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Abstract: The interest of the aerospace industries in structural health and usage monitoring 

systems is continuously increasing. Among the techniques available in literature those 

based on Fibre Bragg Grating sensors are much promising thanks to their peculiarities. 

Different Chirped Bragg Grating sensor configurations have been investigated in this 

paper. Starting from a numerical model capable of simulating the spectral response of a 

grating subjected to a generic strain profile (direct problem), a new code has been 

developed, allowing strain reconstruction from the experimental validation of the program, 

carried out through different loading cases applied on a chirped grating. The wavelength of 

the reflection spectrum for a chirped FBG has a one-to-one correspondence to the position 

along the gauge section, thus allowing strain reconstruction over the entire sensor length. 

Tests conducted on chirped FBGs also evidenced their potential for SHM applications, if 

coupled with appropriate numerical strain reconstructions tools. Finally, a new class of 

sensors—Draw Tower Grating arrays—has been studied. These sensors are applicable to 

distributed sensing and load reconstruction over large structures, thanks to their greater 

length. Three configurations have been evaluated, having different spatial and spectral 

characteristics, in order to explore possible applications of such sensors to SHM systems. 
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1. Introduction 

Nowadays, structural health monitoring represents one of the major concerns for modern 

aeronautical structure maintenance and aircraft fleet management [1]. As a matter of fact, the 

progressive ageing of the aircraft fleet can make questionable their durability, affordability  

and profitability, as well as the conventional preventive maintenance philosophy, based on a 

scheduled-based approach and non-destructive inspection techniques. Such uncertainties become even 

more alarming when the structures are made of composite materials [2]. On the contrary, the ageing of 

modern damage-tolerant composites aeronautical structures is better managed through a predictive 

maintenance philosophy, sometimes based on condition-based approaches and requiring integration of 

a network of sensors, actuators and detection algorithms. The structures become smart structures and 

the philosophy is called structural health monitoring (SHM), usually implemented in modern aircraft 

through health and usage monitoring systems (HUMS). Such methodology is very promising and is 

going to be adopted by most modern aircraft, provided some major concerns can be successfully 

tackled, such as sensor and actuator integration, data processing and storage, noise and false signals 

filtering, environmental and variable operational conditions management [3,4]. 

The design of an efficient health monitoring system is a complex and multidisciplinary operation, 

strongly dependent on monitoring strategy and type of host structure. However, three major elements 

are present in every HUMS: 

• Monitoring System: Sensors, networks and instruments used for the acquisition of significant 

quantities (strain, temperature); 

• Diagnosis System: Central processor and software  for analyzing measured data in order to 

evaluate structural health;  

• Prognosis System: Software for predicting residual life of the structure on the basis of damage 

entity, propagation and load history. 

In the present paper the first two aspects are investigated, aiming at the realization of a complete 

health monitoring system based on Chirped Fibre Bragg Gratings (CFBGs). Fibre optic sensors are 

very promising thanks to their peculiarities in terms of shape and size, low invasivity if embedded in 

composite laminates, immunity to electromagnetic fields, multiplexing capabilities, resistance to 

extreme environments and their capabilities of measuring different physical quantities [5]. Moreover, 

with respect to the standard uniform FBG, which can transduce only the average strain on its total 

length, a chirped one is able to provide information about the strain distribution profile along the 

grating itself. In fact, having a variable grating period, this kind of sensors has a one-to-one 

correspondence between reflection spectrum wavelength and position on the sensor [6–8]. Thus, the 

analysis of the shape and position changes of the reflection spectrum permits to retrieve the applied 

strain, making chirped gratings ideal for distributed sensing over short lengths (< 30–50 mm is the 

maximum length of the chirped available on the market).  
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In the first part of the work a code for the numerical simulation of the reflection spectrum has been 

developed and configured with an optimization algorithm. The resulting code is capable of 

reconstructing the strain profile acting on the chirped sensor given its experimental reflection 

spectrum. The code has successively been tested on a chirped grating subjected to different known  

strain profiles. 

Finally, a recent novel optical sensor known as a Draw Tower Grating (DTG) array has also been 

taken into consideration. These arrays are produced by means of an innovative technique whereby 

gratings are inscribed directly on the draw tower, before coating deposition. This procedure avoids 

fibre stripping and recoating, considerably increasing sensor tensile strength and reliability [9–11]. As 

a result DTGs also have a lower unit cost if compared with conventional arrays. Furthermore DTG 

arrays’ spectral characteristics can easily be tuned in order to obtain the most various spectral shapes 

and sensor responses. For instance, spatial continuum arrays (without gaps between the gratings) can 

exhibit non continuum spectra as well spatial non continuum arrays can also associated to the 

continuum spectra. Doing so, sensors completely similar to the chirped ones can be obtained with 

higher dimensions (1–10 m long arrays can be easily produced at relative moderate costs). Three array 

configurations have been tested in order to identify the most suitable one(s) for strain monitoring 

applications. 

2. Developed Strain Reconstruction Technique: The FBG Strain Tool 

The first step in the development of a strain reconstruction tool is the implementation of an 

algorithm simulating the reflection spectrum of a sensor subject to an arbitrary strain profile. Such an 

algorithm can then be coupled to an optimization procedure which finds the strain profile minimizing 

the difference between simulated and experimental spectra [12–14]. Common grating simulation 

techniques are based on the Coupled Mode Theory (CMT), a simplified theory derived from 

Maxwell’s equations [15] which describes light propagation in an optical guide. Taking a reference 

system having z coincident with the fibre axis and (x, y) on the perpendicular plane, electrical field 

propagating inside the fibre core can be described as the superposition of j modes [16]: ࡱ௧ሺݔ, ,ݕ ,ݖ ሻݐ =෍ൣܣ௝ሺݖሻ݁௜βೕ௭ + ,ݔ௝௧ሺࢋሻ݁ି௜βೕ௭൧ݖ௝ሺܤ ሻ݁ି௜ఠ௧௝ݕ  (1) 

where ܣ௝ሺݖሻ and ܤ௝ሺݖሻ are the amplitudes of the modes propagating in the +ݖ (transmission) and −ݖ 

(reflection) directions respectively. Transverse field distribution for each mode is described by ࢋ௝௧ሺݔ, ሻݕ  and ݁ି௜ఠ௧	 indicates time oscillation. If the guide is unperturbed counter-propagating  

modes are orthogonal. If a discontinuity, such as a Bragg grating, is present, mode amplitudes (and 

therefore their field intensities) are coupled, and their spatial distribution along ݖ is described by the 

following equations: 

۔ە
ۓ ݖ௝݀ܣ݀ = ݅෍ ௞௝௧ܭ௞൫ܣ + ௞௝௭ܭ ൯݁௜൫ఉೖିఉೕ൯௭ +௞ ݅෍ ௞௝௧ܭ௞൫ܤ − ௞௝௭ܭ ൯݁ି௜൫ఉೖାఉೕ൯௭௞݀ܤ௝݀ݖ = −݅෍ ௞௝௧ܭ௞൫ܣ − ௞௝௭ܭ ൯݁௜൫ఉೖାఉೕ൯௭ −௞ ݅෍ ௞௝௧ܭ௞൫ܤ + ௞௝௭ܭ ൯݁ି௜൫ఉೖିఉೕ൯௭௞

 (2)
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where ܭ௞௝௧  and ܭ௞௝௭ 	 are the transverse and longitudinal coupling coefficients between modes j and k. 

Typically ܭ௞௝௭ 	 is smaller than ܭ௞௝௧ 	 and therefore is usually neglected. Optical fibres commonly used 

for Bragg grating inscription are single-mode fibres, having only two identical counter-propagating 

modes. In the latter case, Equation (2) can be further simplified [16], yielding: 

൞ ܴ݀ሺݖሻ݀ݖ = ሻݖොܴሺߪ݅ + ݅݇ܵሺݖሻ݀ܵሺݖሻ݀ݖ = ሻݖොܵሺߪ݅− − ݅݇∗ܴሺݖሻ (3) 

where ܴሺݖሻ = ሻ݁௜ఋ௭ିഝమݖሺܣ  and ܵሺݖሻ = ሻ݁ି௜ఋ௭ାഝమݖሺܤ  are the transmission and reflection modes 

respectively, k and ݇∗ are coupling coefficients, while ߪො is a self-coupling coefficient defined as: ߪො = ߜ + ߪ − ݖ݀߶12݀  (4) 

Detuning ߜ, which is z-independent, is defined as the difference between the mode propagation 

constant at a given wavelength and the “design” propagation constant: ߜ = ߚ − ஻ߚ = ௘௙௙݊ߨ2 ൬1ߣ −  ஻൰ (5)ߣ1

where ݊௘௙௙ and ߣ஻ are the effective refractive index and the Bragg’s wavelength respectively. 

The derivative 
ௗథௗ௭  describes a possible grating chirp, which is z-dependent. For a single mode 

reflection grating coefficients ߪ, ݇, ݇∗ are defined as follows: ߪ = ߣߨ2 തതതത௘௙௙݊ߜ ݇ = ݇∗ = ߣߨ  .is the the Poisson’s coefficient ߥ തതതത௘௙௙ is the background refractive index change while݊ߜ തതതത௘௙௙ (6)݊ߜߥ

If the grating is uniform, both grating period and refractive index change are constant along the 

fiber axis z. Equations (2) and (3) thus become coupled ordinary differential equations with constant 

coefficients, for which close-form solutions can be obtained, given the appropriate boundary 

conditions. In the more general case of a non-uniform grating, whose period or effective refractive 

index variation are a function of the z coordinate, numerical approaches should be used in order to 

obtain a relationship between S and R at the grating extremities. A first possible approach consists in 

the numerical resolution of Equations (2) and (3), typically by means of a Runge-Kutta scheme. 

However, even if an appropriate numerical scheme is applied, this method is slow if compared with 

other possible approaches having the same accuracy [17,18]. An alternative, widely used and relatively 

fast method is based on the piecewise-uniform approximation of the coefficients ߪො, ݇ and ݇∗. This 

method is known as the Transfer Matrix Method (TMM) and is based on the division of the  

non-uniform grating into M uniform gratings (Figure 1), each having constant properties 

corresponding to a piecewise-uniform approximation of the chirp and apodization profiles of the 

original grating. Since the analytical solution of Equations (2) and (3) is known, for each subsection it 

can be written, with reference to Figure 1: ൤ܴ௜ିଵ௜ܵିଵ൨ = ௜ࡲ ൤ܴ௜௜ܵ ൨ (7) 

where ࡲ௜is the transfer matrix for the i-th section: 
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௜ࡲ = ێێێۏ
ሻݖ∆஻ߛcoshሺۍ − ஻ߛොߪ݅ sinhሺߛ஻∆ݖሻ − ஻ߛ݇݅ sinhሺߛ஻∆ݖሻ݅݇ߛ஻ sinhሺߛ஻∆ݖሻ coshሺߛ஻∆ݖሻ + ஻ߛොߪ݅ sinhሺߛ஻∆ݖሻۑۑۑے

ې
 (8) 

Coefficient ߛ஻ is defined as: ߛ஻ = ඥ݇ଶ −  ොଶ (9)ߪ

Once ࡲ௜  is calculated for every sub-grating the transfer matrix for the entire grating ࡲ  can be 

obtained multiplying the subsection transfer matrices: ൤ܴ଴ܵ଴൨ = ଶࡲଵࡲ ௜ࡲ⋯ ெࡲ⋯ ൤ܴெܵெ൨ = ࡲ ൤ܴெܵெ൨ (10) 

Finally, reflection and transmission amplitudes ݎሺߣሻ  and ݐሺߣሻ  can be calculated for every 

wavelength by assigning the boundary conditions ܴ௢ = 1 and ܵெ = ሻߣሺݎ :0 = ܵ଴ܴ଴ = ଵଵܨଶଵܨ ሻߣሺݐ = ܴெܴ଴ =  ଵଵ (11)ܨ1

and consequently reflectivity ܴ = ܶ ଶ and transmission coefficientݎ =  .ଶݐ

 

Figure 1. Transfer Matrix Approach—Grating modelled as a sequence of uniform  

sub-gratings. 

After having implemented the Transfer Matrix Method in a Matlab code, an optimization algorithm 

has been adopted for creating an effective tool able to identify the strain profile acting on the sensor 

given its experimental spectrum. 

In particular, a hybrid genetic algorithm has been used. This class of algorithms is based on the 

evolution of a population of individuals. Each individual represents a possible solution of the 

optimization problem. Evolution is obtained by means of selection, reproduction (crossover) and 

mutation, mimicking natural evolution [12]. This process is illustrated in Figure 2. 

The cost function to be minimized is defined as follows, and accounts for the major variables 

influencing spectral shape: 

݂ሺ࢞ሻ = ௜ܹ௡௧ ฮݎ௥௘௙ − ௥௘௙ฮݎ௦௜௠ฮฮݎ + ఒܹ ቛߣ஻ೝ೐೑ − ௥௘௙ܯܪܹܨ஻ೞ೔೘ቛߣ + ௪ܹ ฮܯܪܹܨ௥௘௙ − ௥௘௙ฮܯܪܹܨ௦௜௠ฮฮܯܪܹܨ  (12) 
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The first term is proportional to the root of squared errors between the experimental (reference) and 

simulated spectra, for every wavelength considered. The second one is proportional to the difference 

between reference and simulated Bragg wavelengths. This latter term should be considered only if 

small variations in the spectral shape occur, caused by uniform or linear strain profiles. Finally, the last 

term is relative to the spectrum Full Width at Half Maximum. Each term is adequately normalized and 

weighted. The values of the strain in N points, named control points, on the sensor length represent the 

optimization variables x.  

 

Figure 2. Strain reconstruction technique. 

In order to improve convergence time, genetic algorithm is used only in the first phase (global 

search) of the search process, in order to efficiently sample the space search, eventually approximating 

the global minimum [19]. The terminal part of the search procedure (local search) is carried out via a 

pattern search algorithm, a relatively fast gradient-free search method [20].  
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For each trial solution, represented by a vector containing strain values at control points, sensor 

reflection spectrum is simulated using the TMM-based program and compared with the real sensor 

spectrum, obtained through an optical spectrum analysis. 

The minimum of the cost function corresponds to the set of strain values which minimizes the 

difference between the experimental and numerical spectrum, and therefore better approaches the real 

strain profile applied to the sensor. 

Due to small imperfections in the inscription process as well as inevitable experimental errors, the 

theoretical reflection spectrum, obtained through TMM-based simulation, presents important shape 

difference from the experimental one. In order to eliminate this discrepancy, an additional tool has then 

been developed, using an approach similar to the one described above. The difference is that, this time, 

the optimization procedure is aimed at the identification of the apodization profile of the real sensor. 

Problem variables are refractive index modulation at a number of control points, and the cost function 

is defined in analogy with the one described in Equation (12). The reference reflection spectrum is the 

one relative to the unloaded sensor, the only difference with the numerical spectrum being the 

apodization profile. 

Once the apodization profile that minimizes the differences between numerical and experimental 

undeformed spectra, it should be used to correctly simulate sensor response in the strain reconstruction 

process. Apodization identification procedure is described in Figure 3. 

 

Figure 3. Apodization profile identification. 

Since each tentative strain/apodization requires a cost function evaluation, and therefore the 

simulation of the corresponding reflection spectrum, the entire process requires a considerable amount 
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of time. In fact, the computation time depends on a large number of variables including setting 

parameters of the optimization algorithms (such as control points number, exit criteria, selection, 

recombination and mutation parameters) as well those corresponding to the spatial and spectral mesh 

discretization (such as sub-gratings and fringes numbers, wavelength resolution). For this reason the 

aforesaid procedure is not applicable to real-time strain monitoring. 

3. Experimental Activities 

3.1. Chirped Sensors 

Several tests have been carried out on a CFBG, with the aim of both validating the strain 

reconstruction tool and evaluating the practical use of such class of sensors. Physical and optical 

characteristics of the CFBG used for the tests are summarized in the Table 1. 

Table 1. Physical and optical characteristics of chirped sensors. 

Sensor Type Chirped 

Total Length L (mm) 30 
Bragg wavelength λB (nm) 1,549.85 

FWHM (nm) 45 
Chirped rate (nm/mm) 1.5 
Number of fringes (-) 56,520 

The choice of the test cases has been strongly constrained by the need of exactly knowing the strain 

profile applied to the sensor. Given the limited dimensions of tested sensors, uniform and linear strain 

profile are the only practically applicable. Three case studies have been considered: 

• Uniform strain—tensile test; 

• Linear strain—3-point bending test; 

• Linear strain with gradient change—3-point bending test. 

The second and third case can be obtained by changing the relative position between the sensor  

and the loading pins (see Figure 4). Sensors have been glued on different thin specimens made of 

ERGAL 7075. All the specimens were instrumented by strain gauges (SGs) in order to experimentally 

retrieve the applied strain profile. The geometrical characteristics of the specimens are reported in the 

Table 2 while sensors positions are illustrated in the Figure 4.  

For each test study, several loading levels have been applied, with increasing strain magnitude to 

test repeatability and robustness of the strain reconstruction tool. Uniform strain levels were 500, 1000 

and 1500 με. As for the linear case, maximum strain levels ranged from 1000 to 3500 με, with a step of 

500 με. Due to small strain difference achieved between the centre and the extremities of the grating, 

which is not very significant for validation of the developed tool, in the third case only higher levels 

(2000 με and 2500 με) were applied. 

Figure 5 shows the linear strain profile applied in 3-point bending. It can be seen that grating  

and strain gauges are located on the lower side of the specimen in order to be subject only to  

positive strain. 
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Figure 4. Three-point bending tests performed on the chirped grating: linear strain (a) and 

linear strain with gradient change (b). The position of the chirped is highlighted by red 

lines while blue markers identify positions of SG. Dimensions are in mm. 

Table 2. Geometrical characteristics of the specimens for chirped testing. 

Test Cases Uniform Linear Linear with Gradient Change 

Material Al 7075 Al 7075 Al 7075 
Length (mm) 260 260 220 
Width (mm) 50 50 50 

Thickness (mm) 5 5 4 
Number of SG 2 2 7 

 

Figure 5. Experimental setup of the linear strain test case performed in 3-point bending 

configuration on chirped sensor. 
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3.2. Draw Tower Grating Arrays 

As mentioned in the introduction, a recent printing technique referred to as Draw Tower  

Gratings [21] gives the possibility to achieve arrays with several advantages with respect to traditional 

ones. One of the most interesting features of this class of sensors is the possibility of obtaining the 

most different combinations of spectral and spatial characteristics. In order to identify which 

combination is the most suitable for strain reconstruction applications, three arrays have been 

examined. Every array is 100 mm long and composed of 10 uniform FBG sensors:  

• SPAtial Continuity and SPEctral Discontinuity (SpaC/SpeD): Each sensor is 10 mm long, no 

separation exists between two adjacent gratings. Sensors wavelengths are separated by ~1 nm; 

• SPAtial Continuity and SPEctral Continuity (SpaC/SpeC): Each sensor is 10 mm long, no 

separation exists between two adjacent gratings. Sensors wavelengths are separated by  

~0.1 nm, that is the FWHM of a single peak. Resulting spectrum is continuous, with local 

maxima corresponding to each FBG Bragg wavelength; 

• SPatial Discontinuity and SPEctral Continuity (SpaD/SpeC): Each sensor is 3 mm long, 7 mm 

separation between two adjacent gratings. Wavelength separation is < FWHM, originating a 

continuous reflection spectrum. No local maxima are present, given the greatest width of the 

individual peaks. 

Spectral discontinuity allows individual peak tracking, and consequently real-time monitoring. On 

the other hand, a sufficient wavelength separation between individual peaks has to be guarantee in 

order to prevent superposition of two or more peaks (wavelength division multiplexing), thus limiting 

the number of single FBG which can be inscribed on the fibre. Besides this, peak tracking gives no 

information about strain gradients on the sensor. Spectral continuity generates narrower spectra, but 

requires spectral analysis and a numerical strain reconstruction technique as the one described in 

Section 2, making it impossible to perform real-time monitoring. Arrays configurations are illustrated 

in the scheme of Figure 6 while the corresponding reflection spectrum are reported in the Figure 7. 

 

Figure 6. Arrays configurations and relative positions of strain gauges. SG are placed 

aligned with the center of each individual uniform grating. 
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Figure 7. Experimental reflection spectrum for the three different configurations of 

adopted DTG arrays. 

The main characteristics of the DTG arrays are summarized in the Table 3. 

Table 3. Physical and optical characteristics of DTG arrays. 

Array Configuration SpaC/SpeD SpaC/SpeC SpaD/SpeC 

Total Length L (mm) 100 100 100 
Number of FBG (-) 10 10 10 
FBGs Length (mm) 10 10 3 
FBGs Pitch (mm) 10 10 10 

FWHM (nm) - 0.9 2.37 
Chirped rate (nm/mm) - 0.009 0.0237 

In analogy with the chirped grating case, several tests have been carried out, in order to obtain 

different strain profiles on the sensor. The greater length of the DTG arrays with respect to the chirped 

sensor allowed more complicated strain profiles to be applied. Four case studies have been considered 

(see Figure 8): 

• Uniform strain—4-point bending test; 

• Linear strain—3-point bending test; 

• Linear strain with gradient change (“triangular” strain profile)—3-point bending test; 

• Quasi-quadratic strain—simply supported beam with quasi-distributed load. 

All DTG arrays have been glued on the same specimen made of ERGAL 7075. Specimen 

characteristics are reported in the Table 4. In order to guarantee their correct positioning, DTG arrays 

have been placed into three parallel slight V-grooves realized on the lower surface of the specimen. 

Load is applied via several conveniently placed dead-weights hanging from the specimen (Figure 9). 
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Figure 8. Case studies applied on the DTG arrays: uniform strain (a), linear strain (b), 

linear strain with gradient change (c) and quasi-quadratic strain profile (d). The position of 

the DTG arrays is highlighted by red lines while blue markers identify positions of SG. 

Table 4. Geometrical characteristics of the specimen for DTG arrays. 

Test Cases All 

Material Al 7075 
Length (mm) 500 
Width (mm) 50 

Thickness (mm) 5 
Number of SG 10 

Number of DTG arrays 3 

 

Figure 9. Cont. 
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Figure 9. Experimental setup of the quasi-quadratic strain test case performed on  

DTG arrays (a) and view of the loading zone (b). 

4. Results and Discussion 

4.1. Chirped 

On the base of the theory presented in Section 2, the CFBG has been modelled as a sequence of  

M uniform gratings for which analytical solution can be easily calculated. In particular the 30 mm long 

chirped has been divided into 565 sub-gratings made of about 100 fringes each one. A spectral domain 

of 80 nm centred at 1550 nm is discretized in 400 points resulting in a spectral resolution of 0.2 nm. 

The number of fringes for each sub-grating as well the spectral resolution are the most important 

parameters of the model and the correct choice of them is fundamental for obtaining good simulations. 

In fact, low values of these don’t allow to correctly reconstruct the strain profile while, at the opposite, 

too high values increase too much the time of genetic algorithm. 

At first, identification of the sensor apodization profile was done as reported in the scheme of 

Figure 3. The result of this operation is reported in Figure 10, where the reflection spectrum of the 

unloaded sensor is compared with numerical spectra before and after apodization profile identification. 

It is worth noting that without this preliminary phase it would have been impossible to perform a strain 

reconstruction based on spectra comparison since numerical (theoretical) and experimental spectrum 

shapes are completely different. Apodization profile identification has been carried out by using seven 

control points distributed along the spectrum with a higher concentration at the edges. 

 

Figure 10. Chirped sensor: comparison between experimental and numerical spectra 

before (left) and after (right) apodization profile identification. 
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Once the apodization profile is known, it can be used to correctly simulate the experimental 

reflection spectrum, and therefore to perform strain reconstruction. Initially in the first two test cases 

(uniform and linear strain), the strain was simulated using two control points corresponding to a linear 

approximation of applied strain, while in the third case the strain with gradient change was obtained 

using five control points in order to achieve a better strain trend. A single strain level is reported for all 

the test cases in the following Figure 11. 

 

Figure 11. Chirped sensor: numerically reconstructed strain profile compared with the 

experimentally applied one (right) and corresponding spectra (left). Uniform strain test 

case at 1000 µε (a); linear strain test case at a maximum level of 2000 µε (b); Linear strain 

with gradient change test case at a maximum level of 2000 µε (c). 
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Strain gauges measurements are in agreement with beam theory confirming that can be assumed as 

reference for correlations with reconstructed strain profiles. Based on SG values, relative errors have 

been calculated by using the follows definition: ݁௥ = ௥ߝ − ௔ߝ௔ߝ 100 (13) 

where ߝ௥ is the reconstructed strain value and ߝ௔ is the corresponding applied one. 

A maximum relative error of 5.8% was obtained at 500 με level for uniform strain tests (minimum 

of 1.3% at 1500 με). As for the linear case, maximum relative error occurred at the 1000 με case, with 

a value of 8.2% (minimum 4.9% at 3500 με). Finally, in the case of linear strain with gradient change 

the maximum relative error occurred at 2000 µε was of 134 µε. 

The shape of the strain profile highlight an error occurred in the specimen positioning for this case. 

Nevertheless, SG and CFBG trend are consistent with each other. The computational time for full 

cycle analyses has been of about 40–80 min depending on the parameter setup. 

Subsequently influence of the number of control points has been investigated, both for the uniform 

and linear case. For three reference test cases (1500 με for the uniform strain case and 2000 με 

maximum strain for the linear one), identification has been carried out with an increasing number of 

control points. Figure 12 shows several profiles obtained using multiple control points for the linear 

case, showing an overall good approximation of the real strain profile. 

It should be noted, despite the reconstructed strain profiles exhibit rather irregular trend, strain 

values at the sensor edges show a very low dispersion. This is due to a high sensitivity of the numerical 

code to the spectrum width. In fact, the function cost is strongly dependent from any variation of the 

FWHM even if due to small edges deformation of the grating (to see FWHM in the Equation (12)). 

 

Figure 12. Chirped sensor: strain reconstruction using multiple control points and 

comparison with measured strain for the linear strain test case. 

4.2. Draw Tower Grating Arrays 

All DTG arrays have been modelled setting 120 fringes per sub-grating with a wavelength 

resolution of 0.02 nm. Different spectral domains have been chosen in order to minimize the total 

number of considered wavelength during the simulation reducing computational time. Respect to the 

procedure adopted for CFGB, apodization profile identification is not required. 
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4.2.1. Spatial Continuity and Spectral Discontinuity—SpaC/SpeD 

This configuration is the most common one, as it is usually used for FBG sensor wavelength 

division multiplexing. It is the only configuration for which two approaches are possible for strain 

reconstruction. 

The first is individual peak centre wavelength tracking, and results for the all the test cases are 

shown in Figure 13. As mentioned above, this technique allows real-time monitoring, since peak 

tracking can be performed via optical interrogators, avoiding time-consuming spectral analysis and 

numerical strain reconstruction tools. Centre wavelength tracking however does not take into account 

reflection spectrum shape modification, and consequently local strain gradients. 

The second technique, on the other hand, involves the use of the strain reconstruction presented in 

Section 2. This technique, even if not applicable for real-time monitoring, allows a better description 

of the strain profile. For this spectral configuration however it has not been possible to use this 

technique due to convergence problems for the optimization algorithm. 

Owing to the spectral shape of the SpaC/SpeD configuration, the cost function defined in Equation (12) 

presents strong local minima when only a fraction of the simulated peaks corresponds to the  

simulated ones. 

 

Figure 13. DTG array in SPAtial Continuity and SPEctral Discontinuity (SpaC/SpeD) 

configuration: strain reconstruction via individual peak tracking. Uniform strain test case (a); 

Linear strain with gradient change test case (b); Linear strain with gradient change test 

case (c) and Quasi quadratic strain test case (d). 
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4.2.2. Spatial Continuity and Spectral Continuity—SpaC/SpeC 

Since this configuration has a continuous spectrum, the only possible approach is numerical strain 

reconstruction. Even in this case, numerical reconstruction has proven unsuccessful due to local 

minima. Such minima are caused by the lack of separation between individual peaks. As a result peaks 

are allowed to overlap, causing different strain profiles to have very similar spectra. For instance, in 

Figure 14 the experimental reflection spectrum for a linear strain profile is compared with a numerical 

one caused by a completely different strain profile, showing a good spectrum correspondence, which 

causes the local minimum problems mentioned above.  

 

Figure 14. DTG array in SPAtial Continuity and SPEctral Continuity (SpaC/SpeC) 

configuration: numerically reconstructed strain profile compared with the experimentally 

applied one (right) and corresponding spectra (left). Linear strain test case at a maximum 

level of 2000 µε. 

4.2.3. Spatial Discontinuity and Spectral Continuity—SpaD/SpeC 

As in the previous case, SpaD/SpeC configuration has a continuous spectrum, thus requiring 

spectral analysis and the use of the strain reconstruction program. Due to the reduced grating length, 

this time individual peaks are wider, leading to a more uniform reflection spectrum, more similar to the 

chirped grating one. This increased uniformity however is obtained at the expense of spatial continuity, 

causing this sensor to provide a discontinuous information. 

The absence of evident individual peaks and greater spectrum uniformity make numerical 

reconstruction possible, as shown in Figure 15. As it can be seen in the figures for all the SpaD/SpeC 

DTG arrays the relative errors between reconstructed strain levels and SG reference ones are limited 

confirming the good working of this array configuration. The numerically reconstructed strain profile 

referred to SpaC/SpeD DTG arrays is also reported in the graphs in order to compare with each other 

the two configurations. 

The curves are very similar for all test cases. An appreciable difference can be observed only  

in the Figure 15c where the SpaD/SpeC configuration is able to retrieve also the local change of the 

strain gradient. The computational time for full cycle analyses has been of about 150–300 min 

depending on the parameter setup. 
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Figure 15. DTG array in SPAtial Disontinuity and SPEctral Continuity (SpaD/SpeC) 

configuration: numerically reconstructed strain profile compared with the experimentally 

applied one (right) and corresponding spectra (left). Uniform strain test case (a), linear 

strain test case at a maximum level of 2000 µε (b), linear strain with gradient change (c) 

and quasi quadratic strain test case (d). Green line refers to SpaC/SpeD configuration 

previously examined. 



Sensors 2015, 15 1339 

 

 

5. Conclusions 

Starting from the implementation of a numerical strain reconstruction program, this paper has 

shown how this can be used together with different types of FBG sensors for the development of a 

complete SHM system. The coupling between the developed program and a chirped grating sensor 

yielded excellent results for simple strain profiles applied to the sensor. However the post-processing 

activity is extremely time consuming, making such sensors inapplicable to real-time monitoring. As for 

the DTG arrays, three configurations have been tested under identical load conditions. The SpaC/SpeD 

configuration has been efficiently used to identify applied strain via direct peak tracking but numerical 

reconstruction proved unsuccessful due to optimization algorithm convergence issues. Similar 

problems have arisen for the SpaC/SpeC, but this configuration did not allow direct peak tracking due 

to the low wavelength separation between individual sensors. Finally for the SpaD/SpeC it has been 

possible to successfully perform the numerical reconstruction procedure for every load case. Through 

these numerous tests it has been shown that numerical strain reconstruction tools can be profitably 

applied to individual and arrays of FBG sensors having the suitable spectral characteristics. 
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