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Abstract: Although nonlinear H∞ (NH∞) filters offer good performance without requiring 

assumptions concerning the characteristics of process and/or measurement noises, they still 

require additional tuning parameters that remain fixed and that need to be determined 

through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS 

sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is 

proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a  

real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher 
order of the Taylor development thorough adaptive bounds ( )iδ  and adaptive disturbance 

attenuation ( )γ , which significantly increases the UAV localization performance. The results 

obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter 

results and are validated using a 3D UAV flight scenario. The comparison proves the 

efficiency and robustness of the UAV localization process using the FANH∞ filter. 

Keywords: UAV localization; sensor data fusion; Extended Kalman Filter (EKF); 

Nonlinear H∞ (NH∞); Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter 
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1. Introduction 

Unmanned Aerial Vehicles (UAVs) are rapidly becoming a strategic asset in today’s military forces 

and in the civilian airspace community. They can be used in an increasing number applications,  

such as surveillance, reconnaissance, communication relay, target designation and payload delivery [1]. 

The term UAV encompasses a wide variety of robotic aircrafts that vary in size, shape, flight 

characteristics and level of operational autonomy. The autonomy of these vehicles requires the 

development of navigation and guidance algorithms for self-localization. One important aspect of 

autonomous navigation, which should be investigated, is the fusion of data from different sensors.  

The Inertial Navigation System (INS) and the Strapdown Inertial Navigation System (SINS) in 

particular have been a vital source of navigation for UAVs [1]. The SINS is considered as a 

comprehensive navigation source because it is the only source that provides complete navigational 

information, such as position, velocity, and attitude, at a high data rate and with great precision on a 

short-term basis. However, the SINS’s diverging errors caused by the integration process require an 

absolute sensor, such as a Global Positioning System (GPS), to constrain these drifts. To circumvent 

this limitation, one cost effective solution is to resort to an integrated navigation system in which the 

unboundedly growing trend of the errors of the SINS is contained by external navigation aids. The 

SINS has been augmented by different navigation aids over the last two decades, and GPS is the most 

prominent system used in integrated navigation systems among the systems that provide position and 

velocity fixes for the SINS. 

The technology of multisensor data fusion is rapidly evolving in aerial navigation, where significant 

research has been devoted to developments concerning the UAV SINS/GPS localization problem in 

the last decade. One of the major concerns has been the issue of improving the accuracy, coverage, and 

reliability of the automatic navigation system within the imposed weight and cost constraints. The 

most mature technique used in navigation data fusion is the Kalman Filter (KF), which is a stochastic 

estimator that is typically used to solve various estimation problems and that is applied to a linear 

process and an observation model using a Gaussian statistical distribution of the process and 

observation noise. Various approximations have been developed in the literature, such as Extended 

Kalman Filters (EKFs), which is based on a first-order linearization of the nonlinear stochastic system 

models with the assumption of Gaussian distributed noises, to overcome the nonlinear filtering 

problems of integrated navigation systems. Although the EKF maintains the elegant and 

computationally efficient updated form of the KF, it suffers from a number of drawbacks [2]. If the 

filter is ill-conditioned due to modeling error, incorrect tuning of the covariance matrices, or 

initialization, and the subsequent estimation error will affect the linearization error. In turn, the latter 

will affect the estimation process and is known as a filter divergence. For this reason, the EKF requires 

greater care in modeling and tuning compared to the linear KF [3]. 

In this paper a robust alternative to the EKF that is based on NH∞ filtering to avoid the issues 

linked with modeling error and noise uncertainties is investigated to solve the UAV localization 

problem. The advantage of this filtering approach is that no assumptions are made regarding the 

statistical proprieties of the disturbance, and the filter is designed to minimize the estimation error due 

to the worst-case estimation error rather than the covariance of the estimation error [4]. In recent years, 

increased interest in the H∞ filter has led to several publications that address the H∞ nonlinear  
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filter [5–10], where different approaches have been developed. However, in the current paper, we 

consider the approach used in studies [5,10] to construct a state estimator based on linearization for 

approximating the robust filtering known as the Robust Extended Kalman Filter (REKF), Extended 

H∞ Filter or Nonlinear H∞ filter. For the latter, the higher-order terms of the Taylor series expansion 

are not neglected but rather are assumed to be functions of the state estimation error and of the 

exogenous inputs, which have bounded H∞ norms and which lead to a min-max estimation that can be 

treated using standard H∞ filter methods [5]. 
It should be mentioned that although the nonlinear H∞ filter offers a good performance without 

presuming characteristics of the process and/or measurement noises, the filter still requires additional 

tuning parameters that remain fixed and that need to be determined using trial and error [3]. These 

parameters may be used to control the compromise between the two performance criteria and the 

scaling of the inputs to accommodate linearization errors [5]. Motivated by this issue, the Adaptive 

Robust Extended Kalman filter for a nonlinear system was proposed in [11], where the primary goal 

was to design an estimator based on stability analyses and to determine if the error covariance matrix 

should be reset based on the hypothesis test [11]. It should be noted that only the tuning of the 

disturbance attenuation (γ ) has been considered in the filtering process, and the higher order terms of 

the Taylor development have been neglected when calculating the Jacobian. The results of the current 

paper are thus complementary to the results obtained in [3]. In this paper we extend the nonlinear H∞ 

(NH∞) filter to include a fuzzy adaptive scheme. 

To address the issues associated with the NH∞ filter, a new SINS/GPS sensor fusion scheme known 

as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter for the UAV localization problem is proposed in 

this study. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts 

the higher order of the Taylor development thorough the adaptive bounds ( )iδ  as well as the adaptive 

disturbance attenuation ( )γ , which significantly increases the UAV localization performance. The 

results obtained by the FANH∞ navigation filter were compared to the NH∞ navigation filter results 

and were validated using a 3D UAV flight scenario. The comparison proves the efficiency and 

robustness of the UAV localization process using the FANH∞ filter. 

The remainder of this paper is organized as follows. The sensor model for the SINS and the GPS is 

discussed in Section 2. A brief overview of the EKF algorithm is stated in Section 3. Section 4 

contains the formulation of the Nonlinear H∞ (NH∞) filter and its drawbacks. Section 5 is devoted to 

the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter. Lastly, the simulation results are provided to 

illustrate the performance of the FANH∞ filter for the UAV localization problem and are compared 

with the Nonlinear H∞ (NH∞) filter.  

2. Mathematical Model of Integrated Navigation System for SINS/GPS 

2.1. References Frame 

An important part of the inertial navigation system analysis consists of determining the relation 

between the different frames. The body frame is the basic frame for the inertial sensor: the x-axis is 

pointing forward, the y-axis is pointing to the right, and the z-axis completes the right-hand orthogonal 

system by pointing downwards. The North-East-Down (NED) is the navigation frame: the N  vector is 
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pointing North, the E vector is pointing East, and the D  vector is pointing Down along the local 

gravity vector, as indicated in Figure 1 [12]. 

Figure 1. 3D reference frame geometry. 

 

The Inertial Measurement Unit (IMU) measures the acceleration ( , , )ax ay az  and the rotation rate 

( , , )p q r high update rate [13]. These vectors are transformed to the navigation frame. The 

transformation matrix used is the Direct Cosine Matrix bnC , which represents the attitude of the body 

frame with respect to the navigation frame and can be expressed in terms of three rotational Euler 

angles ( )R φ , ( )R θ and ( )Rψ , which signify the roll, pitch and yaw, respectively, as follows [12,13]: 

( , , ) ( ) ( ) ( )bnC R R R Rφ θ ψ φ θ ψ= =  (1)

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1
bnC

θ θ ψ ψ
φ φ ψ ψ
φ φ θ θ

−     
     = −     

−          

 (2)

cos( )cos( ) cos( )sin( ) sin( )

sin( )sin( )cos( ) sin( )cos( ) sin( )sin( )sin( ) cos( )cos( ) sin( )cos( )

sin( )cos( )cos( ) sin( )sin( ) sin( )sin( )cos( ) cos( )sin( ) cos( )cos( )
bnC

θ ψ θ ψ θ
θ φ ψ ψ φ ψ θ φ ψ φ φ θ
θ φ ψ ψ φ φ θ φ ψ φ φ θ

− 
 = − + 

+ −  

 (3)

2.2. Equation of Motion 

We can transform the rotation rates ( , , )p q r from the body frame to the navigation frame to 

calculate the Euler angle rates ( , , )φ θ ψ   as follows: 
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0 0

0 ( ) ( ) ( ) 0

0 0

p

q R R R

r

φ
φ θ φ θ

ψ

      
      = + +      
            





 (4)

Then, the equation can be written as follows: 

1 sin( ) 0

0 cos( ) cos( )sin( )

sin( ) 0 cos( )cos( )

p

q

r

θ φ
θ θ φ θ

φ θ φ ψ

 −   
    =     
 −        





 (5)

( , , / , , )p q r

p

q C

r
φ θ ψ

φ
θ
ψ

  
   =   
     

  





 (6)

To solve ( , , )Tφ θ ψ   , we can calculate 
( , , / , , )

1

p q r
C

φ θ ψ

−
  

. Then, the Euler angle rates can be expressed  

as follows: 

1 sin( ) tan( ) cos( ) tan( )

0 cos( ) sin( )

0 sin( )sec( ) cos( )sec( )

p

q

r

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

     
     = −     
         





 (7)

2.3. Navigation Equations 

We assume that the IMU is at the vehicle’s center of gravity, and to solve for the vehicle 

acceleration, we must subtract the known gravity component from the measured accelerations [12,13]. 
The true vehicle acceleration ( , , )U V W    in the body frame can be expressed as follows: 

x

y

z

U U p ax g

V V q ay g

W W r az g

         
         = × + −         
                 





 (8)

0

0

0

x

y

z

U W V p ax g

V W U q ay g

W V U r az g

  −       
         = − + −         
  −               





 (9)

where ( , , )ax ay az  are the measured accelerations in the body frame, and ( , , )x y zg g g  are the gravity 

components expressed in the body frame as follows: 

[ ]
sin( )

0 0 cos( )sin( )

cos( )cos( )

x e
T

y bn e e

z e

g g

g C g g

g g

θ
θ φ
θ φ

−   
   = =   
      

 (10)
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By substituting Equation (10) into Equation (9), the true vehicle acceleration ( , , )U V W    in the body  

frame [12,13] can be expressed as follows:  

sin( )

cos( )sin( )

cos( )cos( )

e

e

e

U ax Vr Wq g

V ay Ur Wp g

W az Uq Vp g

θ
θ φ
θ φ

  + − + 
   = − + −   
  + − −   





 (11)

The resulting acceleration vector is integrated with respect to time to obtain the velocity of the 
vehicle ( , , )U V W  in the body frame [12,13] as follows: 

U U

V V dt

W W

  
   =    
     





 (12)

The resulting velocity vector is then integrated to obtain the position of the vehicle. If the velocity is 

transformed to the navigation frame and integrated, we can obtain the position of a vector [ ], ,
T

X Y Z   

as follows:  

( , , )T
bn

X U

Y C V dt

Z W

φ θ φ
   
   =   
      

  (13)

2.4. Nonlinear Model Using Euler Angles 

The nonlinear model of the SINS can be defined as follows: 

( ) ( ( ), ( ), )

( ) ( ( ), ( ), )

x t f x t u t t

y t h x t u t t

=
 =


 (14)

where x  is the state vector, which contains the position, velocity, Euler angles, constant random drifts 

in the gyros and constant random biases in the accelerometers as follows: 
T

bx by bz bx by bzx X Y Z U V W φ θ ψ ε ε ε = ∇ ∇ ∇   (15)

where bxε , byε and bzε  are the constant random drifts in the gyros and bx∇ , by∇  and bz∇  are the 

constant random biases in the accelerometers.  

Thus, u  represents the IMU outputs, where the angles’ rate and accelerations can be expressed  

as follows:  

[ ], , , , ,u p q r ax ay az=  (16)

We can place Equations (13), (11) and (7) into the matrix, which provides the (15 15)×  state 

transition matrix to present the nonlinear model that describes the air vehicle [12]. The nonlinear SINS 

state model can be written as follows: 
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(17)

The SINS, which is equipped with high-rate sensors (gyros and accelerometers), is a self-contained 

navigation system; it provides high precision and accuracy for shorter durations of time and is immune 

from external effects, such as jamming. However, during navigation, the SINS errors accumulate and 

increase, which causes the SINS to be unsuitable for long-term navigation [14,15]. The GPS can 

provide accurate, real-time three-dimensional position and velocity information with only random 

errors, which do not increase unboundedly. The powerful synergy between the GPS and SINS is 

illustrated in Figure 2. 

Figure 2. Aided SINS/GPS system configuration. 

 

This synergy is possible, in part, because both systems have extremely complementary error 

characteristics. The short-term position errors from the SINS are relatively small, but they degrade 

without bound over time. Conversely, the GPS position errors are not as suitable over the short term, 

but they do not degrade with time [16].  

An essential component in a satellite navigation system, e.g., the GPS, is the availability of 

satellites correctly transmitting coded signals from known positions. Three satellites are required to 

provide three distance measurements, while a fourth satellite is required to remove receiver clock 

error. The technique used is trilateration based on the geometry of circles, where an unknown point can 

be calculated from three known points. The intersection of the arc corresponding to the three distances 

defines the unknown point relative to the known points. The three measurements can be used to solve 
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the three equations to determine the longitude, latitude and elevation of the receiver [17]. The 

calculation using four satellites provides the receiver with sufficient information to calculate its 

position with high accuracy. Four satellites, rather than three, are required because the clock in the 

receiver is not accurate enough. The fourth distance measurement provides information from which the 

clock errors in the receiver can be corrected, and the receiver clock is synchronized to the GPS with an 

accuracy of greater than 100 ns.  
The GPS satellites transmit two signals at different frequencies: 1L  at 1 1575.42 MHzf =  and 2L  at 

2 1227.6 MHzf = . The GPS system provides two categories of service. The Precise Positioning 

Service (PPS) receivers track both P  codes on 1L  and 2L  frequencies. The PPS is used primarily by 

military users because the P  code is encrypted into the Y  code before transmission and requires 

decryption equipment in the receiver. The Standards Positioning Service (SPS) receivers track the 

/C A (Clear Acquisition) code on 1L  [16,17].  

The measurement model, which is related to the position and velocity of the UAV used in this paper 

can be expressed as follows: 
3 3 3 3 3 9

3 3 3 3 3 9

0 0
( , )  

0 0

x x x

x x x

I
h x u x

I

 
=  
 

 (18)

where 
T

bx by bz bx by bzx X Y Z U V W φ θ ψ ε ε ε = ∇ ∇ ∇  . 

3. Extended Kalman Filter 

Most real world systems, such as navigation systems, are nonlinear, and the standard Kalman filter 

cannot be used. To overcome this limitation, the Extended Kalman Filter (EKF) approximates the 

nonlinear system using the Jacobian to calculate the covariance of a random vector propagating 

through the nonlinear model [2,18,19]. The zero-order hold (ZOH) is used in this paper to convert the 

system defined in Equation (14) to a nonlinear discrete-time state transition equation. The system and 

the measurement equations can be written in a discrete form as follows [20]: 

1 1 1 1( , , )   k k k k kx f x u w− − − −=  (19)

( , )     k k k ky h x v=  (20)

where kw  and kv  are the uncorrelated zero mean white noise process with the known covariance kQ  

and kR , respectively. 

The EKF approximate nonlinear system dynamics and measurement vehicle models uses the 

Jacobian to calculate the covariance of a random vector propagating through the nonlinear models. The 

nonlinear model and the measurement model expanded around the filtered and predicted estimates of 
ˆkx  and 1ˆkx −  can be defined as follows: 

1/ 1 1 / 1 / 2 /ˆ ˆ ˆ ˆ( , ) ( )[ ]+ ( )+ [ ( ) ( )]k k k k k k k k k k k w k k k kx f x u f x x x x x f x x x w− − −= + Δ − Δ − Δ + Δ −  (21)

/ 1 / 1 3 / 1ˆ ˆ ˆ( , ) ( )[ ] + ( )        k k k k k k k k k k k ky h x u h x x x x x ν− − −= + Δ − Δ − +  (22)

where ( )kf xΔ  is the Jacobian of f  evaluated at 1kx − , the filter state error / /ˆk k k k kx x x= − , the predictor 

state error / 1 / 1ˆk k k k kx x x− −= − , ( )wf xΔ  is the Jacobian of ( / )kf w  evaluated at 1kx − , ( )kh xΔ  is the 
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Jacobian of h  evaluated at 1kx − , and 1,..3i=Δ  represents the higher-order terms of the Taylor series 

norm, which are bounded as i iδΔ ≤  [13,20]. The reformulated state and measurement model after 

neglecting the higher-order terms of the Taylor series can be expressed as follows [13]: 

1k k k k kx F x B w+ = +  (23)

k k k ky H x ν= +  (24)

where /ˆ( )k k k kF f x= Δ  and /ˆ( )k w k kB f x= Δ . 

The time update of the estimation error covariance can be defined as follows:  

1/ /( , ,0)k k k k kx f x u+ =  (25)

1/ /
T T

k k k k k k k k kP F P F B Q B+ = +  (26)

The measurement update of the state estimate and the estimation-error covariance can be defined as 

follows [20]: 
1

/ 1 / 1( )T T
k k k k k k k k kK P H H P H R −

− −= +  (27)

/ / 1 / 1ˆ ˆ ˆ[ ( )]k k k k k k k k kx x K y h x− −= + −  (28)

1
/ / 1 / 1 / 1 / 1( )T T

k k k k k k k k k k k k k k kP P P H H P H R H P−
− − − −= − +  

/ 1( )k k k kI K H P −= −  
(29)

The EKF has been typically used in several applications; however, its implementation assumes that 

the process and measurement models are known. When there are large deviations in the estimated 

system state trajectory, the nonlinear model in Equations (19) and (20) is weakly approximated by the 

Taylor series expansion around the conditional mean, hence the need for the higher-order terms of the 

Taylor expansion [3,5].  

4. Nonlinear H∞ Fitler 

The robust filters take different forms depending on the type of disturbances that are  

considered [11], whereas the common performance criterion of the filter is to ensure a bounded energy 

gain from the worst possible disturbance to the estimation error. The structure of the nonlinear H∞ 

algorithm used in this paper is the same as that developed in [5] and is proposed to solve the 

SINS/GPS UAV localization problem in [3]. The NH∞ filter is used to estimate the nonlinear model 

given in Equation (14) and satisfy the H∞ performance criterion for all uncertainties 1Δ , 2Δ  and 3Δ  

that are defined in Equations (21) and (22) and their norm bound [5]. Instead of the system defined in 

Equations (21) and (22), we consider the system defined as follows: 

1k k k k k k kx F x B w+ = + + Μ + Τ  (30)

k k k k k ky H x ν ξ φ= + + +  (31)

/ /ˆk k k k kx x x= −  (32)
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where 1 / 2 /( ) ( )k k k k k kx x wΤ = Δ + Δ   and 3 / 1( )k k kxφ −= Δ   are extra exogenous inputs [5] fulfilling the 

following conditions: 
2 22 2

1 / 22 2k k k kx wδ δΤ ≤ +  (33)

2 22
1 3 /2 2k kxφ δ≤   (34)

/ /ˆ ˆ( )k k k k k k kf x F xΜ = −  (35)

/ 1 / 1ˆ ˆ( )k k k k k k kh x H xξ − −= −  (36)

We can rewrite Equations (30) and (31), which contain the extra terms kΤ  and kφ  not used in the 

EKF, by scaling w  and v  [5,10] as follows: 

1k k k k w k kx F x B c w+ = + + Μ  (37)

k k k v k ky H x c ν ξ= + +  (38)

where: 
2 2 2 2 2

1 31vc γ δ γ δ= − −  (39)

2 2 2 1
2(1 )w vc c δ −= +  (40)

The NH∞ has the structure of the EKF defined in Equation (25) to Equation (29), with the 

exception of the approximate error covariance correction (29), which can be substituted with: 

12
/ 1 / 1

/ / 1 / 1 / 1

/ 1 / 1

C H
[  H ]        

C H

T T
kT T k k k k k k k k

k k k k k k k k k kT T
kk k k k k k k k k

CC P I C P
P P P C P

HH P H P R

γ
−

− −
− − −

− −

− − −  
= − −    − +   

 (41)

where: 

- kC I= ; and 

- kw  and kν  are scaled using wc  and vc , respectively. 

The extended H∞ filter reverts to the EKF when the state error ( /ˆk k kx x− ) and the process noise are 

extremely small; furthermore, γ → ∞  [5]. 

5. Fuzzy Adaptive Nonlinear H∞ Filter 

By referring to [3,5,6,10], the parameters of the NH∞ filter remain fixed during their processing. 

The equations defined in Equations (37) and (38) have parameters 1δ , 2δ , 3δ  and γ  that can be 

adjusted and adapted in response to the parameters’ uncertainty and change in environment. A new 

concept regarding the SINS/GPS integration based on the Fuzzy Adaptive Nonlinear H∞ (FANH∞) 

filters for the UAV localization problem is investigated in this paper. The adaptive approach based on 

the Fuzzy Inference System (FIS) is suggested to automatically tune the parameters of the NH∞  

( 1δ , 2δ , 3δ  and γ ) filter. The FANH∞ filter continually adjusts the higher-order terms of the Taylor 

development thorough the adaptive bounds ( 1δ , 2δ , 3δ ) as well as through the adaptive disturbance 

attenuation γ , which significantly increases the UAV localization performance. Online tuning using 

the FIS offers robust behavior without decreasing the accuracy and guarantees the boundedness of the 
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estimator error even with the unknown disturbance and the linearization error. Thus, the proposed 

study consists of adjusting the four parameters 1δ , 2δ , 3δ  and γ  of the NH∞ filter using two Fuzzy 

Inference Systems. The developed FIS is illustrated in Figure 3 and consists of two fuzzy controllers 

known as FIS-1 and FIS-2 operating separately. 

Figure 3. SINS/GPS integration based on a Fuzzy Adaptive Nonlinear H∞ filter. 

1δ

2δ

3δ

γ

 

The first Fuzzy Inference System (FIS-1) has three inputs, position error (ΔPe), velocity error 

(ΔVel) and attitude error (ΔAtt), that represent the linearization errors that can be determined by 

subtracting the linearized nonlinear state model from the linearized nonlinear state model. The outputs 

of the first FIS-1 are 1δ , 2δ  and 3δ . 

Furthermore, the estimation environment in the case of the SINS/GPS kinematic applications is 

subject to change in the Gyroscope Drift (Gyro Drift) and in the Accelerometer Bias (Acce Bias), 

which represent the two inputs of the second FIS-2 that are provided as the output γ . 

The output of the two fuzzy controllers primarily depends on the membership function and on the 

definition of the fuzzy rules. The input variables of the first FIS, i.e., the position error (ΔPe), velocity 

error (ΔVel) and attitude error (ΔAtt), are divided into six triangular fuzzy sets, while the second FIS 

has two inputs, the accelerometer bias (Acce Bias) and the gyroscope bias (Gyro Bias), where each 

input is divided into four triangular fuzzy sets. The accelerometer and gyroscope bias are estimated by 

the FANH∞ filter simultaneously. 

The FIS-1 control rules can be presented as follows: 

1-IF (ΔPe is P) AND (ΔVel is P) AND (ΔAtt is P) THEN ( 1δ  is P) ( 2δ  is P) ( 3δ  is P). 

2-IF (ΔPe is P) AND (ΔVel is P) AND (ΔAtt is G) THEN ( 1δ  is P) ( 2δ  is M) ( 3δ  is M). 

3-IF (ΔPe is P) AND (ΔVel is G) AND (ΔAtt is P) THEN ( 1δ  is P) ( 2δ  is G) ( 3δ  is M). 

4-IF (ΔPe is P) AND (ΔVel is G) AND (ΔAtt is G) THEN ( 1δ  is P) ( 2δ  is G) ( 3δ  is G). 

5-IF (ΔPe is G) AND (ΔVel is P) AND (ΔAtt is P) THEN ( 1δ  is P) ( 2δ  is G) ( 3δ  is P). 

6-IF (ΔPe is G) AND (ΔVel is G) AND (ΔAtt is G) THEN ( 1δ  is M) ( 2δ  is M) ( 3δ  is M). 
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The FIS-2 control rules can be presented as follows: 

1-IF (Gyro Drift is P) AND (Acce Bias is P) THEN (γ  is G). 
2-IF (Gyro Drift is G) AND (Acce Bias is P) THEN (γ  is M). 

3-IF (Gyro Drift is G) AND (Acce Bias is G) THEN (γ  is P). 

4-IF (Gyro Drift is P) AND (Acce Bias is G) THEN (γ  is M). 

6. Simulation and Discussion of Results 

We present our simulation results to validate the proposed Fuzzy Adaptive Nonlinear H∞ filter 

(FANH∞) for the Unmanned Aerial Vehicle localization problem. The results of our approach are 

compared with other navigation filtering approaches. The sampling rates used for each sensor and the 

update rate of the filters used in this study can be stated as follows: 

100 Hz,  10 Hz, 10 Hz, 1 Hz, 10 Hz.SINS EKF NH GPS FANHf f f f f∞ ∞= = = = =  

The simulation results provided in Figures 4–6 represent the estimated UAV position  

obtained using the SINS position, the NH∞ filter and the FANH∞ filter, respectively, in the  

x-, y- and z-axes. As seen from these figures, the performance of the FANH∞ filter is significantly 

greater than that of the NH∞ filter (bounds are predefined), which confirms the efficiency of the 

adaptive tuning of the NH∞ filter bounds. Table 1 presents and compares the average of 100 groups of 

standard deviations in the x-, y- and z-axes with the EKF, NH∞ and FANH∞ filters. It is evident from 

the table that the proposed filter provides a more accurate position without any pre-assumption of the 

characteristics of the process and measurement noises or the H∞ bounds. The automatic tuning of the 

NH∞ filter bound significantly reduces the accuracy of the position estimation. Similar results have 

been obtained for the velocity estimation. From Figures 7–9, we can observe the benefit of using fuzzy 
adaptive tuning for the NH∞ bounds ( 1δ , 2δ , 3δ  and γ ). 

Figure 4. Estimation of the position X. 
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Figure 5. Estimation of the position Y. 

 

Figure 6. Estimation of the position Z. 

 

Figure 7. Estimation of the velocity following the North axis.  
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Figure 8. Estimation of the velocity following the East axis. 

 

Figure 9. Estimation of the velocity following the Down axis. 

 

Table 2 provides a comparison of the computation time between the EKF, NH∞ and FANH∞ 

filters. As can be observed from this table, the proposed FANH∞ filter is computationally expensive 

compared to the EKF and NH∞ filter approaches. However, it does not affect the real-time processing 

of our SINS/GPS algorithm because the frequency of the FANH∞ filters is 67.56 Hz (Table 2), 

whereas the required frequency for the FANH∞ filter (in our case) is 10 Hz. Furthermore, the FANH∞ 

filter significantly improves the precision of the UAV localization process compared to the standard 

NH∞ filter. 

Table 1. Comparison of the standard deviation between the EKF, NH∞ and FANH∞ filters. 

 ( )x mσ  ( )y mσ  ( )z mσ  

EKF 7.7919 25.0034 4.1430 
NH∞ 1.9677 1.8295 3.2783 
FANH∞ 0.8245 0.7659 1.3944 
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Table 2. Comparison of the computation time between the NH∞ and FANH∞ filters. 

 NH∞ FANH∞ 

Required time for 100 iterations (s) 0.0294 1.4849 
Frequency (Hz) 3401.3 67.56 

We evaluate the computation time between the NH∞ and FANH∞ filters in Table 2 for  

100 iterations because it is more significant. Figure 10 provides a comparison of the 3D trajectory  

of a UAV during navigation using the SINS/GPS fusion. Figures 11–13 present a comparison of the 

error covariances obtained from the covariance propagation in the x-, y- and z-axes, respectively.  

It is evident that the FANH∞ filter (adaptive bounds) is more accurate than the classical NH∞ filter, 

where the bounds are fixed (fixed bounds). Similar results for the error covariance obtained  

from the covariance propagation for the UAV velocities in the x-, y- and z-axes are provided in  

Figures 14–16, respectively.  

Figure 10. SINS/GPS 3D trajectory estimation. 

 

Figure 11. Error covariance in x-axes. 
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Figure 12. Error covariance in y-axes.  

 

Figure 13. Error covariance in z-axes. 

 

Figure 14. Velocity error covariance in x-axes. 
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Figure 15. Velocity error covariance in y-axes. 

 

Figure 16. Velocity error covariance in z-axes. 

 

Figure 17. Error covariance in x-axes using the true error. 
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Figures 17–19 present a comparison of the error covariances in the x-, y- and z-axes, respectively, 

obtained from the true error. As seen from these results, the error covariances of positions obtained by 

the FANH∞ filter are smaller compared to those obtained by the H∞ filter. Similar results of the error 

covariance obtained from the true error for the UAV velocities in the x-, y- and z-axes are provided in 

Figures 20–22, respectively.  

Figure 18. Error covariance in y-axes using the true error. 

 

Figure 19. Error covariance in z-axes using the true error. 
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Figure 20. Velocity error covariance in x-axes using the true error.  

 

Figure 21. Velocity error covariance in y-axes using the true error. 

 

Figure 22. Velocity error covariance in z-axes using the true error. 
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7. Conclusions 

In this paper, we have proposed a Fuzzy Adaptive Nonlinear H∞ filter for the SINS/GPS data 

fusion for UAV localization. The FANH∞ filter uses two fuzzy inference systems to adaptively tune 

the linearization error bounds and the H∞ norm bound. This adaptive tuning provides more robustness 

and consistency for the filter, which leads to results that are more accurate. The proposed approach is 

implemented and compared with the classical NH∞ filter using the error covariances calculated from 

the true errors. Satisfactory results have been obtained for the estimation of the positions and 

velocities, and the suitability for real-time implementation has been maintained. 
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