movement trajectory characteristics are affected by different levels of task difficulty. The analyses
of the trajectories may especially help to investigate the click gesture of the LMC in more detail. For
such analyses, repeated movements for each of the employed combination of distances and target widths
are needed. Therefore, the ISO 9241-9:2000 standard task is not adopted yet, because in the instructed
procedure of this task, the direction of the subsequent movements has to be changed. Movements in



Sensors 2015, 15 217

different directions, however, require different muscle groups and different nonlinear transformations
of the movements around the joints for the different 2D movement directions. Thus, the trajectories
conducted in the ISO standard task may not be comparable within a certain level of difficulty, and the
analyses of the LMC movements may be confounded by movement direction.

The paper is organized as follows. In Section 2, the materials and methods are introduced. First, the
LMC is explained, and the framework of Fitts is presented in Section 2.1. Section 2.2 to Section 2.5
expose the participants and the experimental set-up in detail. Results are presented in Section 3, and the
Discussion and Conclusion are conducted in Section 4.

2. Materials and Methods

The Leap Motion Controller (LMC) is a new consumer-grade sensor developed by Leap Motion
(Leap Motion, http://www.leapmotion.com). It is primarily designed for hand gesture and finger position
detection in interactive software applications. Up to this point, only insufficient information on the
underlying software’s geometrical or mathematical frameworks has been available. Figure 1a shows
an infra-red image of the controller’s hardware setup. Besides three infrared emitters, the device
incorporates two IR cameras. As stated by the manufacturer, the sensors accuracy in position detection
is about 0.01mm. Recent research [32] has shown that an accuracy of below 0.2mm for static setups
and of 0.4mm for dynamic setups was obtained in realistic scenarios. The precision and reliability
of the LMC were analyzed for static and dynamic scenarios using a high-precision optical tracking
system [33] as the ground truth. A standard deviation of less than 0.5mm for static scenarios and an
inconsistent performance for dynamic scenarios were obtained. This shows a high potential of the LMC
for gesture-detection systems in HCI applications. However, the limiting factor for the obtainable user
performance in pointing tasks is not the accuracy and precision of the LMC. For static setups, the LMC’s
accuracy is below the human hand tremor [34,35]. This implies that the main restriction for effective
pointing task performance with the LMC is, besides the complexity of the gesture used to perform a
click movement, the human motor system itself.

(a) (b)

Figure 1. Visualization of a (a) real (using infrared imaging) and (b) 3D model of the Leap
Motion Controller with the coordinate system.
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Hand and fingertip positions are detected in coordinates relative to the center of the controller in a
right-handed coordinate system (cf. Figure 1b). Further, different types of gestures are detectable (Leap
Motion API, http://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.html).
Direct access of raw IR images was not provided via the utilized LMC software developer kit
(Version 0.7.9). The so-called tap gesture was chosen as the pointing movement equal to a mouse click.
The tap gesture was recognized if the fingertip rotated down towards the palm and afterwards back to its
original position with a velocity of at least 40mm/s.

2.1. Fitts’ Law as a Theoretical Framework to Assess User Performance

As mentioned in the Introduction, Fitts’ law probably is the most frequently-used theoretical
framework to describe and compare user performance for different input devices. On the one hand, the
framework is used as a predictive model, viz. to predict the time to move the cursor to a button and click
on it. On the other hand, it is used as a means to estimate the throughput as an index of performance
of the human motor system. Fitts’ law actually applies information theory to human behavior, and
its basic assumption is that human performance can be described with the mathematical concept of
“information” as, for example, used in electronic communication systems [36]. The amplitudes of aiming
movements are considered in analogy to the information of signals transmitted in electronic systems and
the variability (spatial accuracy) of the movements in analogy to electronic noise. Furthermore, it is
assumed that the human motor system is like a communications channel, where movements are like
the transmission of signals and the bandwidth (information capacity) of the channel can be expressed
in bits/s.

User performance in the current study was assessed in conformity to Fitts’ law [27]. Thus, task
difficulty was quantified as the index of difficulty (ID in bits) using information theory. More
specifically, the Shannon formulation, the widely-used version of the index of difficulty (ID) [28,37]:

ID = log2(
D

W
+ 1) (1)

was utilized, where D is the distance between targets and W is the target width. The units of ID is bits
and emerges from the base 2 of the logarithm. ID was used in this paper as the factor to manipulate task
difficulty. As a main dependent variable, movement time (MT ) was used to assess task performance.
Fitts’ law holds thatMT is a linear function of ID, characterizing a movement along a single dimension:

MT = a+ bID (2)

Fitts also proposed to quantify the human rate of information processing in aimed movements. The
index of performance, called throughput (TP ), is calculated by dividing the effective index of difficulty
IDe by MT , computed over a block of trials:

TP =
IDe

MT
(3)

The units of TP are bits per second (bps). IDe is used because endpoints of target selections have
much lower variance, as one might expect [38], and is defined as:
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IDe = log2(
D

We

+ 1) (4)

Here, We is the effective target width computed from the variability of the observed endpoints:

We = 4.133 · SDx (5)

where SDx is the standard deviation in the selection coordinates measured along the axis of approach to
the target. Because of the chosen LMC pointing gesture (tap gesture), which makes it difficult to robustly
and precisely determine the end of the pointing movement and beginning of the movement to the next
target, the effective distance De was not used in the formulation of the effective index of difficulty, as
proposed by Soukoreff and MacKenzie [37].

2.2. Participants

Twelve (6 male) right-handed undergraduates participated in a 1.5-h session (mean age = 25.25 years,
SD = 4.22 years). All participants had corrected-to-normal vision and used computers with modern
GUIs and a mouse on a daily basis. None had prior experience with the LMC. All participants used their
preferred hand during the experiment.

2.3. Apparatus

A custom-designed software, written in C++, was used to present the different tasks and to record the
participant’s movement trajectories. The graphical interface was designed using the Qt-Framework (Qt
Project, http://www.qt-project.org) and presented on a 22-in TFT, which was running at a resolution of
1680×1280 pixels. The devices consisted of a Logitech optical mouse (Model RX 250 (Logitech RX250
Mouse, http://www.logitech.com/de-de/product/rx250-optical-mouse-business) and the LMC. The user
interface was adapted to the screen’s resolution, such that a mapping from LMC coordinates (mm)
to screen coordinates (pixels) was realized. Movement acceleration of the mouse was matched to the
horizontal range of the LMC, such that a horizontal movement of approximately 300mm regarding both
devices (position of the mouse controller and the fingertip position over LMC) was required to cover the
screen’s horizontal extent. The screen surface was oriented vertically in front of the participants with a
distance of 70 cm. Mouse movements were performed on the right side below the screen’s surface, on the
table at which the participants were sitting. The LMC was also placed at the right side of the screen, such
that the horizontal movement range was identical to the movement range of the mouse (cf. Figure 2). To
avoid displacement, the LMC was fixed to the table’s surface with adhesive tape. The height of the chair
and the distance between chair and table were adjusted by the participants to a comfortable height. To
reduce strain during the interaction with the LMC, participants were instructed to put their elbow on the
table (see Figure 2b).
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(a) (b)

Figure 2. Experimental set-up: (a) participant using the mouse controller and (b) utilizing
the Leap Motion Controller (LMC) to perform selection tasks.

2.4. Design

Data analysis was based on a 2 (device) × 2 (gender) × 5 (ID) × 3 (block) mixed design. The
design consisted of the between-group factor gender and the within-group factors device (mouse vs.
LMC), index of difficulty (ID ∈ {1, 1.6, 2.3, 3.2, 4.1}) and block (1, 2, 3). With regard to the factor
device, participants performed in the mouse condition pointing movements using a mouse in the
conventional manner and selecting the target by a click of the left mouse button. In the LMC condition,
participants used their index finger to interact with the LMC device (cf. Figure 2b). In the LMC
condition, participants had to perform aiming movements between the targets and select the respective
destination targets by an additional pointing movement (tap gesture). The different ID conditions were
combinations of varying distances and target widths (see Table 1). To assess training and learning
effects, each combination of the factors device and the index of difficulty was performed in each of the
three consecutive blocks. Each participant received a different order of the factors target widths, target
height and device, based on a Latin square. For each of the conditions, 20 selections were performed.
To measure and compare the performance of the two devices, three dependent variables were used:
movement time (MT in ms), error rate (ER in %) and throughput (TP in bps). MT was the mean
time per trial, including both the time to move from the source target to the respective destination target
and the time to make a selection. The error rate was the percentage of out-of-target selections. TP was
calculated according to Equation (3) (cf. Section 2.1).
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Table 1. Target conditions.

Target Distance, D (mm) Target Width, W (mm) Index Of Difficulty, ID (bits) ID Number

40.0 40.0 1.0 1

40.0 20.0 1.6 2

80.0 40.0 1.6 2

40.0 10.0 2.3 3

80.0 20.0 2.3 3

160.0 40.0 2.3 3

80.0 10.0 3.2 4

160.0 20.0 3.2 4

160.0 10.0 4.1 5

2.5. Procedures

Prior to testing, the participants were briefed on the purpose of the experiment. Tasks were explained
and demonstrated, and participants were advised to move quickly while minimizing errors. Because
none of the participants was familiar with the LMC, a short custom-designed training was provided at
the beginning of a session. The instructed training task was different from the experimental task in order
to avoid the practice advantages of the LMC over the mouse device. In order to practice the pointing
gesture with the LMC, a set of 10 randomly arranged circular targets of random radii between 7 and
20mm were displayed on the screen (cf. Figure 3a). The training was completed after all targets were
selected by performing the pointing gesture, while aiming at a point inside one of the not already selected
circular targets. The completion of a selection was indicated by a change in the target’s color. After the
specific LMC training, the experimental task for both devices was practiced with the two devices. During
this second practice phase, participants had to perform one serial selection task for each distance/width
condition with the mouse, as well as with the LMC device.

(a) (b)

Figure 3. Scaled illustrations of the graphical user interface. Selected targets are displayed
in gray; selectable targets are colored green: (a) the additional custom-designed training
phase for the LMC pointing task; and (b) the interface for the pointing task.
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After the practice phase, the experimental blocks were started. At the beginning of each block, a
screen was displayed indicating which device was tested next. For easier detection of device changes,
the upcoming device was displayed as a picture in the upper left part of the screen (see Figure 3). The
start of a new trial was triggered at the participant’s discretion. In each trial, two targets of width W ,
separated by distanceD, were displayed on the screen. Randomly, one of the targets was annotated as the
starting target, highlighted in green. The task was to alternately select the targets in the implied order by
performing a device-specific click. According to Fitts’ paradigm [27], this complies with the so-called
serial selection task. The cursor was initially set to the center position between the targets, i.e., the serial
selection task is initialized by one discrete task, which was not included in the data analysis. After the
cursor’s starting position changed by more than 5mm, the recording of the movement trajectories was
activated. After a successful selection, the selected target’s color changed to gray. Missing the target
(performing a click outside the target area) or selecting the wrong target was emphasized by highlighting
the missed target. For each distance/width condition, 10 back-and-forth selections were performed.

After each block, participants were asked to rate the subjective difficulty of the tasks. For these
ratings, the rating scale of mental effort (RSME) [39] was employed.

3. Results

Based on the framework of Fitts (cf. Section 2.1), the observed user performance was
evaluated. In Sections 3.1 to 3.3, the error rate, movement time and throughput are presented.
The mental effort is evaluated in Section 3.4. Data were submitted to an analysis of variance
(ANOVA) [40,41]. The probability level for the statistical significance of all analyses was p < 0.05.
Greenhouse–Geisser-corrected results are reported when necessary [42]. The general eta-squared
η2G [43] is reported as a measure of the effect size for all significant ANOVA results. Afterwards,
accumulator plots are introduced, which represent intuitive visualizations for different patterns of
movement trajectories.

3.1. Error Rate

The mean error rate over the entire experiment was 4.8%. The error rate was about three-times higher
when movements were performed with the LMC (7.2%) than with the mouse (2.3%), F(1, 10) = 41.6,
p < 0.001, η2G = 0.19. As expected, the error rate increased with ID and was lowest (1.6%) at ID = 1

and highest (9.2%) at ID = 4.1, F(4, 60) = 21.3, p < 0.001, η2G = 0.2. There was a steeper increase
of the error rate with ID for LMC movements than for mouse movements, F(4, 40) = 10.0, p < 0.001,
η2G = 0.1. The different performance patterns between the two devices are depicted in Figure 4a. There
was no effect of gender and block, p’s > 0.27.

3.2. Movement Time

Mean MT over the entire experiment was 757ms. There was a main effect of block, F(2, 20) = 5.9,
p < 0.02, η2G = 0.06, viz. the mean MT systematically decreased across the three blocks
(817, 756, 698ms), suggesting a general practice effect. Movements performed with the LMC lasted



Sensors 2015, 15 223

considerably longer than mouse movements (945, vs. 565ms), F(1, 10) = 121.8, p < 0.001, η2G = 0.48.
As expected, MT increased with ID and was lowest (499ms) at ID = 1 and highest (1102ms) at
ID = 4.1, F(4, 40) = 95.1, p < 0.001, η2G = 0.53. Analogous to the error rates, there was a steeper
increase in MT for LMC movements than for mouse movements, F(4, 40) = 14.0, p < 0.01, η2G = 0.11

(see Figure 4b). Again, there was no effect of gender, p’s > 0.34. Linear regression shows, that Fitts’
law (cf. Equation (2)) holds for the mouse device (a = 258.52, b = 102.26, r2 = 0.99, standard error
of the estimate e = 14.44); for the LMC, the predictive qualities of Fitts’ law are limited (a = 369.12,
b = 193.28, r2 = 0.93, e = 82.46). The LMC-based trails show less efficiency in target activation than
the ones performed with the standard mouse device (369.12ms vs. 258.52ms) [44].

(a) (b)
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Figure 4. Results of the experiment: (a) error rate (ER) by device and index of difficulty
(ID); (b) movement time (MT ) by device and ID with linear regression lines fitted to the
data; (c) throughput (TP ) by block and device; and (d) TP by block and gender. Error bars
indicate the 95-percent confidence intervals.

3.3. Throughput

As already mentioned earlier in this paper, throughput (TP ) is an additional important
measure of performance, combining both speed and accuracy, and is considered as
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the main indicator to estimate or predict the performance of users with a certain
device. To assess TP for the two devices, a three-way ANOVA with the factors
gender, block and device was conducted. Mean TP over the entire experiment was
3.5 bps. There was a main effect of block, F(2, 20) = 21.0, p < 0.001, η2G = 0.06, of device,
F(1, 10) = 124.0, p < 0.001, η2G = 0.45, but not of gender, p > 0.2. The main effect of block indicates
that the throughput generally increases significantly with the number of blocks (3.3, 3.5, 3.7 bps). In
agreement with the findings for the error rate and the movement time, there was a lower throughput
for the LMC than for the mouse movements (2.7 vs. 4.2 bps). This main effect was modulated by
the factor block, viz. there was a steeper growth for the mouse than for the LMC, F(2, 20) = 4.7,
p = 0.04, η2G = 0.017 with increasing number of blocks (cf. Figure 4c). Post hoc analyses (Duncan’s
test [45]) revealed that the TP of both devices differed significantly at each level of block (p < 0.001).
Subsequent tests between each block level within each of the two devices showed that TP for the mouse
significantly differed between each level of block (p < 0.01), which indicates a continuous increase
of practice. There were, however, no significant differences for the LMC device between the three
levels of block (p > 0.09), which suggests that there was no significant practice effect at all. There
was also a significant interaction of the factor block and gender F(2, 20) = 5.9, p < 0.01, η2G = 0.016

(cf. Figure 4d). Post hoc tests revealed that TP for female participants differed between each level of
block (p < 0.003), but not for male participants (p ≥ 0.06). However, pairwise comparison between
the two groups at each level of block failed to reach significance (p ≥ 0.10), presumably due to the
lack of statistical power of this between-subject comparison. The result, however, gives at least a hint
that there was a practice effect for female, but not for male participants. The main effect of block
suggests that training provokes a general increase of throughput, independently of the device used.
This finding corroborates the general practice effect found for MT . In contrast to the earlier studies of
Rohr [31], which found lower performance in pointing movements for female than for male participants,
no gender-specific training effects on MT , but on TP , are found. The TP of female participants seem
to gain more from practice than the TP of male participants. No other effects attained significance
within the three-way ANOVA (p > 0.062). To estimate the maximal possible throughput of the two
devices, which could be reached within the range of provided IDs, an additional two-way ANOVA
with the factors device and ID was calculated. There was a main effect of ID-No, F(4, 40) = 18.1,
p < 0.001, η2G = 0.34. As depicted in Figure 5, the throughput of both devices increased differently,
F(4, 40) = 11.1, p < 0.001, η2G = 0.07. Post hoc tests between the two devices revealed that there is a
significant difference in TP for each level of ID (p < 0.001). Further post hoc comparisons between
ID levels within each device suggest that TP for the mouse device differs significantly (p < 0.03)
between each ID level up to the fourth level. There was no significant difference between ID Levels
4 and 5 (p = 0.19). For the LMC devise, however, there were subsequent significant differences only
between ID Levels 1 and 2 (p < 0.001) and Level 2 and 4 (p < 0.003). There seems to be a drop in
TP between ID Levels 4 and 5, which, however, does not attain statistical significance (p = 0.23).
The results of the post hoc analyses suggest that there is a continuous increase of TP for the mouse
device, and saturation is reached at ID = 3.2 at a maximal TP = 5.0 bps (averaged over ID Levels 4
and 5). In the LMC device, the increase of TP seems to be rather inconsistent in comparison with the
mouse device. However, analogous to the mouse device, saturation for TP seems also to be reached at
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ID = 3.2 with an average maximum TP = 3.1 bps. The findings suggest that the throughput of the
LMC device is similarly affected by ID, like the mouse device, but at a lower level.
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Figure 5. Result of the experiment: throughput (TP ), the main indicator to estimate the
performance of users as a function of device and ID number.

3.4. Rating of Mental Effort

For a subjective measure of workload after each track, the rating scale of mental effort (RSME, [39])
was employed. This simple one-dimensional ratio scale allows participants to rate their invested mental
effort into a task on a scale from zero (absolutely no effort) to 150 (extreme effort). As already mentioned
above, mental effort was rated on the RSME after each experimental block. The mean rating for the LMC
was 73.25 (SD = 34.83) and 37.64 (SD = 29.36) for the mouse device. There was only a main effect
of the factor device, viz. the use of the LMC was generally rated as more demanding than the use of the
mouse, F(1, 10) = 15.6, p < 0.01, η2G = 0.25.

Different patterns of movement trajectories dependent on different target width/distance conditions
for the LMC were observed. Figure 6 depicts accumulator plots of the movement trajectories for LMC
conditions with ID = 1.0 (Figure 6a), ID = 2.3 (Figure 6b,c) and ID = 4.1 (Figure 6d). Trajectory
space is discretized in the x-y-plane into accumulator cells, and the complete set of trajectories is mapped
spatially to these cells. Each cell’s value is defined by counting the intersections of movement trajectories
with these cells. Afterwards, accumulator values are visualized as a heat map. It can be observed that
the conditions under which the pointing gestures are performed have a high impact on the movement
trajectories. Relatively large target widths result in arc-shaped trajectories (cf. Figure 6a,c), while this
effect decreases with decreasing target widths (cf. Figure 6b,d). This suggests that for large target
widths, the pointing gesture was incorporated into the movement to the target. For smaller target
widths, the pointing movement seems to be separated from the movement to target (aiming). This
separation effect is enhanced with increasing target distance. Least squares ellipse fitting [46] of the
trajectory points for the aforementioned conditions were conducted to quantify the visual variations
in shapes in the accumulator plots. The trajectory for each movement is fitted to an ellipse, and the
ratio r of the resulting radii and the rotation angle α are analyzed. This ratio is used as an index of
circularity, i.e., r → 1 refers to a circular and increasing r indicates a straight, line-shaped feature.
ANOVAs with the factors target distance (40mm vs. 160mm) and target width (10mm vs. 40mm)
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were performed for the parameters r and α. There were main effects of distance, F(1, 11) = 52.8,
p < 0.001, η2G = 0.54, width, F(1, 11) = 62.1, p < 0.001, η2G = 0.05, as well as an interaction between
both factors, F(1, 11) = 14.0, p < 0.01, η2G = 0.015. Figure 7 depicts the mean values for the parameter
r. The finding suggests that the shape is more circular for short distances than for far distances (3.41
vs. 9.93) and more circular for large than for small widths (6.0 vs. 7.35). The interaction between
distance and width suggests that factor width has a stronger influence on shape at far target distances
than at short distances. Post hoc analyses revealed that r significantly differed between both widths for
short distances, F(1, 11) = 7.46, p < 0.02, η2G = 0.1, as well as for far distances, F(1, 11) = 50.38,

p < 0.001, η2G = 0.073. With regard to the parameter α, only a significant main effect of width could
be found, F(1, 11) = 15.48, p < 0.01, η2G = 0.14. α was lower for small widths (−0.51) than for large
widths (−0.2). This finding suggests that the movement trajectories were more skewed for small than
for large target widths.

 

 

2

4

6

8

10

12

14

16

18

20

22

50 150100 200 2507525 125 175 225

x-plane (mm)

40

120

80

60

20

100

140

y-
p

la
n

e
 (

m
m

)

(a)W = 40mm and D = 40mm (ID = 1.0)

 

 

5

10

15

20

25

50 150100 200 2507525 125 175 225

x-plane (mm)

40

120

80

60

20

100

140
y-

p
la

n
e

 (
m

m
)

(b)W = 10mm and D = 40mm (ID = 2.3)

 

 

5

10

15

20

50 150100 200 2507525 125 175 225

x-plane (mm)

40

120

80

60

20

100

140

y-
p

la
n

e
 (

m
m

)

(c)W = 40mm and D = 160mm (ID = 2.3)

 

 

5

10

15

20

25

30

50 150100 200 2507525 125 175 225

x-plane (mm)

40

120

80

60

20

100

140

y-
p

la
n

e
 (

m
m

)

(d)W = 10mm and D = 160mm (ID = 4.1)

Figure 6. Aggregate accumulator plots for different indices of difficulty: (a) ID = 1.0,
(b,c) ID = 2.3 and (d) ID = 4.1.
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Figure 7. Analysis of the interaction between target distance (40 vs. 160mm) and target
width (10 vs. 40mm). Trajectories were fitted to ellipses, and the ratios of the resulting radii
were used as indices of circularity.

3.5. Patterns of Movement Trajectories

In sum, the shape analyses based on the ellipse fittings corroborate that the shape of the movement
trajectories of the LMC depend on the difficulty of the distance/width combination of the targets.
Furthermore, the shape of the trajectories indicate that the integration of the click gestures into the actual
aiming movements also may depend on the target difficulty. Thus, different modes in the coordination
of the hand and index finger are obviously required in dependency of the difficulty of a click and
pointing movement.

4. Discussion and Conclusions

This study discussed the Leap Motion Controller’s functionality as a pointing device in a
one-dimensional Fitts’ law-based test setup. With an overall ER of 7.2%, the error rate of the LMC
is three-times higher than the error rate achieved with a standard mouse device. The ER of LMC
movements increases more steeply with ID than for mouse movements. No effects of gender in the direct
behavioral measures were found. Mean movement time was significantly lower with the mouse device
than with the LMC (565ms vs. 945ms), and a general practice effect onMT was revealed. Furthermore,
a general training effect was also found for throughput, and this corroborates the general practice effect
found for MT . Interestingly, however, the effect of practice also interacted with the factors device and
gender. With regard to the gender-specific training effects, training increased the throughput in female
participants more strongly than in male participants. The findings for MT and TP are in contrast with
the study by Rohr [31], which found lower performance in pointing movements for female than for male
participants. A possible explanation for this difference may be the high level of manual dexterity needed
to successfully perform the LMC pointing movement, in particular for small target widths. Further, Rohr
used a more restrictive MT directive to stress the participant’s movement-production system, which
causes gender-specific movement strategies to become evident [47]. Participants were asked after the
experimental session how many hours per week they were playing video games. Only three of the
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male participants reported playing video games (on average, 10 h per week). Two of them played role
and strategic games and one of them shooter and battlefield games. Thus, because female participants
performed better than male participants, it seems to be unlikely that the differences in task performance
can be explained by differences in video game experience. With regard to the maximal TP that could
be attained with the two devices, LMC clearly showed a limited performance in comparison with the
mouse device. Both devices increased in TP with increasing ID levels and went into saturation at
the same ID level. Such a finding suggests that there may be a similar basic mechanism that affects
the information processing of the two devices. The bandwidth of the LMC device, however, may be
reduced due to certain sources of noise. As already mentioned in the Introduction, one source of noise
may be introduced by the higher number of degrees of freedom for LMC movements. Another factor of
bandwidth limitation, which is also related to the degrees of freedom, may be the flicking movement of
the index finger, which serves as a clicking gesture. In contrast to the pointing movements of the mouse, it
seems to be a more complex movement in the coordination of the arm, hand and index finger. The higher
complexity of the LMC movements is also reflected by the rating of subjective mean effort (RSME),
which was generally higher for the LMC than for the mouse device. Interestingly the coordination
pattern between hand and finger seems also to depend on the distance/width relations (indicated by the
shape of the movement trajectories), which is not predicted by Fitts’ law.

In sum, the interaction with a user interface using touch-free sensors, like the LMC, yields certain
trade-offs. More degrees of freedom have to be controlled with the LMC than with a mouse device,
requiring advanced motor and coordination skills. This is reflected by the overall results of the error
rate, movement time and throughput. However, natural interactions by fingertip positioning and tapping
offer advantages for the design of adapted user interfaces, in particular with respect to critical sterile
environments. Target widths of 40mm − 20mm and target distances up to 80mm showed comparable
error rates with a standard mouse device. Hence, the LMC is suitable for specialized adapted interaction
tasks, but has no ability to replace a mouse as a pointing device on a daily basis.

5. Limitations and Future Research

There are at least two limitations of this study that have to be considered for the comparison between
mouse and LMC movements. First, both devices differ considerably in the degree of familiarity. All
participants of this study are regular computer users and, thus, are highly trained in the use of the
computer mouse. None of the participants, however, had interacted with an LMC device before. Nearly
all studies conducted in the context of Fitts’ law that have used prototypical new devices suffer from the
familiarity problem. Interestingly, higher practice effects were found for the mouse than for the LMC
device. However, this must not mean that the short initial training with the LMC devise was sufficient.
The finding could also be interpreted in such a way that the interaction time was not long enough to
gain from the additional practice. Future research with well-trained LMC users may help to clarify the
familiarity problem.

A possible approach to solve the familiarity problem would be to find participants who have no
experience in the use of the computer mouse. Finding such participants within the age range of the
participants involved in this study seems to be virtually impossible. There is a certain chance of finding
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older adults with no mouse experience. However, older adults are usually slower and less accurate in the
performance of aiming movement tasks as employed in the current study [48]. Therefore, it would be
difficult to compare younger participants with mouse experience with older participants without mouse
experience. However, comparing three groups—young adults with mouse experience, old adults without
mouse experience and old adults with mouse experience—may allow one to solve the familiarity problem
if it is possible to partial out the influence of age.

Second, even though the LMC device provides a similar gesture for pointing movements as the mouse
device, the requirements of the motor system differ considerably. Interestingly, the TP by ID functions
of both devices show a similar pattern, which may be a hint that the point and clicking movements
performed with the two devices have the same underlying generalized motor programs and central pattern
generators, respectively (e.g., [49]). As mentioned above, the higher degrees of freedom and the specific
requirements of the coordination of finger and hand movements may introduce additional noise in the
implementation of the LMC movements and, therefore, reduce TP .

Thus, future work will focus on the evaluation of different LMC gestures, since the pointing
performance of the LMC seems to strongly depend on the choice of the pointing gesture. In this
context, the performance of aiming tasks, where a selection is triggered by holding a static position
for a given time slot, seems a promising alternative. The extension of the experiment to two-dimensional
Fitts’ law-based pointing tasks might help to further explain performance differences between devices.
Furthermore, an extended model of Fitts’ law for 3D aiming movements [50,51] might be utilized in
a 3D pointing experiment. In this context, different selection schemes for stereoscopically-rendered
scenes should be taken into account [52–54]. Furthermore, the suggestion of new Leap Motion
Controller-adapted user interface designs are an interesting topic; hence, the integration of the Leap
Motion Controller into current medical or industrial applications, which are also used in sterile
environments, like interactive navigation tools for medical volume data (e.g., for 3D Slicer (3DSlicer,
http://www.slicer.org), or Invesalius (Invesalius, http://www.cti.gov.br/invesalius/)) should be evaluated.
Further, adapting gesture-controlled in-vehicle information systems (IVIS) [55] to the LMC device
seams promising.
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