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Abstract: A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) 

sensors that are sensitive to a wide range of organic volatile compounds was developed to 

detect rotten onions during storage. These MOS sensors were enclosed in a specially 

designed Teflon chamber equipped with a gas delivery system to pump volatiles from the 

onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, 

non-volatile memory chip, and trickle-charge real time clock chip, serial communication 

chip, and parallel LCD panel. User preferences are communicated with the on-board 

microcontroller through a graphical user interface developed using LabVIEW. The 

developed gas sensor array was characterized and the discrimination potential was tested 

by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), 

ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four 

chemicals of same concentrations and different concentrations within the chemical with 

significant difference. Experiment results also showed that the system was able to 

discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two 

concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by 

rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct 

classification of sour skin infected onions. The customized low-cost gas sensor array could 

be a useful tool to detect onion postharvest diseases in storage. 
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1. Introduction 

Onion is an important vegetable crop around the world [1]. Once harvested, onions are kept in cold 

storage with a dry and well-ventilated atmosphere for a period ranging from a few weeks to six months 

before processing. During storage, they are highly prone to a number of post-harvest diseases, most 

due to infection and mechanical damage during transportation and harvest. It has been a general 

tradition to hand grade and cull the diseased onions before storing them. These methods often fail to 

completely remove the infected onions from the lot due to a lack of visual symptoms when onions are 

still in the early stages of disease development. As a result, certain onions with latent diseases could 

end up in storage and serve as the vehicle for disease propagation. Differences in the type and 

concentration of volatiles released by healthy and infected onions were studied by Li et al. [2,3]. There 

is a need in the onion industry for a sensitive and inexpensive gas sensing device that can differentiate 

between healthy and diseased onions. 

Compared to the analytical chemical methods such as GC/MS, the electronic nose (E-nose) 

technology offers an alternative approach for volatile compounds detection in a rapid and non-destructive 

way [4,5]. The idea of the E-nose was first proposed by researchers from Warwick University in early 

1980s [6]. The proof of concept was presented to use three metal oxide (MOS) gas sensors to identify 

odors. Since then, there has been a large body of literature in developing and applying the E-nose 

technology in various fields, such as food and beverage [7,8], environmental monitoring [9,10], and 

disease diagnosis [11,12]. Major types of gas sensors include MOS, conducting polymer, surface or 

bulk acoustic wave (SAW or BAW) sensors, and metal oxide field effect transistors (MOSFET). The 

metal oxide semiconductor (MOS) gas sensors invented by Taguchi in 1960s are one of the earliest 

commercially available gas sensors with more than 70 types and are perhaps the most widely used gas 

sensors in the field of E-nose [13]. The MOS sensors are operated at high temperature (50 °C–400 °C) 

and therefore are insensitive to humidity. Commercial E-noses using MOS sensors include FOX  

2000–4000 (Alpha MOS, Toulouse, France), PEN 3 (Airsense Analytics, Schwerin, Germany), and 

MOSE II (GSG Mess-und Analysengeräte, Bruchsal, Germany). The conducting polymer gas sensor is 

another widely used and commercially available gas sensor. Similar to the MOS gas sensor, the 

conducting polymer gas sensor also identifies odors by detecting sensor resistance change, although its 

operating mechanisms are more complex [13]. One main advantage of using conducting polymer 

sensors is that they can be operated in ambient room temperature. However, they have relatively slow 

response, sensitive to water vapor, and tend to drift over time. Commercial E-noses using conducting 

polymer sensors include Cyranose 320 (Sensigent, Baldwin Park, CA, USA), and Aromascan A32S 

(Aromascan, Osmetech Inc., Wobum, MA, USA). A surface or bulk acoustic wave (SAW or BAW) 

sensor detects volatiles compounds by sensing the mass change based on a piezoelectric effect. The 

zNose 7100 (Electronic Sensor Technology, Newbury Park, CA, USA) is based one SAW sensor. 

Although there are new technologies such as optical gas sensor [14], they are complementary approaches 

that enhance the performance of the E-nose [5]. 
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The E-Nose has been extensively studied in food quality and shelf life prediction [15,16].  

For instance, the E-nose technology has been proven to be effective in detecting spoilage in various 

foods such as bakery products, wheat, beef, poultry meat, and milk [5]. In one study, commercial  

E-nose was used to predict the pleasantness of 22 essential oil odorant mixtures based on the response 

obtained from the MOSES II E-nose by comparing it with the inputs provided by human subjects [17]. 

Fish spoilage and freshness evaluation is one area that E-nose technology could be effective and promising 

because spoiled fish emit unique volatile compounds due to metabolic activities of microorganisms [18,19]. 

Commercial E-nose technology was also used to evaluate the quality of fruits and vegetables, such as 

detecting and classifying post-harvest diseases in blueberry fruits [20], quality of apples and oranges [21], 

and to differentiate various types of Allium based on their headspace volatiles and pungency [22]. 

However, many commercial E-noses are expensive and in some cases unaffordable. The cost of these 

devices is roughly in the range of $7,000–$80,000. It would be cost prohibitive if multiple E-noses are 

needed to be deployed in certain settings, such as large onion storage rooms. 

The development of a customized E-nose requires a combination of volatile sampling, volatile 

sensing, electronic control, data recording, and data analysis. There have been several documented 

efforts to develop a customized E-nose in the laboratory. For instance, a group used MOS (metal oxide 

semiconductor) sensors and a data acquisition card (USB 6008) to record sensor responses to classify 

the change in Thai herbs of northern Thailand [23]. E-nose prototypes were fabricated to classify 

beverages [24] and to perform spoilage classification of beef [25]. A MOS-based gas sensor array was 

customized for discriminating coffee aromas, essential oils and volatile compounds with different 

functional groups [26]. Also, based on the concentration of air contaminants such as NO2 and CO, 

indoor air quality was monitored with a customized E-nose [27]. However, these prototypes either do 

not have on-board computation capabilities or do not have sample delivery system (such as pump and 

valve). In addition, they are not specific to onion post-harvest disease detection. To fill this gap, a 

customized gas sensor array was developed, which consists of multiple MOS gas sensors, a gas 

delivery mechanical system, an automated electronic circuit board, and user friendly software. Due to 

its low cost, multiple such devices could be deployed in a large onion storage room. The device and 

the methodology employed in this project could potentially be modified to match the requirements 

needed for detecting post-harvest diseases in other specialty crops. 

The overall goal of this study was to develop a customized gas sensor array for onion postharvest 

disease detection. Two specific objectives were to: (1) develop the gas sensor array consisting of a 

mechanical system, electronic system, and software program; (2) characterize and test the developed 

gas sensor array. 

2. Overview of the Sensing System 

The gas sensor array system was designed to specifically detect volatile profiles of the odor released 

by onions. The system consisted of mechanical, electronic and software program components. The 

mechanical component had a gas delivery system to transport the volatiles from the headspace of the 

sample to the MOS sensors mounted inside a chamber. The electronic component included a circuit 

board with microcontroller (MCU), memory chip, time keeping chip, and other peripheral devices. 

Software programs were developed to control the MCU and to interface with the computer. At the 
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MCU level, a program was developed using PIC BASIC PRO (PBP, MicroEngineering Labs, 

Colorado Springs, CO, USA) to calculate 3 response features for each MOS sensor, namely area under 

the curve, slope, and relative response. At the computer level, a graphical user interface (GUI) was 

developed using LabVIEW v8.2 (National Instruments, Austin, TX, USA) to configure the sensor, 

download and process the data. The construction, characterization and testing of the device are explained in 

the following sections. 

3. Mechanical Design 

The mechanical components of the device were designed to facilitate delivery of the odor or fresh 

air to the chamber containing MOS sensors and also to effectively remove the chemical odor from 

previous experiments. Other considerations included accommodating additional MOS sensors for 

future studies, low cost and convenient assembly/disassembly. 

Polytetrafluoroethylene material (PTFE or trademarked name “Teflon”) was used to construct the 

body of the chamber. Teflon material had several advantages pertaining to the application of this 

device. It was inert to practically all chemicals and withstands temperature variations. The use of 

Teflon material also minimized the possibility of sample odor contamination. A square-shaped Teflon 

block was cut into three 132 × 132 × 19.8 mm sections placed on top of each other after customizing 

the middle and lower block. Holes (sockets) were bored into the lower block to mount the MOS 

sensors. Each socket varied in size and shape based on the size of the individual MOS sensor. In the 

middle block, a circular hole of diameter 112 mm was cut through the block to provide a headspace for 

the sensors. The arrangement of the three blocks is shown in Figure 1. Any change in MOS sensor size 

or shape could be easily addressed by replacing the lower block with a suitable design. 

 

Figure 1. Schematic diagram of the arrangement of three Teflon blocks used for making 

the gas sensor chamber. 
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The MOS sensors were connected to their respective sockets and plugged into the lower block with 

their sensing element facing towards the headspace between the upper and lower block, thereby, 

exposing the sensors to the odor. A simple “leak test” was performed using an air pressure regulator 

(Norgren Inc., Littleton, CO, USA) and air flow meter (ADM 2000, Agilent technologies, Santa Clara, 

CA, USA). A minor leak was identified between the blocks and the problem was addressed by placing 

a rubber fiber gasket wrapped with Teflon tape between the blocks. 

The pump and the valve were selected for their oil-free performance, ensuring uncontaminated 

sample odor or clean airflow to the chamber. Additionally, the pump was selected for its capacity to 

deliver the sample odor or clean air through the sealed chamber, compact size, pneumatic performance, 

high durability and pump speed which could be controlled using the MCU. The valve was selected for 

its type of actuation (i.e., 3-way valve), fluid type (air), compatible port size and flow capacity with the 

pump. Both the pump and valve components were operated at 12 V DC. 

Gas samples were drawn inside the chamber using a pump (NMP 830 KNDC B BLDC motor,  

KNF Neuberger, INC, Trenton, NJ, USA), and a 3-way valve (225T031, NResearch Incorporated,  

West Caldwell, NJ, USA) to select one of two pneumatic circuits. One was provided with a filter 

containing charcoal and desiccant (removes humidity and unwanted odor in the air) to deliver fresh air 

to clean the chamber. The other air flow path was used to deliver the gas samples of interest to the 

sensor chamber. Teflon tubing (Outer diameter = 4.76 mm) was used to deliver the gas to the chamber. 

The schematic diagram and the picture of the mechanical design are provided in Figures 2 and 3, 

respectively. 

 

Figure 2. Schematic diagram of the mechanical design of the customized gas sensor array 

and two air flow paths. 
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Figure 3. Top view of the mechanical component of the sensing device with top Teflon 

section removed. 

A typical sampling process consists of three sequences: Baseline purging, sampling, and purging. 

“Baseline purging” involved injecting clean filtered air into the chamber preparing the device for the 

sampling phase. “Sampling phase” involved injecting sample odor into the chamber and the purging 

phase involved removing the sample odor from the chamber by purging with clean filtered air. This 

step always followed sampling phase. 

4. Electronic Design 

The electronic circuit performs the sensing of the volatiles, data acquisition (analog to digital 

conversion), onboard computation (feature extraction from the sensor responses), and data storage. The 

electronic components and their functions are explained in detail below. 

4.1. Metal Oxide Semiconductor (MOS) Sensors 

The selection of MOS sensors was primarily based on chemical specificity and sensitivity. 

Secondary parameters included size, cost and power consumption. MOS sensors were not 

commercially available to detect the specific volatiles released by onions when they are healthy or 

diseased. Hence, multiple MOS sensors sensitive to a broad range of volatile organic compounds 

(VOCs) were selected. Volatiles released by infected onions primarily contained compounds belonging 

to sulfur and aliphatic chemical groups [3]. Aliphatic groups contain compounds such as methane, 

ethane, propane and butane. MOS sensors sensitive to sulfur, aliphatic compounds and other related 

compounds were chosen. Table 1 lists the MOS sensors selected and used in the gas sensor array. 
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Table 1. List of MOS sensors used to build gas sensor array, their gas specificity and 

manufacturer’s reported lower detection limit. Sensors 1–5 were purchased from FIGARO 

Inc. and sensors 6 and 7 from FIS Inc. 

Sensor No. MOS Sensor Type Specificity Lower Detection Limit (ppm) 

1 TGS 813 Tin dioxide (SnO2) Methane, Ethane, Propane 500 

2 TGS 822 Tin dioxide Organic solvent vapors 50 

3 TGS 825 Tin dioxide Low conc. of H2S 5 

4 TGS 826 Tin dioxide Ammonia 30 

5 TGS 2620 Tin dioxide Alcohol and organic solvent vapors 50 

6 SB-11A Tin dioxide Hydrocarbon 100 

7 SB-AQ8 Tungsten trioxide (WO3) VOCs 0.1~1 

4.2. Microcontroller 

The microcontroller is the essential component in the electronic system. An on-board MCU (PIC 

18F4550, Microchip Technology Inc., Chandler, AZ, USA) was selected to perform data acquisition, 

computations, and control of the various mechanical components in the system. The 40-pin MCU has 

35 I/O pins and 13 A/D (Analog/Digital) conversion channels which satisfy the needs of this 

application. The analog signals (in voltage) from the seven MOS sensors and two temperature and 

relative humidity sensors were converted to digital signals by the 10-bit A/D converter. Three features 

were extracted from real-time sensor data to facilitate the following pattern recognition tasks. A more 

detailed explanation of the feature extraction is provided in the Software section. The MCU controls 

the operational states of the pump and valve. The 3-way valve was controlled via a metal oxide 

semiconductor field effect transistor (MOSFET) switch by the MCU because the MCU output (5 V) 

could not directly drive the valve (12 V). The speed of the pump was operated using a pulse width 

modulation (PWM) pin available in the MCU. The pump was switched off by providing a “zero” 

through the PWM pin. Two pump speed selections were programmed into the MCU in which one 

selection operated the pump at half of its speed and the other at its full speed described as “Low” and 

“High”, respectively. The data collected from the MOS sensors can be either saved on an onboard 

memory chip or transmitted to the PC through RS232 communications. The Inter-Integrated Circuit 

(I2C) and Universal Synchronous/Asynchronous Receiver/Transmitter (USART) communication were 

essential to perform these tasks. The sampling frequency was 15 Hz with a 20 MHz ceramic oscillator 

functioning with the MCU. 

4.3. Memory Chip 

The memory chip was selected primarily based on memory space requirements and communication 

protocol. A 5 V Serial Electrically Erasable PROM (SEEPROM) chip (24AA1025, Microchip 

Technology Inc.) was used. It had a data storage capacity of 1024 Kbit with a typical writing speed of  

3 ms/page using the I2C protocol. With each dataset occupying 24 bytes of space, a total of 5461 

datasets could be saved. The data stored in the memory was non-volatile, hence the data was preserved 

in the chip even if the power supply was cut off. The three features extracted from the sensor responses 

along with the time stamp were serially written to the memory chip. 
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4.4. Other Peripheral Components 

Additional components were needed to perform various tasks. A 3 V DS1302 trickle-charge real 

time clock chip (Maxim Integrated, San Jose, CA, USA) was used to obtain time information. A  

RS-232 interface (MAX232IN, Texas Instruments, Dallas, TX, USA) was used to serially 

communicate with the PC and transfer data from the device to the PC. A parallel LCD was used to 

display the status of the device. 

The entire circuit required three different power supplies. The major portion of the circuit was 

designed to operate with a power supply of 5 V. The valve and the pump required a voltage supply of 

12 V and an external coin battery (3 V) was provided to the DS1302 facilitating the chip to function 

constantly even when the device was switched off. This eliminated the need for updating the time of 

the microcontroller every time when the device was switched “on”. The pin connections for the above 

described components are shown in Figure 4. A top view of the prototype circuit board designed for 

the gas sensing device is shown in Figure 5. 

 

Figure 4. Electronic circuit designed for automation of the customized gas sensor array. 
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Figure 5. Top view of the electronic circuit designed for gas sensor array. 

5. Software Design 

Two types of software programs were used for the device. First, a MCU program was developed 

using PIC BASIC PRO (MicroEngineering Labs) to perform the data acquisition, computation, and 

control of the mechanical devices. Second, user instructions were provided to the MCU using the 

graphical programming language LabVIEW (v8.2, National Instruments) on the PC. This PC program 

was used to configure the sensor, download, and process the data. 

5.1. Microcontroller Program 

The MCU program was developed using PIC BASIC PRO (PBP, MicroEngineering Labs) and 

compiled and downloaded to the MCU via an in-circuit serial programmer (ICSP programmer, 

MicroEngineering Labs). The MCU could enable the gas sensor array either to function independently 

without connecting to the computer or with the direct real time control from the computer. 

The MCU was programmed to receive instructions from the user to configure its function. The user 

could provide instructions to collect data, download data, erase data, perform the auto run, forced 

sampling, and forced purging. When the device was connected to the PC, real-time data was collected 

in a text (.txt) format. In the event of collecting data for long intervals without human intervention, an 

“Autorun” function was included that retrieved the default configuration provided by the user.  

The “Forced sampling” and “Forced purging” selection forced the microcontroller to begin the 

sampling and purging cycles, respectively. After receiving the user configuration, the MCU was 

programmed to perform A/D conversions for the seven MOS sensors. The data from the MOS sensors 

were then used to extract the minimum and maximum values and the time stamps of these values. 

These parameters were used to calculate the three sensor response features (area under the curve, 

relative response, and slope). The calculated features along with the time stamp were saved in the 

memory chip automatically. The absolute time was obtained from a trickle-charge real time clock chip 

(DS1302). The device was designed and programmed to communicate with the PC through an RS-232 

cable connection. This was achieved by setting up the Universal Synchronous/Asynchronous 

Receiver/Transmitter (USART). 
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5.1.1. Sensor Configuration 

The MCU was operated by the instructions provided by the user via the GUI on the PC. When the 

device was switched “on” for the first time, the user inputs the time information. The MCU was 

programmed to calculate the time automatically even when the device was not operating or completely 

switched “off”. The time information was required from the user only when the coin battery connected 

to DS1302 was replaced or disconnected. 

 

Figure 6. Flowchart of the microcontroller program used for device automation. 

The device operated based on multiple user-provided instructions in the form of a string of 

numerical values. The MCU was coded to respond to each numerical value. The string contained  

12 digits: 11 digits were allocated to input command information and the 12th digit for command type. 

The command enabled the user to select one of four options for feature extraction (1 = area under the 
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curve, 2 = relative response, 3 = slope and 4 = all three features). Pump speed was selected from the 

two selections: “High speed” and “Low speed”. The duration of the three steps (baseline purge, sampling, 

and sensor purge) of a sampling procedure can also be determined by the user. These instructions were 

programmed into the LabVIEW software interface and were provided by clicking the corresponding 

buttons on the GUI software. The overall structure of the MCU program is illustrated in Figure 6. 

5.1.2. Feature Calculation 

The device measured the volatile profile of the sample gas under investigation. It was programmed 

to collect not only the sensors’ responses with a 15 Hz sampling frequency, but also maximum value, 

minimum value, and time taken to reach the maximum value (Figure 7). This information was used to 

calculate the three different sensor response features; area under the curve, slope and relative response. 

The feature calculation is discussed below in detail. 
Area under the curve was calculated using the trapezoidal rule. An approximate numerical solution 

(Equation (1)) was used for MCU programming: 

( ) ( ) ( )
1

0

1
 [ 1 ]

2

n

i i
t

A i f t f t t
−

=

= + + Δ  (1)

where, fi(t) = response of sensor “i” at time “t”, fi(t + 1) = response of sensor “i” at time “t + 1”,  

t = current time, n = total sampling time (in seconds), A (i) = area under the curve for the MOS sensor 

“i”, tΔ  = time interval which was set to 1 s. 

Slope feature was computed using the minimum, maximum and the time taken to reach the 

maximum value. Equation (2) was used to obtain the slope feature: 

( ) ( ) ( )[max min ] /slope i i i t= −  (2)

where, slope(i) = slope obtained from the sensor “i”, max(i) = maximum value obtained from the MOS 

sensor “i”, min(i) = minimum value obtained from the MOS sensor “i”, t = time taken to reach the 

maximum response in the sampling phase. 

The relative response feature was computed using the maximum and minimum values extracted 

from each MOS sensor’s response. 

( ) ( ) ( )max min / min( )R i i i i = −   (3)

 

Figure 7. A typical response of a MOS sensor and the features extracted from the 

response. Similarly, features were calculated from all the MOS sensors. 
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5.2. LabVIEW Program 

The graphical user interface (GUI) in the PC was developed using LabVIEW. The purpose of 

designing this software was mainly to facilitate communication between the user and the device, data 

processing, downloading and display. The device was configured by the user by making selections on 

the GUI and transferring them to the MCU in the form of instructions (Figure 7). The instructions were 

sent to the device through the RS232 cable connected to the device. 

The software was designed so the first-time user could easily configure the device. When the device 

was initiated for the first time, it was programmed to inform the user to sync the time on the PC with 

the device. This procedure need not be repeated every time the device was switched on due to the 

independently powered real time clock chip (DS1302). The duration of the three phases (baseline 

purging, sampling, and purging) can be configured by the user. The type of features and the pump 

speed were selected from a drop down list. The user started recording by clicking the “Start 

Recording” button shown in Figure 8. 

 

Figure 8. “Sensor setup and data download” tab of the GUI software. Primary functions 

include: Recording each MOS sensor response, displaying the response, downloading the 

saved data in the device to the PC, erasing the device memory, synching time, and forced 

purging/sampling. 

The “Download to PC” selection instructs the MCU to transfer the data saved in the memory chip to 

the PC. A txt format file was created automatically in which the data was saved. Each line contained 

the serial number, time stamp, area under the curve, slope and relative response values for each MOS 
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sensor. The location of the file could be found in the user specified path of the “save to file” box 

shown in the “data download” section of Figure 9. 

 

Figure 9. “Data processing and visualization” tab was used to view the collected data in 

the form of graphs (shown on the left side of the image). Principal component analysis was 

performed using GUI software. The PCA score plot was obtained along with the principal 

component values. 

The real time data (in the txt format) can be displayed and analyzed in the “Data processing and 

visualization tab” (Figure 9). Figure 9 shows the baseline, sampling and the purging phases in the left 

window. The generated graph was used by the user for quick observation of sensor responses. On the 

right side of Figure 9, principal component analysis (PCA) was conducted by specifying the path of the 

file in the “Select file to process” box and clicking “Process data” option. The PCA score plot was 

used for quick evaluation and diagnosis of the objects being investigated. 

6. Device Characterization 

The mechanical and electronic portion constitutes the physical components of the device. As for the 

brain of the device, the software was designed and coded with instructions for automation. The 

following steps involved characterizing the MOS sensors in terms of their response time and sensitivity 

due to the pump speed and their positioning inside the chamber, as well as their response to volatile 

compounds of interest. 

6.1. Determine the Effects of Two Different Pump Speeds on the Sensor Response 

It was essential to determine if there was a significant difference in peak response and response 

speed attained by each MOS sensor for the two different pump speeds (1700 mL/min vs. 850 mL/min). 

A student’s t-test was conducted to compare the effect of flow rate for each sensor. 

Each 0.1 mL of ethanol solution (100%) was injected into three clean 250 mL glass jars (Fisher 

Scientific, Pittsburgh, PA, USA). The mouths of the jars were covered with clean aluminum foil and 
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sealed by fastening a metal hollow cap on the beaker. The jar was allowed to stand for 30 min to allow 

complete evaporation of the sample solution into the headspace inside the jar. The sample inlet tubing 

was placed into the jar approximately 1 to 2 s before the device reached the sampling phase and the 

sample was drawn into the chamber for analysis. The pump speed affected the rate at which an odor 

sample was delivered to the MOS sensors resulting in varied response time. The maximum response 

and the time taken by the MOS sensors to reach maximum response for both pump speeds are 

presented in Figure 10, respectively. 

 

Figure 10. The effect of flow rate on the magnitude of the maximum sensor response (A); 

and the response time (B). 

The MOS sensors did not show a difference in maximum sensor response for the two pump speeds, 

except for sensor TGS 825. When the time take for each sensor to reach the maximum magnitude is 

considered, most sensors had faster response time at the higher pump speed (sensors TGS 822,  

TGS 825, TGS 2620, SB 11A and SB AQ8 showed significant difference at α = 0.1). Based on the 

results, a default setting of high pump speed was used for all the samples for its fast response and 

recovery time compared to the lower pump speed. 

6.2. Determine the Effect of Sensor Response to Sensor Positioning 

The MOS sensors were positioned in a circular fashion inside the chamber. Two MOS sensors were 

positioned near the inlet and outlet holes through which the sample gas enters and leaves the chamber. 

Due to the potential fluid dynamic effects near the entrance and exit of the air samples, it was 

important to determine if these MOS sensors observed any entry/exit effects in their responses to the 

samples. The following test procedure addressed this question.  

The same procedure was followed as in previous tests, but the sample was drawn in two different 

directions represented as “Flow 1” and “Flow 2”. Flow 1 represented the sample flow where the entry 

point was close to TGS 813 and TGS 825 was the exit point. Flow 2 represented the sample flow 

where the entry point was TGS 825 and the exit point was close to TGS 813 (Figure 11). The t-test was 

performed on all the seven sensors in terms of their maximum responses to two flow directions using 

SAS V9 (SAS, Cary, NC, USA) (Figure 12). Almost all sensors (except SB 11A) showed no 

significant difference in two flow directions. In other words, a majority of sensors were not sensitive to 

Sensors

Tgs 813 Tgs 822 Tgs 825 Tgs 826 Tgs 2620 SB11A SB-AQ8

R
es

p
on

se
 t

im
e 

(S
ec

on
d

s)

0

10

20

30

40

Low flow rate
High flow rate

Sensors

Tgs 813 Tgs 822 Tgs 825 Tgs 826 Tgs 2620 SB11A SB-AQ8

S
en

so
r 

re
sp

on
se

 (
m

V
)

0

1000

2000

3000

4000

5000

6000

(A) (B)



Sensors 2015, 15 1266 

 

 

the position in the gas sensor chamber. In particular, the two sensors located at the entry and exit 

positions were not affected by the flow direction. 

 

Figure 11. Odor sample flow directions (Flow 1 and Flow 2) into the sensor chamber. 

 

Figure 12. Maximum response (mean ± SD) for 100% ethanolreached by the MOS sensors 

when tested for two different flow directions. 

6.3. Discrimination of Different Concentrations of Four Chemicals 

The operation and sensitivity of the device was tested by exposing it to four chemicals, acetone 

(ketone, a colorless, flammable organic compound), ethyl acetate (ester, a sweet smelling, colorless 

organic compound), acetonitrile (nitrile, a simpler form of colorless nitrile), and ethanol (alcohol, a 

flammable, colorless volatile liquid). 

Each of these chemicals with two quantities (20 and 100 μL) was placed in clean 500 mL glass jars 

(Fisher Scientific). Eight replicates were prepared. The beakers were covered with aluminum foil and 

sealed by fastening a metal hollow cap before allowing them to stand for 15 min to ensure complete 

transition of chemical from liquid to gaseous state or until the chemical saturation pressure is reached. 

The inlet tubing of the sensor was then carefully and immediately placed inside the beaker. For the 

sensitivity tests, 100 s was set for both baseline purging and sample purging, whereas sampling was 

done for 35 s. Concentration of the chemical was calculated in parts per million (ppm) as shown  

in Table 2.  
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Table 2. Lists the concentration (ppm) of four chemicals at two different quantities. 

 Ethanol Acetone Ethylacetate Acetonitrile 

20 μL 16,749 13,320 9,957 18,726 
100 μL 83,747 66,598 49,785 93,631 

Assuming that the chemical had completely evaporated into the beaker after confirming visually 

that there is no trace of sample in the jar, the concentration (in ppm) of each chemical was calculated 

using the following Equation [4]: 

m l

c

V V D
C

V MW

× ×=
×

 (4)

where, C = concentration of the chemical calculated theoretically in parts per million (ppm),  

Vm = molar volume of an ideal gas at 1 atmosphere of pressure at 25 C (24.45 L/mole) Vl = volume of 

the chemical in liquid form (L) D = density of the chemical (Kg/L) Vc = volume of the container (0.5 L)  

MW = molecular weight of the chemical (g/mole). 

 

Figure 13. Responses of the gas sensor array to four chemicals at two concentrations. 

The smellprints of the four chemicals in two different concentrations showed that the gas sensor 

array responded differently to four chemicals with two concentration levels (Figure 13). The null 

hypothesis was tested that there was no significant difference between the same concentrations of all 
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four chemicals and the concentrations within each chemical for all three features (slope, area, and 

relative response). A MANOVA test was performed using JMP® Pro 9.0.2 (SAS Institute, Cary, NC, 

USA). Wilk’s Lambda statistic was used for testing the significant difference in concentrations within 

each chemical and between the chemicals. Based on the p-value (<0.0001), the null hypothesis was 

rejected for all comparisons, which indicated that the device responded with significant difference for 

all three concentrations within the chemical and between the chemicals. 

6.4. Discrimination of Key Volatiles Released by Infected Onions 

Another test was conducted to evaluate the sensor’s ability to detect volatile compounds emitted by 

rotten onions. In the Li et al. [3] study, methyl propyl disulfide was released by sour skin and botrytis 

neck rot diseased onion on the 3rd and 6th day after inoculation whereas 2-nonanone was released by 

sour skin diseased onion on both the 3rd and 6th day after inoculation. Both chemicals were not 

released by control healthy onions. The MOS sensors were tested for their response to two different 

concentrations of these volatiles. 0.5 and 5.0 μL of both chemicals were pipetted into a clean 500 mL 

beaker. The concentrations of the two chemicals with two volumes are shown in Table 3. Seven and 

eight replicates were prepared for each concentration of methylpropyl disulfide (90%) (Sigma-Aldrich) 

and 2-nonanone (>99%) (Sigma-Aldrich) respectively. The beaker was sealed and allowed to stand for 

15 min. The collected headspace volatiles were exposed to the gas sensor array for 35 s. 

Table 3. Concentrations (ppm) of two chemicals at two different quantities. 

Volume (µL) Methyl Propyl Disulfide 2-Nonanone 

0.5 196 145 
5 1964 1452 

It was observed that all seven sensors responded to the two chemicals even at lower concentration 

level (Figure 14). TGS 826 and SB AQ8 sensors had a higher response to both the chemicals than the 

other MOS sensors while TGS 813 responded the least. However, single sensors responses may not be 

indicative of the differentiation power of the sensor array; the collective response (the so called 

“smellprint”) from the sensor array is more important to examine. The features extracted from the 

sensor response were statistically analyzed using the MANOVA statistical procedure to determine if 

the two chemical concentrations were distinguishable. The three features relative response, area and 

slope obtained for two concentrations of methyl propyl disulfide showed a significant difference with a 

p-value of 0.0012, 0.0003 and 0.0353, respectively. Area and relative response features extracted from 

two concentrations of 2-nonanone showed significant difference based on p-values of 0.0164 and 0.0122 

respectively. However, the slope feature extracted from sensor responses to the two concentrations was 

not significantly different (p-value = 0.0678). The results indicate that in majority cases the three features 

extracted from all the seven sensors’ responses could be used to differentiate two concentration levels 

(10 times difference) of the volatile compounds emitted by sour skin diseases. This could be used to 

evaluate the severity of the pathogen infection in onions. 
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(a) 

 
(b) 

Figure 14. Response obtained from 7 MOS sensors to 0.5 μL of methyl propyl disulfide (a); 

and 2-nonanone (b). 

6.5. Demonstration of Diseased Onion Detection 

As a proof of concept, the gas sensor array was tested to classify healthy and sour skin infected 

onions. Jumbo yellow onion bulbs were purchased from a local grocery store and inoculated by 

cultures of Burkholderia cepacia (causal pathogen for sour skin) using a 3 mL sterile syringe. Sixteen 

samples with eight control (healthy onions) and eight treatment (sour skin infected onions) were 

measured using the gas sensor array three times each day from 5 to 6 days after inoculation (DAI).  

A total of 96 datasets were obtained. 

The raw data from all the MOS sensors were corrected using the differential baseline correction 

method and the feature was extracted by calculating the area under the section of the sensor response 

when the device was exposed to the sample odor. The smellprint was obtained by collectively 
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considering the responses from the seven MOS sensors (Figure 15a). The magnitudes of the sensor 

responses to diseased onions were more than twice of those to healthy onions. The principal 

component analysis (PCA) score plot showed that the healthy and diseased onions can be largely 

separated by the first two principal components (Figure 15b). 

The linear discriminant analysis (LDA) was performed using Matlab (R2008b, Math Works Inc., 

Natick, MA, USA) to classify the two groups (control and diseased onion) based on their smellprint. 

Half of the datasets (n = 48) were randomly selected as the training datasets and the other half (n = 48) 

as the validation dataset. 

(a) (b) 

Figure 15. The smellprint (a) and PCA score plot (b) of healthy and sour skin infected onions. 

The correct classification rate was 89.6% with two healthy samples misclassified as diseased (4.1% 

false positive) and three diseased misclassified as healthy (6.3% false negative) (Table 4). The tests 

proved the efficacy of the customized gas sensor array for diseased onion detection. 

Table 4. Classification confusion table of healthy and sour skin infected onions. 

 Actual Healthy Actual Diseased 

Predicted healthy 21 3 
Predicted diseased 2 22 

Total 23 25 

Although the MOS sensors are generally thought to be less sensitive to water vapor than other gas 

sensors such as conducting polymer sensors [13,28], several published papers indicate that water vapor 

could affect the MOS sensors’ conductivity due to the contribution of electrons from the OH  

group [29–31]. Given this factor, relative humidity should be monitored and considered during the 

measurement. A relative humidity sensor was included in the gas chamber in our design.  

Our preliminary data showed that the gas sensors used in this study did not have observable responses 

to the water vapor. In addition, the humidity is not variable under controlled storage for onions. 

Therefore, humidity interference should not affect the detection of diseased from healthy onions in 

controlled storage. 

Another well-known limitation of the gas sensors is the sensor drift caused by sensor aging and 

poisoning. A few studies have shown that machine learning algorithms such as support vector machine 

and common principal component analysis could be used to correct the sensor drift in the period of  

Tgs 813 Tgs 822 Tgs 825 Tgs 826 Tgs 2620 SB 11A SB AQ8
0

500

1000

1500

2000

2500

3000

3500

A
re

a
 (m

V
s

)

 

 

Healthy onions

Diseased onions

-4000 -2000 0 2000 4000 6000 8000
-600

-400

-200

0

200

400

600

800

1000

PC1 (96.7% )

P
C

2
 (

2
.2

%
)

 

 

Healthy onions

Diseased onions



Sensors 2015, 15 1271 

 

 

7 months to 3 years, remove faculty sensors, and extend the sensor array’s life [32–35]. The sensor 

drift effect needs to be considered and corrected using similar machine learning methods when the 

developed gas sensor array is to be deployed in onion storage. 

7. Conclusions 

The custom-built gas sensor array operated well at high pump speeds irrespective of the size of the 

sample headspace. The location of the MOS sensors within the chamber did not have a significant 

effect on sensor response. The device was able to differentiate the four chemicals ethanol, acetone, 

acetonitrile and ethyl acetate when exposed with the same concentrations and was able to differentiate 

differences in the concentrations within and between the chemicals. The sensor was not only able to 

detect the presence of the two key volatile compounds emitted by diseased onions, but also to 

differentiate them at two concentration levels. The gas sensor array was able to achieve 89% 

classification accuracy when healthy and sour skin infected onions are mixed. 

The main contribution of this paper was to develop a low cost customized gas sensor array with an 

automated gas delivery and data acquisition system to detect volatile compounds emitted by onions. 

The sensor characterization tests have proven the efficacy of the device for sour skin infected onion 

detection. The sensor was relatively inexpensive and therefore could be deployed in multiple units in a 

storage room. It could be modified for other specialty crops for postharvest quality evaluations. 
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