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Abstract: Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy 

because it is portable and easy to use, especially in remote monitoring health-services. 

However, during the WCE process, the large amount of captured video data demands a 

significant deal of computation to analyze and retrieve informative video frames. In order to 

facilitate efficient WCE data collection and browsing task, we present a resource- and 

bandwidth-aware WCE video summarization framework that extracts the representative 

keyframes of the WCE video contents by removing redundant and non-informative frames. 

For redundancy elimination, we use Jeffrey-divergence between color histograms and 

inter-frame Boolean series-based correlation of color channels. To remove non-informative 

frames, multi-fractal texture features are extracted to assist the classification using an 

ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the  

WCE system to perform computationally intensive video summarization tasks. To resolve 

computational challenges, mobile-cloud architecture is incorporated, which provides resizable 

computing capacities by adaptively offloading video summarization tasks between the client 

and the cloud server. The qualitative and quantitative results are encouraging and show that 

the proposed framework saves information transmission cost and bandwidth, as well as the 

valuable time of data analysts in browsing remote sensing data. 

Keywords: wireless capsule sensor; video summarization; mobile-cloud computing; energy 

saving; remote monitoring; implantable sensors 
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1. Introduction 

Telemonitoring facilitates the delivery of healthcare services by providing the transmission of 

diagnostic information and consultation opportunities to/from remote patients. In telemonitoring, the 

most widely used sensors are spirometers, blood pressure, and heart monitors. These sensors are 

attached to the patient by wires, resulting in the subject becoming bed-bound. With the advent of 

wireless body sensors these requirements have been overcome, thereby enabling the patient to follow his 

daily routine during diagnosis procedures [1,2]. Wireless capsule endoscopy (WCE) [3] is an example of 

implantable wireless body sensors. WCE allows the diagnosis of remote patients, which increases their 

access to healthcare and decreases the healthcare delivery costs. WCE is a swallowable technology 

designed primarily to provide diagnostic imaging of the whole digestive tract. In WCE, the patient 

swallows a pill-sized capsule that includes a tiny camera, light source, RF transmitter, and batteries. The 

capsule films the entire gastrointestinal (GI) tract as it propels through the tract by normal peristalsis. The 

captured visual frames are transmitted by a tiny wireless sensor device to a portable wireless receiver 

located outside the human body. Current wireless capsule batteries have life spans of about eight hours [4], 

usually sufficient time for a capsule to image the entire GI. Although most wireless capsules are 

naturally expelled within 72 h of ingestion, only the first eight hours are significant for capturing the 

visual frames of the gastrointestinal. Therefore, a normal WCE diagnostic procedure lasts approximately 

eight hours. This produces some 50,000 image frames on an average, with a ratio of two frames per 

second. Visualization of the GI tract enables physicians to detect the diseases that are in early stages of 

development. In addition, the data collected when the patients are monitored remotely using body 

sensors is important for doctors to tackle any abnormal findings in a timely manner and to undertake 

appropriate measures. 

WCE videos are large files containing redundant data, of which only a limited amount is useful for 

diagnosis. The camera of the wireless capsule captures mucosal images at different scales and 

orientations that results in the production of highly redundant data. Non-informative frames are created 

when the camera is exposed to turbid fluids and food substances. Thus, video summarization becomes 

essential in WCE because the large unrefined data becomes a bottleneck in terms of both storage and 

efficient browsing. In this context, video summarization is the most feasible solution that can save 

transmission costs and time for doctors in browsing a patient’s information. The implementation of 

high-level signal processing solutions such as summarization on wireless WCE are not feasible because 

it has limited memory, energy, and computation capabilities. Moreover, the transmission of extensive 

video data prior to processing is unrealistic because it consumes high transmission energy. WCE videos 

can be analyzed on local servers such as smartphones. These servers can play a vital role as a 

WCE-coordinator and perform low-level computer vision tasks. Advancements in the hardware and 

operating systems of smartphones have made smartphones a superior development platform. These 

personal servers have an advantage of portability that allows patients with wireless sensors to engage in 

outdoor activities, thereby, rendering this as an ideal option for remote monitoring solutions. Recently, 

we have presented a visual attention-based WCE video summarization scheme [5]. This scheme is 

suitable for smartphones because it uses integral-image concept for efficient computation of visual 

saliency. However, the limited on-board computing, energy supply, and storage capabilities hinders the 

ability of smartphones to support long-duration remote monitoring applications. Mobile-cloud 
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computing has emerged to overcome these limitations. Mobile-cloud computing can generate video 

summaries to deploy cost-effective pervasive healthcare systems. 

In this paper, we present a mobile-cloud-assisted tele-endoscopic system (MCATS). The smartphone 

not only makes decisions on the offloading but also serves as a gateway for WCE to access cloud 

services via the Internet. During the offloading summarization tasks, the proposed system considers 

smartphone parameters such as bandwidth, battery, and user preferences. This provides 

resources-conscious and bandwidth-aware WCE monitoring. This facilitates the ubiquitous access of the 

semantically relevant data to authorized medical communities, allows searching for personalized trends 

and group patterns, offering insights into disease evolution and the rehabilitation process. In the rest of 

this paper, the terms “mobile devices” and “smartphones” are used interchangeably. The main 

contributions of the proposed work are: 

• Presents a resource-conscious and bandwidth-aware framework to adaptively perform 

summarization of the video generated by wireless capsule sensors in reasonable time. 

• Reduces transmission cost by summarizing data to avoid transmitting significant amounts of 

redundant and non-informative WCE videos. 

• Allows patients to specify smartphone resource-specific summarization levels to perform 

processing on WCE data.  

• Reduces rural practice isolation by providing ubiquitous access to the right information to 

colleagues, physicians, and specialists. 

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 

describes the proposed framework. The experiments and results are discussed in Section 4. Finally, 

Section 5 concludes the paper.  

2. Related Work 

In this section, biosensors for health applications, video summarization techniques for biosensor data 

and mobile-cloud computing in health applications are described. Biosensors for health applications 

present a brief survey on the research and development done so far on biosensor systems for 

health-monitoring. The gradual advancement of a video summarization techniques have been  

presented to explore its role in medical field, because video summarization plays a vital role  

in the management and indexing of medical videos. In mobile-cloud computing we have presented 

state-of-the-art mobile-cloud based health monitoring schemes. 

2.1. Biosensors for Health Applications 

Progress in sensor technologies has initiated production of numerous new devices, revolutionizing 

the healthcare field [6]. These biosensors combined with wireless body area networks can remotely 

monitor patients at home or in the hospital. Tura et al. [7] developed a medical wearable sensor to 

measure heart rate and blood oxygen saturation through a pulse oximeter. This system focused on 

children with learning disabilities. It had a three-level architecture that stores data in a multimedia card. 

This data is transmitted at regular intervals to a personal server (home PC) via a Bluetooth wireless link. 

Finally, the data is transmitted from the personal server to a medical center via the Internet. Renard [8] 
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has used implantable glucose sensors to monitor glucose levels in diabetic patients. For long term health 

monitoring, a distributed mobile application has been developed in MIT and Cambridge Laboratories [9]. 

It provides health monitoring with real time data processing and context classification. For monitoring 

they used wearable sensor acquisition boards, IR tags, accelerometer board, and body-media sensor 

wear. Lin et al. [10] presented a real time wireless physiological monitoring system for nursing centers. 

Its major focus was to monitor status of older patients by measuring blood pressure, heart rate and 

temperature. In [11], an implantable stress/strain sensor and pressure biosensors were developed for 

biomedical applications. These sensors consisted of a soft magnetic material and a permanent magnet. 

The Code Blue project developed by Harvard University provides cost saving, flexible, and high ease of 

use health care services in remote sites [12]. It captures information with wearable wireless sensor nodes 

to recognize human activity. This platform offers multi-patient monitoring environments based on 

ZigBee and Telos motes, including oximeter biosensors for motion activity. Iddan et al. [13] developed a 

novel wireless capsule sensor, which for the first time allowed painless endoscopic imaging of the whole 

small bowel. Toennies et al. [14] presented a detailed survey on methodologies that deal with wireless 

capsule sensor for healthcare. These biosensor-based health monitoring applications fail to deal with the 

large amount of data captured by biosensors. Since, biosensors have limited computational and 

communication resources, it is important to develop automatic image analysis algorithms to assist 

identification of the few diagnostically useful images among the huge amount of images retuned from 

the sensors. These methods must be efficient both in terms of power and time, while retaining the 

essential information. In this context, we aim to present an efficient mobile-cloud assisted WCE video 

analysis scheme that extracts non-redundant and informative images. 

2.2. Video Summarization 

Biosensor-based patient monitoring systems produce large amount of sensing data. Challenges  

that emerge from enormous amount of biosensors data are of ever increasing importance [15].  

In health monitoring applications, the focus has recently been shifting from data acquisition to data 

analysis methods in order to provide more valuable information to the end users [16]. Considering the 

data analysis techniques for biosensors, most of them are related to clustering, classification, regression, 

and summarization [17–19]. Video summarization schemes provide ease in accessing the relevant 

content of medical diagnostic data [20,21]. Iakovidis et al. [22] proposed a video summarization 

approach for reduction of WCE reading time. This scheme is based on an unsupervised data reduction 

algorithm. In [23], a method of epitomized summarization of the WCE video for visual examination by 

gastroenterologist is presented. The epitome model can generate a condensed summary of the original 

video. To ensure the necessary visual quality of the generated epitome for clinical examination, they 

introduced the constraint for local context preservation. A WCE video summarization aiming reduction 

of the inspection time of gastroenterologists has been proposed in [24]. This scheme incorporates color 

histogram in Lab color space to represent each frame in a WCE video. Then, based on the color 

histogram, differences between two frames are computed, which leads to redundancy elimination. For a 

detailed review of the existing computer-vision based WCE video analysis schemes, the readers may 

refer to a review [25]. Due to limited resources, it is impossible for biosensors to perform computationally 

intensive data summarization tasks. To solve this problem, we have presented [5] a video summarization 
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framework, pushing computational tasks to patients’ smartphones for fast and effective computation. 

However, analysis of the sensor data with mobile-assisted health monitoring systems is challenging due 

to limited resources for data processing and communication. Researchers have incorporated mobile-cloud 

computing in wireless BANs to process the diagnostic videos efficiently [26–28]. Mobile-cloud 

computing provides scalable resources to perform computationally expensive tasks such as video 

summarization. This assists in resourcefully administering the remote monitoring and diagnosis 

procedures. The proposed framework presented in this article utilizes the capabilities of both video 

summarization and mobile-cloud technology for efficient processing and dissemination of medical data. 

2.3. Mobile-Cloud Computing in Health Applications 

In recent years, there has been a remarkable amount of work on the topic of mobile-cloud computing. 

It mainly focuses on the possibility to offload mobile phones tasks into the cloud server, extending 

system lifetime by reducing the computational burden of mobile devices. Gu et al. [29] have performed 

extensive trace-driven evaluations which showed that efficient offloading inference engines can 

effectively reduce resource constraints from mobile devices with far lower overhead than other common 

approaches. In [30], the authors presented an effective offloading service for resource constrained mobile 

devices. They considered a combination of multiple resources including CPU, memory, and bandwidth 

resource and aimed to reserve these mobile resources as much as possible. Miettinen and Nurminen [31] 

explained that energy efficiency is a primary consideration for mobile devices and argued that 

mobile-cloud computing architecture has the potential to save energy through offloading. Fortino et al. [32] 

proposed a framework that supports the development of cloud assisted body sensor applications. It is a 

multi-tier architecture that integrates body sensors data streams, middleware, and cloud computing.  

It enables large-scale sensor data processing and sharing among users in cloud and mobile devices. This 

work also presented a case study for the real-time monitoring and analysis of ECG data streams. In [33], 

the authors have given a detailed review of research work on mobile and cloud computing in the field of 

telemedicine. Based on the review of state-of-the-art techniques, the authors discussed the limitations of 

current technological development and suggested that cloud computing and mobile technology should 

be combined because mobile teleconsultation requires high speed data delivery and a big data center 

where patient data can be delivered, stored, retrieved, and managed securely. In [34], authors presented 

an energy-efficient method of adaptive resource discovery in mobile cloud computing. According to 

varying network environments, it adapts between centralized and flooding modes to save energy. Eli and 

Young [35] concluded that adaptive offloading can optimize future mobile application energy efficiency 

in the cloud. Therefore, for WCE video summarization we have presented a novel adaptive-offloading 

approach which considers user preferences, device specifications and the available network resources to 

optimally partition the application and data. 

3. Framework of the Proposed System 

WCE has emerged as a promising technology to monitor patients’ GI tracts both locally and remotely. 

During the WCE process, significant amounts of video data are produced, however, only a limited 

amount of this data is useful for diagnosis. The sharing and analysis of this large amount of data is a 

challenging task. In order to facilitate efficient WCE data collection and browsing, we present a video 
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summarization driven WCE framework that estimates the semantically relevant video frames. However, 

because of limited resources in terms of battery life and computational power, the implementation of 

video summarization on WCE is not feasible. Therefore, we incorporate mobile-cloud computing 

because it provides massive computation, storage, and software services in a scalable manner at 

low-cost. The proposed framework consists of: (1) a smartphone with a trusted communication gateway 

to collect the capsule endoscopy images; (2) endoscopic data summarization with adaptive-offloading 

from the smartphone to the cloud; (3) cloud computing, a trusted entity for computing and providing 

integrated storage and authorized access to patient’s information ubiquitously. The overall view of the 

proposed system is shown in Figure 1. 

Figure 1. Conceptual view of the proposed summarization driven WCE monitoring framework. 

 

Data collected from an implanted wireless capsule is received by smartphone via a portable image 

recorder unit (IRU). The IRU is usually fixed in a belt around the patient’s waist. It facilitates the patient 

to perform their daily routine tasks simultaneously without carrying burdensome wired heavy devices. 

The built-in Wi-Fi facility and high battery life as compared to body sensors, provides ease of access to 

cloud services at low-cost and for a long duration [36]. The images received by the smartphone are 

summarized with adaptive-offloading between the client and cloud server. The summarized data may be 

logged into the cloud and registered using the patients ID for analysis. This enables doctors to regularly 

monitor the WCE procedure: in case of any abnormality, they can communicate with the patients.  

If needed, the patient can be instructed to visit a healthcare center. 

3.1. Data Logger for WCE Videos 

WCE is a very useful technology that helps gastroenterologists to examine the human digestive tract 

for various abnormalities such as blood pressure, ulcers, and polyps. The wireless capsule can be 
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swallowed easily without discomfort owing to its small size. The micro imager of the wireless capsule 

captures, compresses, and transmits images to the IRU using a radio frequency (RF) as shown in  

Figure 2. Patients undergoing WCE wear an antenna array consisting of various leads that are, connected 

by wires to the IRU. The antenna sensors are physical receptors that receive transmission data from the 

wireless capsule and transfer it to the IRU. Although there are different options made available by  

WCE manufacturing companies, 8-lead antenna array are the most widely used and are more  

effective [37–40]. The 8-lead antenna array is taped to the patient’s anterior abdominal wall at  

eight specific points according to a standard designated pattern, as dictated by a template for lead 

placement [37]. The antenna array and IRU are usually worn under regular clothing. The processing and 

communication capabilities of the IRU are inadequate to manage large amount of data collected from the 

wireless capsule. Thus, there is a need to forward these captured visual frames to a smartphone. This is 

because smartphones provide local computational services and easy access to cloud services. 

Figure 2. Smartphone data logger for wireless endoscopy. 

 

In order to transmit visual frames from the IRU to a smartphone, a low-cost and reliable transmission 

mechanism is required because of the limited resources of both the IRU and the smartphones. The most 

commonly used standards for wireless BAN communication includes: ZigBee, Ant, Ultra Wide Band 

(UWB), Bluetooth, and custom protocols [41]. ZigBee was initially developed for smart home 

applications. It is a low-cost, low power (60 mW) standard communication with a limited bandwidth. 

Because of its limited data rate (250 kbps), ZigBee is not feasible for transmission of multimedia 

contents such as capsule endoscopic images that require high data rates. Ant is a low-speed and 

low-power communication protocol. It is one of the emerging standards for health monitoring systems. 

Unfortunately, Ant has no support for any smartphone platforms. UWB has a high bandwidth with 

spatial localization of transmitters as compared to ZigBee; however, it is very complex in terms of usage 

and deployment, especially for the receivers on smartphone terminals. In the current scenario, Bluetooth 

is the most suitable option because of its high bandwidth and support on many smartphone platforms.  

In [42], a high bit-rate data logger and its connectivity through Bluetooth are presented. A Bluetooth 

transreceiver [43] is connected with an IRU microcontroller in WCE. This Bluetooth transreceiver is 

based on a Bluetooth low-energy protocol known as RN41 [44]. It is small, low power, simple to 

integrate Bluetooth radio for adding wireless capability to various bio-sensors. The RN41 is perfect for 
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battery powered applications such as WCE and by default is ready to use in the serial port profile 

configuration. It has the functionality of low-power sleep and wake-up. Current smartphones (Apple [45], 

Android [46] and Microsoft [47]) have Bluetooth low-energy capability with support for Bluetooth 4.0 

technology. This Bluetooth low-energy enables smartphones to connect with IRU’s Bluetooth 

low-energy and receive endoscopy video frames with extremely limited battery consumption. The 

purpose of data exchange between IRU and the smartphone is to analyze data for mining useful 

information and sending this information to medical specialists. 

3.2. Adaptive Offloading-Based Video Summarization 

Current smartphones with limited resources are not practical for computationally expensive tasks 

and large data storage. Thus, to extract WCE video summaries, the computational intensive tasks can 

be offloaded to a cloud server. A virtual machine (VM) can support offloading by providing the 

capability to migrate partial or entire application from a smartphone to more powerful servers. This 

reduces the client (body sensors and smartphone) computational cost, thereby reducing energy 

consumption and increasing the lifetime of smartphone devices. However, the transmission of such 

large amounts of multimedia data results in high transmission cost. An efficient model is required to 

deal with this trade-off between computational and communication energy. Here, we present an 

adaptive-offloading to optimize the video summary execution time and energy consumption, as shown 

in Figure 3. This offloading architecture allows developers to select functions that need to be offloaded. 

These selected functions are known as kernel functions. The appropriate selection of kernel functions 

reduces the network traffic and computational load on smartphone devices. In our case, summarization 

of endoscopic images is considered as kernel function because of its computational complexity, which 

will be briefly explained in the Section 3.2.5. The details of each module in Figure 3 are given in 

subsequent sections. 

Figure 3. Architecture of the video summarization offloading service. 

 

3.2.1. Mobile Device Resource Monitoring 

For adaptive-offloading, it is necessary to analyze the usage of the smartphone resources. Significant 

changes in the device resources, triggers the adaptive-offloading manager. This module monitors the 

utilization of the mobile resources such as CPU and battery consumption. 
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3.2.2. Wireless Bandwidth Monitoring 

In remote monitoring applications, mobile devices transmit data over frequently changing 

bandwidths. However, the fluctuations in bandwidth create difficulties in continuous and robust 

monitoring. In low-bandwidth scenarios, majority of the computational tasks have to be performed 

locally; this affects the overall lifetime of the mobile and body sensors. Furthermore, bandwidth is 

considered a major factor in saving the energy of the overall system [48]. Therefore, we consider 

bandwidth as a parameter in our adaptive-offloading process to optimally partition the application and 

data for offloading. Wireless bandwidth monitoring module estimates the available bandwidth and the 

bandwidth required for collaborative applications. The bandwidth required for remote offloading 

depends on the total size of data and application code migrated between mobile and cloud servers. The 

offloading manager triggers the appropriate partitioning in accordance with the fluctuations in the 

available bandwidth. 

3.2.3. Adaptive-Offloading Manager 

The offloading manager monitors the execution of kernel functions and analyzes periodically updated 

information such as the available bandwidth and device resources. Based on this analysis, the offloading 

manager decides the level of kernel function to be offloaded for remote execution. Users can control 

their smartphone resources consumption by monitoring the available resources and resources occupied 

by the application. The adaptive-offloading manager considers user preferences, device specifications 

and the available network resources. This approach meets the requirements of adaptability, 

configurability, and stability for optimal offloading. 

3.2.4. Remote Execution Manager 

The remote execution manager is responsible for installing and maintaining applications on behalf  

of mobile devices. Under the supervision of a cloud manager, it can launch applications on different 

cloud nodes. 

3.2.5. Summarization Kernel Function 

The summarization kernel function is deployed at the mobile end as well as at the cloud end as  

shown in Figure 3. Taking into account the available bandwidth and resources of mobile devices, 

summarization kernel function divides summarization task into two steps: reducing redundancy and 

classification of non-redundant frames into informative and non-informative frames as shown in  

Figure 4. According to the well-known fact that the data transmission cost is significantly higher than the 

processing cost, transmission of complete WCE videos to cloud for summarization is not an intelligent  

option. Therefore, the redundancy removal task is performed at local server (smartphone) using 

Jeffrey-divergence (JD) and inter-frame correlation of color channels based on Boolean series that 

significantly reduces the size of the underlying data. The JD and Boolean series-based correlation are 

asymptotically light weight processes and consumes less energy that saves transmission energy in a 

substantial amount. However, the elimination of non-informative frames is a computationally expensive 

computer vision task (i.e., feature extraction and classification), hence, it is offloaded to the cloud.  
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On the basis of scale and orientation invariant texture features, ensemble-based classification is 

performed to separate informative and non-informative frames. Figure 4 shows the workflow of the 

proposed WCE summarization. 

Figure 4. Illustration of the WCE data summarization framework. 

 

The examination of WCE videos poses a tedious task for physicians because they have to perform a 

sequential scan over the video to extract informative frames for diagnosis. In WCE, numerous redundant 

and non-informative frames are generated as the capsule moves through various complex organs such as 

the stomach, small intestine, and large intestine. Redundancy in WCE videos occurs when images of the 

same mucosa are shot from different perspectives at different scales depending on the relative position of 

capsule imagery. The term non-informative frames may be defined as having invisible tissue. The 

non-informative frames are generated because of the wireless capsule exposure to different biological 

routes that are either too close or too far to focus on the mucosa colon. Coverage of the camera lens with 

foreign food substances also generates non-informative frames. The first row in Figure 5 shows various 

non-informative WCE frames found in different WCE videos. 
  



Sensors 2014, 14 17122 

 

 

Figure 5. Sample frames from WCE videos: first row shows example of non-informative 

frames and second row shows informative frames. 

 

These non-informative frames lack clear visualization of the underlying tissues because they are 

contaminated with various turbid secretions that include food, residual and faecal materials. The turbid 

secretions create a turbid layer over the GI tissues. As a result, the light for the wireless capsule is 

obstructed and the clear visualization of the GI tissues is hindered, as shown in first row of the  

Figure 5a–c. Recent studies have shown that non-informative frames are also generated due the 

appearance of bubble patterns either on capsule’s camera or on tissues as shown in the first row of the 

Figure 5d–f. In the visual inspection of WCE videos, very little attention is paid to non-informative and 

redundant frames. Therefore, removal of all such non-informative frames is an important step in WCE 

diagnosis. Physicians are interested only in frames that visualize clearly the original tissue’ 

characteristics of the GI tract as shown in bottom row of the Figure 5. These frames are considered to be 

informative frames because they provide a clear view for the diagnosis. 

A. Reducing Redundancy 

The proposed strategy for reducing redundancy is based on comparison of frames. In general, a single 

feature is usually not sufficient to estimate all the pictorial details of a frame and visual complexity of 

videos [49]. For an effective representation of pictorial contents of a frame, both the color and structural 

properties must be used. Therefore different features can be assorted to provide an effective 

representation of a frame. For this reason, two comparison measures are used: JD between color 

histograms and inter-frame correlation of color channels of adjacent frames. JD is an empirical measure 

of distribution similarity based on relative entropy. In [50], authors gave a detailed empirical comparison 

of nine dissimilarity measures that are based on distributions of color and texture features. They 

concluded that Jeffrey-divergence is more stable than other dissimilarity measures. Furthermore, various 

researchers [51–53] have proven that JD in contrast to other dissimilarity measuring algorithms is more 

stable with respect to noise and the size of the histogram bins. Scharcanski and Gaviao [54] proposed a 

diagnostic hysteroscopy video summarization framework that measures similarity between hysteroscopy 

video frames using JD. Their preliminary experimental results indicate that JD successfully removed 

redundant frames and played a major role in generating video summaries. Zheng and You [55] have also 



Sensors 2014, 14 17123 

 

 

utilized JD for change detection in multi-temporal synthetic aperture radar images. Their experimental 

results proved that JD perform efficiently even in the existence of speckle noise and light variations. 

Therefore, JD is most feasible measure to eliminate the redundant frames generated during WCE 

procedure. To use color histogram in JD, the CIELAB or Lab [56] color system is selected because in 

this color space the differences among colors are more closely related to human perception than in 

spaces such as RGB, CIE 1931, etc. Color histograms are computed on each L, a and b channels. The 

histogram of each channel with intensity levels in the range [0, L−1] is a discrete function h(rk) = nk, 

where rk is the kth intensity values and nk is the number of pixels in the image channel with intensity rk. 

These color histograms fall in the category of color indexing according to the taxonomy proposed  

in [57]. After obtaining color histogram, a color quantization step is applied to reduce the size of the 

color histogram. The quantization of the color histogram is set to 16 bins for L and 4 bins for each of the 

a and b components. The L, a and b histograms are then normalized in the range of 0 to 1 by dividing 

each value by the maximum value in the respective component. The three histograms are then combined 

to get a histogram of size 24. Finally, the distance between frame Ft and next frame Ft+∆t is computed by 

using JD as follows: 
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here m and n is width and height of each frame respectively and c represents the color channels of 

CIELAB color space. ⊕ is a logical “Exclusive or” operation. It only returns true when both operands 

have different logical inputs i.e., true/false and false/true. Here, in Equation (3), the same procedure  

is replicated. 

We have incorporated the previous frames’ dissimilarity measurements with the current frame  

using a weighted sum. Consider a frame p, its dissimilarity measurements: δ (the accumulative DJ 

dissimilarity) and ρ (accumulative BC) with the previous q number of frames are calculated as: 
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This accumulated weighted sum produces dissimilarity measures that are robust to lighting changes 

and sudden camera motions. A linear fusion scheme is used to obtain the net distance d(Ft, Ft+∆t) 

between two consecutive frames as: 

),....,,), qttttttqtt
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tt
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tt
Jttt BCBCBCDDDFFd −Δ+−Δ+Δ+−Δ+−Δ+Δ+

Δ+ += 11 (),....,,(( ρδ  (6)

Equation (6) illustrates that the net distance between two video frames is the linear combination of 

accumulative Jeffrey-divergence dissimilarity measure δ and accumulative Boolean series-based 

correlation measure ρ. This distance measured d is an effective parameter that helps to avoid extra 

computations by removing inliers. Inliers detection saves transmission costs by sending only 

representative frames to the cloud for further processing. Two frames Ft and Ft+∆t, are considered similar 

and included in the category of redundant frames if the dissimilarity d between them drops below a 

certain threshold τ, i.e., d (Ft, Ft+∆t) ≤ τ. Small value of threshold is directly proportional to the number of 

frames that can be transmitted from smartphone to cloud and vice versa. As smartphone has variable 

resources that change from time to time (e.g., battery, bandwidth, etc.), therefore, adaptive thresholding 

is more suitable option compared to a fixed thresholding. This adaptive thresholding must be calculated 

by considering the smartphone resources such as bandwidth and battery due to following reasons: 

• Bandwidth (BW): The availability of high bandwidth usually increase the communication ability, 

therefore, to utilize the bandwidth effectively, the proposed system must measure the available 

bandwidth to adaptively set the flow of frames transmission. According to the proposed system, 

the small value of threshold will allow more frames to transmit from smartphone to cloud. 

Hence, the threshold must be formulated in a way that gives small value in case of high 

bandwidth and vice versa. To understand the wireless bandwidth monitoring process in detail, 

the readers are referred to Android-er [62]. 

• Battery (B): Since, a significant amount of energy is required to transmit WCE video frames, 

thus, it is important to consider the available smartphone battery in measuring the value of 

threshold. High available battery can allow transmission of more frames by keeping the value of 

threshold small. On contrary, in case of low battery, transmission of frames can be reduced by 

keeping the value of threshold large. In the proposed framework, smartphone’s battery level is 

monitored using Android SDK [63]. 
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From above discussion, it can be concluded that smartphone’s bandwidth and battery must be 

inversely proportional to threshold. Thresholding directly influences the usage of smartphone resources, 

that is, small τ will allow the proposed framework to utilize smartphone resources up to its maximum.  

To make the proposed system more interactive and controllable for user, user preference U is critical.  

It will be helpful for user to adjust the value of threshold according to the availability of resources.  

For example, in places such as home, office, etc., where smartphone’s battery can be easily charged and 

sufficient network link is available then user can set the value of threshold small for the transmission of 

more frames to cloud. Keeping in view the above considerations, a custom-defined equation for adaptive 

threshold τ has been formulated: 

U*eτ
22 




 +−

=
BBW

 (7)

All the parameters BW, B, and U are normalized in the range (0, 1]. For example, a Samsung Galaxy 

S4 having full battery (2.6 mAh) is considered as 1 and similar is the case for other parameters. The 

graph given in the Figure 6 illustrates the combined variational impact of smartphone resources on 

threshold. From graph, one can see that threshold τ is inversely proportional to smartphone’s resources. 

The increase of smartphone resources from minimum level 0 to maximum level 1, decreases the τ from a 

maximum value 1 to a minimum value 0. Thus, when we have enough smartphone’s resources, then the 

computed value of the τ will be minimum which leads to elimination of only highly similar frames 

during redundancy removal step. This minimization of redundancy allows transmitting a large segment 

of frames to cloud. In contrary, when smartphone resources are limited then the resultant threshold τ 

value will be maximum that permits the discarding of frames even having little similarity. This results in 

the transmission of limited number of frames (highly non-redundant) to cloud. Thus, the proposed 

adaptive threshold reduces smartphone’s computational and communication burden and only transmits 

limited number of frames to cloud. In addition, it enables adaptive offloading manger to efficiently 

utilize available resources. 

Figure 6. The combined variational impact of smartphone resources and user preference on 

threshold τ. 
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B. Feature Extraction and Classification Based on Multi-Fractal Texture 

Once the redundancy is removed, WCE video segments contain two types of frames: informative 

and non-informative. Frames showing original tissue’s characteristics of the GI tract are considered 

informative, whereas the frames that are contaminated with food, faecal materials, or have an 

extremely far or close focus on tissues are considered non-informative. Therefore, it is important to 

detect and isolate these non-informative frames before generating the final summary. 

Texture plays an important role in medical image analysis and understanding [64,65]. Texture 

features efficiently determine the granularity and repetitive patterns of different regions within a medical 

image. However, majority of the existing texture analysis methods work on the assumption that the 

underlying images are acquired from a fix viewpoint [66]. This limitation makes texture analysis 

schemes useless for medical images like WCE images, where, wireless capsule captures mucosa surface 

in GI tract from different perspectives and distances. Thus, a scale and orientation invariant texture 

features are highly significant for classifying WCE frames into informative and non-informative. In this 

context, multi-fractal texture features are the feasible option to classify the complex patterns of GI 

tissues as informative and non-informative. Multi-fractal offers rich description of the inherent structure 

and the texture of medical images at multiple orientations and scales [67]. Multi-fractal is the extension 

of fractal dimension and in statistics the fractal dimension of an image is a real number that describes the 

objects structures [68]. Takahashi et al. [69] presented multi-fractal-based classification scheme for 

early-stage detection of atherosclerosis disease. Similarly, Gonçalves et al. [70] proposed a classification 

scheme based on fractal dimension theory and deterministic partially self-avoiding walk. Numerous 

researchers have used multi-fractal theory for texture analysis and classification [67,71,72]. All these 

works validate the usefulness of applying the multi-fractal analysis to analyze medical images, 

especially to those captured under varying orientation, scale and translation conditions. Therefore, in 

order to classify WCE frame we extract multi-fractal-based texture features. Consider a set of points C in 

a 2D plane, for which the fractal dimension is: 

)log(

),(log
lim)dim(

0 σ
σ

−
=

→

CN
C

r
 (8)

where N(σ,C) is the smallest number of sets of diameter less than σ that spans C. Fractal dimension is the 

concept of analyzing an object’s structural irregularities at different scales σ. It ignores the irregularities 

of size less than σ while studying an object at scale σ. For efficient categorization, it is necessary to 

define a categorization function specific to the task under consideration. Density function is one of the 

standard categorization functions that can be defined on various image intensity functions such as an 

edge filter. The local density function is: 
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r −
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→
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 (9)

here μ is the measurement function applied to the Borel regular measure of a closed disk with centre x 

and radius r. The definition of μ is very important for correct classification. Consider μ as the sum of the 

Laplacian of the image inside the closed disc of radius r as: 
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The Gaussian operator G is applied to reduce noise and breaking edges by smoothing the image 

both in spatial and frequency domains. Because of viewpoint invariance, a second order derivative 

gradient is used instead of a first order derivative. This property resembles the human cognitive 

process and detects changes in structure in any direction. The edge-based approach is efficient in 

distinguishing between informative and non-informative frames based on the property of different 

texture structures. Non-informative frames are smooth, blurred with no clear edges as compared to 

informative frames as mentioned in Figure 5. Thus, multi-fractal technique analyzes mucosa texture at 

various scales with local densities α ∈ R that provides rich descriptors {Eα: α ∈ R} to categorize 

different object structures. Eα is the vector of fractal dimensions used for classification.  

Based on multi-fractal texture features, we want to classify frames into two categories: informative 

and non-informative frames. However, in applications like capsule endoscopy, the amount of data in 

video is extremely diverse and it is impractical to train a single classifier with this range of diverse 

data. This heterogeneous nature of WCE data makes the performance of a classifier, such as support 

vector machine (SVM) very limited. This leads to a concept of an ensemble SVM (E-SVM) that 

showed improved performance over conventional SVM [73–75]. In [76–78], it was experimentally 

proved that E-SVM is more robust in case of datasets having large variation. It combines the decision 

of several classifiers to draw the final decision resemble to the approach of consulting several 

physicians’ opinions before reaching to the final decision. Thus, we incorporate the ensemble-based 

approach for classification presented by Jaffar et al. [79]. This ensemble classifier consists of a number 

of binary SVM classifiers (SVM1, SVM2,…,SVMK). Each individual SVM is trained independently on 

WCE images dataset via a K-fold splitting process as shown in Figure 7. In K-fold splitting, the 

underlying dataset is split into k non-overlapping folds. Each fold iteratively serves once to estimate the 

classifier’s performance (testing), while the remaining K−1 folds are used to train combination of 

classifiers. K-fold splitting helps to select those parameters that achieve the best performance on the 

validation data automatically. Finally, the independently trained several SVMs are aggregated using 

linear methods such as sum, product and median rule. 

Figure 7. A general framework for training of ensemble SVM (E-SVM). 
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In E-SVM, each SVM works on two levels: first using kernel function to map feature vectors into a 

high-dimensional space and then it separates them into two classes using a hyper decision surface [80]. 

Usually, three types of kernel function are used such as radial basis function (RBF), linear function, 

and sigmoid. In the context of classification algorithm, a kernel function is a kind of similarity measure 

between the input objects. There is no specific criterion for kernel selection because each of them has 

some degree of variability in performance in different fields. The trade-off between performance and 

computational complexity is also important to be considered while selecting the kernel function. The 

SVM algorithm usually depends on efficient optimization of the kernel function parameters. Optimizing 

kernel parameters is an important step for various tasks such as finding the right shape of the kernel, 

feature selection, finding the right trade-off between error and margin, outlier detection. We have 

optimized SVM kernel parameters by gradient descent approach as discussed by Chapelle et al. in 

Chapter 4 [81].The comparative analysis of the classification performance of different SVM kernels 

using various aggregation schemes is shown in Table 1. Through experiments, it was observed that 

RBF outperforms other kernel function on the underlying endoscopic dataset. This performance gain 

comes at the cost of computational complexity. However, the classification task is offloaded to cloud, 

where the computational complexity is not a crucial factor due to the availability of large computational 

resources. In aggregation methods, the median rule showed better performance over sum and product rule. 

Table 1. The comparative analysis of the classification performance of different SVM 

kernels using various aggregation schemes. 

SVM Kernel 
Aggregation Strategy 

Product Rule 
Accuracy % 

Sum Rule  
Accuracy % 

Median Rule 
Accuracy % 

RBF 76.55 78.21 79.15 
Linear 62.21 65.12 66.51 

Sigmoid 40.12 43.25 44.51 

3.3. Cloud Service 

In remote patient monitoring, clinicians require access to precise and complete information to 

perform diagnosis correctly. Cloud storage provides ubiquitous access to patients’ data in a secure 

manner with no restrictions on mobility. With a massive increase in data, traditional cloud storage 

suffers from challenges such as information mining and retrieval. The problem in patient monitoring is 

not lack of data, but lack of precise and useful information. For instance, in WCE, only a fraction of 

video frames useful for diagnosis. We have incorporated data summarization in cloud storage in order to 

process the large amount of WCE data and transform it into precise and useful information. This will 

solve the problem of on demand access to the required data without browsing enormous redundant data 

to search for diagnostic related information. There is a variety of cloud vendors (e.g., Amazon, 

Microsoft, and Google). We selected the Google App Engine [16] because it possesses certain unique 

features. It is compatible with JavaScript, which is suitable for Android applications. Google App 

Engine provides high-level security by encrypting its services using secure socket layer. It offers 

excellent security features by providing an option to set up the access-control restrictions based on the 

roles assigned to each user. Thus, Google App Engine ensures the security and confidentiality of the 

patient information owing unique security features. Furthermore, for prototyping, it provides free services. 
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Computationally expensive computer vision tasks (feature extraction and classification) are offloaded to 

utilize the resources provided by Google App Engine. The summarization and data sharing services are 

exposed through VMs. The cloud with summarized data can efficiently connect many hospitals and 

remote patients to provide medical information. It will introduce new methods of accessing patient’s 

information for diagnostic as well educational perspectives. This reduces the problems of reaching 

medical resources to remote areas because of geographical, resource and time constraints. 

4. Experimental Evaluation 

In this study we evaluated the effectiveness of the proposed framework in terms of: (1) computational 

time and energy consumption; (2) impact on cloud storage and information retrieval; and (3) video 

summarization performance. The parameters adopted in these experiments are listed in Table 2.  

A prototype of the proposed video summarization is developed in the laboratory. The prototype is 

based on a local computation approach, full offloading, and adaptive-offloading. We used the Samsung 

Galaxy S4 smartphone running on Android OS 4.2.2 with a Java MIDP emulator and Bluetooth Smart 

(earlier called Bluetooth low-energy). We used fifteen videos in our experimental analysis. In these 

fifteen videos, ten were downloaded from open database Gastrolab [82] and other five were 

downloaded from WCE Video Atlas [83]. These are the two WCE standard datasets for GI analysis. 

The collected WCE videos consist of both normal and abnormal images with a rate of two frames per 

second. For experimentation, these videos are stored in IRU. Smartphone communicates via Bluetooth 

to IRU. In addition, the smartphone collaborates with the cloud server, which in our case is the Google 

App Engine. Google App Engine offers multiple APIs including Java, Java 7 runtime with cloud 

datastore to provide a fully managed schemaless database for storing WCE data [16].  

Table 2. Parameters of the simulation testbed. 

Parameter Description 

Fs Summarization kernel function 

VK Keyframes extracted from video 

VF Complete WCE video  

VS Short video segments of original WCE video after removing redundancy.  

PL Sum of time required for keyframe extraction on smartphone and their transmission to the cloud.  

PF Total time required to transmit original video to the cloud and keyframe extraction.  

PA Time required by the proposed method for video summarization  
L
FT Complete video Summary execution time on local server (smartphone).  
C
FT Complete video Summary execution time on the cloud. 
C
PT Time required classifying processed video frames into informative and non-informative.  

EL Energy required for executing the complete video summarization on smartphone. 

EF Energy required for transmitting complete video to the cloud.  

EA Energy required for video redundancy removal and frame classification using proposed method.  

ECC Power required for computation of summarization algorithm in one second on smartphone.  

ECT Power required for transmitting data via Wi-Fi in one second on smartphone.  

ECI Smartphone’ power used in one second in an idle state.  

BW Available bandwidth.  

K Miscellaneous: time required for receiving data from WCE Image recorder, monitoring mobile resources etc.
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Here, the evaluation is performed on the proposed video summarization framework using three 

implemented prototypes: local computation (smartphone), full-offloading, and adaptive-offloading.  

In the first scenario, local computation, it is assumed that all the computations were performed on the 

mobile device. We executed a full video summarization algorithm on the smartphone to measure the 

summarization performance and energy consumed by the proposed method. Besides, transmitting 

keyframes to the cloud, no other task was offloaded. In the second scenario, full-offloading, complete 

video was transmitted to Google App Engine for video summarizing and ubiquitous sharing. In the 

third scenario, the proposed MCATS framework is evaluated by varying the offloading parameters. 

Here, the application is adaptively offloaded; a set of non-remote functions (redundancy elimination) 

were executed on a smartphone client and the set of remote functions (multi-fractal texture feature 

extraction and classification) were offloaded to the Google App Engine. 

4.1. Evaluation of Computational Time and Energy Consumption 

This section focuses on the effectiveness of the proposed framework in minimizing the overall 

computational time and energy consumption. 

4.1.1. Computational Time Estimation Model 

Consider the summarization kernel function Fs (that includes redundancy elimination and frame 

classification). Its total execution time PL on the local server is the sum of the video summary 

computational time and the generated keyframes transmission time to Google App Engine as 

mentioned in Equation (11). The execution time PF for full-offloading is shown in Equation (12).  

In this case, we calculate the total transmission time required for uploading the complete WCE video 

to the cloud (Google App Engine) plus the time spent by cloud in generating the video summary. 

Equation (13) shows the total time PA required by the proposed framework to adaptively generate 

summaries. This is the time taken by the smartphone to remove redundant frames from video and 

transmit the processed (short segments) video to the cloud for further processing. This is an adaptive 

process that depends on the bandwidth, summarization level, and availability of smartphone resources. 

The proposed framework will be beneficial in terms of time complexity if it satisfies the inequalities 

mentioned in Equation (14): 
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Figure 8 shows the execution time for different computational strategies dealing with four different 

WCE videos. In this experiment, a limited bandwidth of 500 kbps is used. Computational time for 

redundancy removal is significant in both cases: the smartphone operating alone and adaptive-offloading. 
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However, in case of full-offloading, no processing is required to remove the redundancy because it 

aims to transmit the complete video to the cloud without processing on smartphone. On the other hand, 

package transmission time is very high in the full-offloading approach as compared to other two 

approaches. This package transmission time has been reduced substantially in the adaptive-offloading 

approach by locally removing redundant frames and transmitting only the processed non-redundant 

video segments to the cloud.  

Figure 8. Graph depicts three different computational schemes for WCE video summarization. 

Each computational scheme consists of three main modules: redundancy elimination, 

classification, and data transmission. (a) Local processing scheme took minimum transmission 

time but maximum redundancy removal and classification time; (b) In full-offloading 

approach, data transmission time is significantly higher which make it expensive;  

(c) Adaptive-offloading shows a better balance between computational and communication 

cost which makes it a feasible option for remote data management in long duration. 
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Figure 8c shows the effect of the proposed framework that transfers only the non-redundant video 

frames and offloads the computationally expensive tasks. The smartphone consumed more time on 

processing and transmission, whereas adaptive-offloading took less time. Key-frame execution time 

reduces significantly on the cloud because the cloud has more computational resources as compared to 

smartphone. Thus, it can be concluded that the proposed framework outperforms the other two 

schemes in terms of total execution time. 

4.1.2. Energy Consumption Estimation Model 

Energy consumption is defined as the total power consumed by the processor from the start to the 

termination of the application. In local computation, the total energy consumed EL is calculated in 

Equation (15). This is a sum of the energy consumed during keyframe generation, and the energy 

consumed for their transmission to the cloud. Equation (16) shows the energy consumed during the 

full-offloading approach. This is a sum of the energy required for transmitting the original video to the 

cloud and the energy consumed by the Google App Engine in generating video summaries. Equation (17) 

describes the formula to calculate the proposed framework’s (adaptive-offloading) energy consumption. 

Equation (18) indicates that the proposed framework will be successful in minimizing energy 

consumption if the mentioned inequalities hold true. 

We measure the energy consumption on the smartphone using an energy profiling tool [84].  

The functionality of this energy profiling tool is based on three steps: the Mobile System Monitor,  

the Energy Monitor, and the Energy Analyzer. The Mobile System Monitor is responsible for data 

collection. It monitors mobile’s system activity by periodically recording information of the program 

counter (PC) and process identifier (PID) of the currently executing process. With help of a digital 

multimeter, the Energy Monitor measures the electric current being used by the mobile device. 

According to the energy profiling tool, the voltage variation is extremely small in case of mobile 

devices; therefore the electric current samples alone are sufficient to determine the energy usage of the 

system. The Energy Analyzer associates the electric current sample to a PID collected from the Energy 

Monitor and the Mobile System Monitor respectively. The total energy consumption of a particular 

process is computed by multiplying the total electric current consumed with time interval of that process: 
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Figure 9 shows the total energy consumed during execution of video summary on four WCE 

videos. This provides strong evidence that for long durations and computationally intensive tasks such 

as video summarization, local execution severely affects the smartphones’ energy. Although it 

mitigates the data transmission cost (because only key-frames are transmitted), it drains the 
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smartphone resources (battery and enrgy); this is not acceptable from the users’ point of view. 

Execution traces of video summaries for full-offloading scenario provide different results. This can be 

explained by the fact that full-offloading needs more transmission power because it has to push the 

complete video to the cloud. Consequently, the transmission load increases. Furthermore, the energy 

consumption of transmitting a fixed amount of data is inversely proportional to the available 

bandwidth [85]. Thus, in dealing with large diagnostic data over frequently fluctuating bandwidth 

conditions, full off-loading fails to save smartphones’ energy. In such scenarios, performing 

computations on local servers (smartphones) might be a better choice. However, smartphones are 

constrained in terms of computation power and storage. Thus, it is not feasible to utilize the 

smartphone’s resources beyond a limit; this will affect the user experience. The proposed framework 

partitions the computation tasks between local and cloud servers to reduce energy consumption. It is a 

carefully designed scheme that efficiently manages available resources by weighing the benefits of 

transmission and computation costs as illustrated in Figure 9.  

Figure 9. Graph describing in detail the effect of three computational scenarios: (1) local 

processing; (2) full-offloading; and (3) adaptive-offloading method on energy consumption 

in generating video summaries. 
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It can be inferred from Figure 9 that the energy consumed by the proposed method is significantly 

low as compared to other mentioned techniques. In this experiment, we varied video size and kept all 

other parameters (bandwidth, smartphone resources and threshold τ) fixed. The graph given in the 

Figure 9 illustrates the variational impact of video size on total energy consumption. From graph, one 

can see that the total energy consumption in three computational scenarios grows almost linearly as the 

duration of the input video gets increase. 

Table 3 shows the approximate energy consumption both at smartphone and cloud server of WCE 

video summarization for three different computational scenarios. The WCE video consists of one hour at 

frame-rate: two frames per second. The full-offloading approach consumes more energy than local and 

adaptive-offloading approaches because of transmission load. Local processing approach minimizes the 

transmission load at the cost of conducting computational intensive task locally, i.e., classification. 

However, the execution of such energy-hungry task at smartphone is not a feasible option. Cloud 

provides an ideal environment for such resource-hungry task than smartphones and this is very clear 

from the computation mentioned in the Table 3. According to the statistics computed in Table 3, the 

adaptive-offloading consumes 34% and 19% less energy than full-offloading and local approaches.  

In addition, it decreases the smartphone’s energy consumption by 60% compare to local processing 

approach. The Samsung Galaxy S4 has a 2600 mAh battery (9.8 Wh), approximately equal to  

35,568 Joules (J). Most of the wireless capsule batteries have life span of about eight hours [4], typically 

enough time for capsule to image the entire small bowel as it passes through. Although most capsules are 

naturally expelled within 72 h of ingestion, only the first eight hours are significant for capturing the 

visual frames of the gastrointestinal because after eight hours wireless capsules are unable to capture 

images. Therefore, the energy estimated above is sufficient to monitor the WCE procedure for 8 h and as 

well as to run the native applications of the smartphones. Therefore, adaptive-offloading is the most 

suitable approach to run in a resource constrained environment such as smartphone. 

Table 3. Approximate energy consumption (in Joule) both at smartphone and cloud server 

of WCE video summarization for three computational scenarios: (1) local computation;  

(2) full-offloading and (3) adaptive-offloading computation method. 

Computational Scenario Local Full-Offloading Adaptive-Offloading 

Energy consumption 

at smartphone 

Bluetooth low-energy 67 62 75 

Reduction of redundancy 405  388 

Classification 1689   

data transmission 89 1352 389 

Energy consumption 

at Cloud 

Reduction of redundancy  250  

Classification  1090 852 

Smartphone’s total energy (J) 2250 1414 852 

Total energy (J) 2250 2754 1844 

4.2. Impact on Cloud Storage and Information Retrieval 

To evaluate the effect on storage cost, the proposed summarization scheme along with other two 

state-of-the-art techniques were compared with a traditional baseline solution (BS). The BS schemes 

usually stores the entire video data instead of summarized one. The other two state-of-the-art 
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techniques are: (1) our recent visual attention driven summarization method [21]; and (2) a domain 

specific endoscopy summarization scheme presented by Iakovidis et al. [22]. In [21], we presented a 

summarization technique based on visual attention that generates summary of the hysteroscopy video. 

The visual attention value of each frame in the video was calculated using inter-frame motion, color 

changes, and texture-based segmentation. Iakovidis et al. proposed an endoscopy video summarization 

technique that uses an unsupervised image mining method for summary generation. In this scheme, 

non-negative matrix factorization [86] is used to extract a set of orthogonal vectors. Then, on the basis 

of these orthogonal vectors, video frames are clustered to remove redundant frames. The number of 

frames extracted is controlled by a parameter that can be adjusted according to the level of detail 

required. In this set of experiments, WCE videos summaries were generated using three different video 

summarization methods with varying threshold τ. The value of τ is normalized in the range [0, 1] that 

determines the level of summarization. Threshold τ carrying small value generates a summary consist 

of more detail, i.e., summarization level is low. For high-level summarization, a large value is chosen 

for τ to extract only the most important frames.  

Figure 10. The impact of level of summarization on storage cost. 

 

Figure 10 shows that how threshold τ improve the efficient utilization of the storage. It can be seen 

that for all three summarization schemes, increase in τ from zero to one significantly decrease the 

storage costs for the summarized videos as compared to the traditional storage solutions. For the 

proposed summarization method, when τ is greater than 0.2, the storage requirement is reduced to 50% 

as compared to the baseline approach. Moreover, this reduction in data is beneficial for efficient image 
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browsing. In addition, the resource effectiveness nature of the proposed summarization minimizes 

bandwidth consumption. Moving data of terabytes in inter (from the clients to the cloud) and intra 

(within the cloud model) cloud can be very expensive and time consuming. Existing cloud storage 

gateways leverage wireless area network optimization and deduplication schemes [87]. These duplication 

and compression methodologies reduce the amount of data traffic to the cloud by 10%–30%. Furthermore, 

for threshold τ = 0.5, the storage cost of the underlying four videos approximately reduces to 72%, 

45%, and 41% while using the proposed, Ejaz et al. and Iakovidis et al. schemes for summarization 

respectively. This reduction in the non-informative and redundant data reduces the data traffic. 

4.3. Subjective Evaluation of the Proposed Video Summarization 

The proposed summarization performance is based on subjective rating done by experts. A group  

of five gastroenterologists was requested to select keyframes from given WCE videos. These 

gastroenterologists have an average experience of ten years in the medical field. The keyframes were 

selected based on a diagnostic point of view (having clear view of mucosal). The keyframes manually 

selected were used as the ground truth for comparison with keyframes extracted by the automated 

methods. Comparison between manually generated summaries (keyframes) and automated generated 

summaries is performed using standard metrics: Recall, Precision and F-measure. These three metrics 

are defined as: 

FNTP

TP
call

+
=Re  (19)

FPTP

TP
ecision

+
=Pr  (20)

ecisioncall

ecisioncall
MeasureF

PrRe

Pr*Re
*2

+
=−  (21)

where TP is true positive, FP is false positive, and FN is false negative. A frame is true positive, if it is 

selected by both a human user and the automatic technique. A frame selected only by the technique 

and not by a human user is false positive. False negative is the frame that is selected by a user but not 

by the technique. In the current scenario, Recall is the probability that an informative collection of 

WCE frames is generated by the technique while, Precision is the probability that generated summary 

is informative. These two measures: Recall and Precision have a trade-off. To eliminate this trade-off, 

F-Measure is used. F-Measure is the weighted harmonic mean of Recall and Precision that provides a 

better understanding of the generated summaries [88]. A comparative analysis of summaries generated 

by the proposed method, Ejaz et al. [21] and Iakovidis et al. [22] were conducted using Recall, 

Precision and F-Measure metric. Table 4 illustrates that the proposed method achieves high values for 

Recall, Precision and F-Measure. High Recall values demonstrate the ability of a particular technique 

to detect more informative frames as compared to other techniques while the high Precision values 

indicate the level of preciseness in the selected summarized frames. Moreover, the average F-measure 

of the proposed technique for fifteen videos is 0.82 that outperforms the other techniques. This 

indicates that the generated summaries are more informative, precise, and are closer to manually 

selected summaries, i.e., ground truth. 
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Table 4. Recall (R), Precision (P), and F-Measure (F) scores for different techniques. 

 Iakovidis et al. Ejaz et al. Proposed 
R P F R P F R P F 

1 0.62 0.71 0.66 0.71 0.70 0.70 0.78 0.84 0.81 
2 0.71 0.76 0.73 0.72 0.75 0.73 0.80 0.82 0.81 
3 0.69 0.77 0.73 0.68 0.78 0.73 0.83 0.91 0.87 
4 0.81 0.68 0.74 0.85 0.88 0.86 0.79 0.84 0.81 
5 0.67 0.69 0.68 0.74 0.78 0.76 0.80 0.87 0.83 
6 0.72 0.71 0.71 0.72 0.75 0.73 0.82 0.88 0.85 
7 0.75 0.70 0.72 0.75 0.77 0.76 0.81 0.84 0.82 
8 0.70 0.72 0.71 0.71 0.74 0.72 0.79 0.78 0.78 
9 0.66 0.67 0.66 0.69 0.67 0.68 0.83 0.85 0.84 

10 0.65 0.68 0.66 0.67 0.75 0.71 0.85 0.88 0.86 
11 0.73 0.71 0.72 0.72 0.74 0.73 0.79 0.83 0.81 
12 0.76 0.77 0.76 0.75 0.71 0.73 0.78 0.72 0.75 
13 0.74 0.75 0.74 0.73 0.75 0.74 0.83 0.87 0.85 
14 0.69 0.72 0.70 0.79 0.82 0.80 0.80 0.86 0.83 
15 0.67 0.70 0.68 0.78 0.74 0.76 0.79 0.82 0.80 

Average 0.70 0.72 0.71 0.73 0.76 0.74 0.81 0.84 0.82 

Figure 11a, shows those frames of the WCE video that were selected manually as a ground truth. 

The underlying video-shot is consists of 340 frames. The video-shot was captured by SYNMED [89] 

for the purpose to diagnose an abnormality of the gastrointestinal called phlebectasia. This video was 

downloaded from YouTube [90]. Few frames are informative and almost 80% frames are redundant. 

There are some frames that are usually selected as informative frames by summarization technique  

due to bubble patterns. The bubble pattern creates a deceptive vision of tissues being obstructed. 

Figure 11b–d shows summaries of this video generated by the Iakovidis et al., Ejaz et al. and the 

proposed techniques respectively.  

Figure 11. Comparison of manual summary with summaries generated by three  

different summarization techniques. (a) Ground truth; (b) Summaries generated by the 

Iakovidis et al. [22]; (c) Summaries generated by the Ejaz et al. method [21]; (d) Summary 

generated by the proposed method. 

(a) 
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Figure 11. Cont. 

(b) 

(c) 

(d) 

The Iakovidis et al. and Ejaz et al. techniques work efficiently in removing the redundant frames, 

however they fail to detect and discard the non-informative frames (frames with bubble patterns) as 

depicted in the first column of Figure 11b,c. These schemes efficiently eliminate redundancy in video 

frames but fail to differentiate between non-redundant and informative frames. Figure 11d shows that 

the proposed method outperforms other two techniques by removing the redundant as well as the 

non-informative frames. 
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5. Conclusions 

In this study, we formulated the problem of an energy-efficient wireless capsule’s data management 

and proposed a mobile-cloud assisted video summarization framework its solution. This is a two-fold 

solution that deploys the capabilities of mobile-cloud computing and image processing techniques. The 

large sensor data captured by wireless capsule sensor is summarized to remove redundant and 

non-informative frames. The summarization process is based on two steps: (1) elimination of redundant 

video frames and (2) classification of non-redundant frames into informative and non-informative. For 

redundancy elimination, net similarity between two WCE video frames is calculated by linearly 

combining the two similarity measures: Jeffrey-divergence and Boolean series-based correlation. Then, 

rotational and translation invariant multi-fractal texture features are extracted to classify each frame as 

informative or non-informative. Due to the complex and diverse nature of WCE visual contents, an 

ensemble-based classification is performed using support vector machine. The proposed redundancy 

elimination is a light weight process but feature extraction and classification are computationally 

intensive tasks. Therefore an adaptive approach is employed to partition the processing tasks between 

smartphone and cloud servers. The light-weight redundancy elimination step is performed at patients’ 

smartphone, whereas, classification task is offloaded to cloud. 

The simulation results indicate that the proposed summarization scheme efficiently extracts 

semantically important frames from videos; as a result, the overall size of video data is reduced. This 

reduction in data size reduces network transmission cost, storage space, and most importantly the 

browsing time. Furthermore, the adaptive offloading mechanism efficiently partitions the processing 

tasks between smartphone and cloud by considering the communication and computational trade-off. 

The simulation result recommends that the proposed framework would provide medical specialists fast 

and easy access to vital information anytime/anywhere during WCE procedure. 

Our approach uses an adaptive threshold that reduces smartphone’s computational and communication 

burden and only transmits limited number of frames to cloud. However, it is not trivial to determine 

efficient value of threshold, since the decision between redundant and non-redundant tends to be 

subjective. In future, we have intention to formulate current wireless capsule’s data management 

problem as a multiple-objective optimization driven summarization framework. In which WCE data can 

be efficiently managed by solving the multi-objective optimization problem based on the frame 

importance. Different summarization objectives such as minimum summary length and maximum 

information coverage can be accomplished according to the requirements of gastroenterologists. 

Acknowledgments 

This research is supported by Basic Science Research Program through the National Research 

Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2012904). 

Author Contributions 

Irfan Mehmood, Muhammad Sajjad, and Sung Wook Baik conceived and discussed the project.  

Irfan Mehmood and Muhammad Sajjad developed and discussed the algorithms. Irfan Mehmood and 



Sensors 2014, 14 17140 

 

 

Muhammad Sajjad wrote the publication and provided data for testing the algorithms. All authors have 

read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bergmann, J.H.; Chandaria, V.; McGregor, A. Wearable and implantable sensors: The patient’s 

perspective. Sensors 2012, 12, 16695–16709. 

2. Ullah, S.; Higgin, H.; Siddiqui, M.A.; Kwak, K.S. A Study of Implanted and Wearable Body Sensor 

Networks. In Agent and Multi-Agent Systems: Technologies and Applications; Springer: Heidelberg, 

Germany, 2008; pp. 464–473. 

3. Jovanov, E.; Milenkovic, A. Body area networks for ubiquitous healthcare applications: 

Opportunities and challenges. J. Med. Syst. 2011, 35, 1245–1254. 

4. Basar, M.R.; Malek, F.; Juni, K.M.; Idris, M.S.; Saleh, M.I.M. Ingestible wireless capsule technology: 

A review of development and future indication. Int. J. Antennas Propag. 2012, 2012, 807165. 

5. Mehmood, I.; Sajjad, M.; Baik, S.W. Video summarization based tele-endoscopy: A service  

to efficiently manage visual data generated during wireless capsule endoscopy procedure.  

J. Med. Syst. 2014, 38, 1–9. 

6. Chan, M.; Estève, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current 

status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. 

7. Tura, A.; Badanai, M.; Longo, D.; Quareni, L. A Medical Wearable Device with Wireless 

Bluetooth-Based Data Transmission. Meas. Sci. Rev. 2003, 3, 1–4. 

8. Renard, E. Implantable glucose sensors for diabetes monitoring. Minim. Invasive Ther. Allied 

Technol. 2004, 13, 78–86. 

9. Sung, M.; Marci, C.; Pentland, A. Wearable feedback systems for rehabilitation. J. NeuroEng. 

Rehabil. 2005, 2, doi:10.1186/1743-0003-2-17. 

10. Lin, B.-S.; Lin, B.-S.; Chou, N.-K.; Chong, F.-C.; Chen, S.-J. RTWPMS: A real-time wireless 

physiological monitoring system. IEEE Trans.Inf. Technol. Biomed. 2006, 10, 647–656. 

11. Tan, E.L.; Pereles, B.D.; Horton, B.; Shao, R.; Zourob, M.; Ong, K.G. Implantable biosensors for 

real-time strain and pressure monitoring. Sensors 2008, 8, 6396–6406. 

12. Khattak, A.; Hung, D.V.; Truc, P.T.H.; Guan, D.; Pervez, Z.; Han, M.; Lee, S.; Lee, Y.-K. 

Context-Aware human activity recognition and decision making. In Proceedings of the 2010 12th 

IEEE International Conference on e-Health Networking Applications and Services (Healthcom), 

Lyon, France, 1–3 July 2010; pp. 112–118. 

13. Iddan, G.; Meron, G.; Glukhovsky, A.; Swain, P. Wireless capsule endoscopy. Nature 2000,  

405, 417–418. 

14. Toennies, J.L.; Tortora, G.; Simi, M.; Valdastri, P.; Webster, R. Swallowable medical devices for 

diagnosis and surgery: The state of the art. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2010, 

224, 1397–1414. 



Sensors 2014, 14 17141 

 

 

15. Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring 

systems: A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. 

16. Atallah, L.; Lo, B.; Yang, G.-Z. Can pervasive sensing address current challenges in global 

healthcare? J. Epidemiol. Glob. Health 2012, 2, 1–13. 

17. Bellazzi, R.; Ferrazzi, F.; Sacchi, L. Predictive data mining in clinical medicine: A focus on 

selected methods and applications. Wiley Interdisc. Rev.: Data Mining Knowl. Disc. 2011, 1,  

416–430. 

18. Yoo, I.; Alafaireet, P.; Marinov, M.; Pena-Hernandez, K.; Gopidi, R.; Chang, J.-F.; Hua, L. Data 

mining in healthcare and biomedicine: A survey of the literature. J. Med. Syst. 2012, 36, 2431–2448. 

19. Stacey, M.; McGregor, C. Temporal abstraction in intelligent clinical data analysis: A survey.  

Artif. Intell. Med. 2007, 39, 1–24. 

20. Mehmood, I.; Ejaz, N.; Sajjad, M.; Baik, S.W. Prioritization of brain MRI volumes using medical 

image perception model and tumor region segmentation. Comput. Biol. Med. 2013, 43, 1471–1483. 

21. Ejaz, N.; Mehmood, I.; Baik, S.W. MRT letter: Visual attention driven framework for hysteroscopy 

video abstraction. Microsc. Res. Tech. 2013, 76, 559–563. 

22. Iakovidis, D.K.; Tsevas, S.; Polydorou, A. Reduction of capsule endoscopy reading times by 

unsupervised image mining. Comput. Med. Imaging Graph. 2010, 34, 471–478. 

23. Chu, X.; Poh, C.K.; Li, L.; Chan, K.L.; Yan, S.; Shen, W.; Htwe, T.M.; Liu, J.; Lim, J.H.;  

Ong, E.H. Epitomized Summarization of Wireless Capsule Endoscopic Videos for Efficient 

Visualization. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010; 

Springer: Heidelberg, Germany, 2010; pp. 522–529. 

24. Li, B.; Meng, M.-H.; Zhao, Q. Wireless capsule endoscopy video summary. In Proceedings of the 

2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, China, 

14–18 December 2010; pp. 454–459. 

25. Chen, Y.; Lee, J. A review of machine-vision-based analysis of wireless capsule endoscopy video. 

Diagn. Ther. Endosc. 2012, 2012, 418037. 

26. Lounis, A.; Hadjidj, A.; Bouabdallah, A.; Challal, Y. Secure and Scalable Cloud-Based 

Architecture for e-Health Wireless Sensor Networks. In Proceedings of the 2012 21st International 

Conference on Computer Communications and Networks (ICCCN), Munich, Germany, 30 July–2 

August 2012; pp. 1–7. 

27. Wang, M.; Zeng, Q.; Zhu, W.; Yang, J.; Wang, Q.; Qin, W.; Xiang, D.; Zhou, M.; Tian, Y.;  

Chen, H.; et al. Remote rehabilitation model based on BAN and cloud computing technology.  

In Proceedings of the 2012 IEEE 14th International Conference on e-Health Networking, 

Applications and Services (Healthcom), Beijing, China, 10–13 October 2012; pp. 119–123. 

28. Zhuang, Y.; Jiang, N.; Wu, Z.; Li, Q.; Chiu, D.K.; Hu, H. Efficient and robust large medical image 

retrieval in mobile cloud computing environment. Inf. Sci. 2014, 263, 60–86. 

29. Gu, X.; Nahrstedt, K.; Messer, A.; Greenberg, I.; Milojicic, D. Adaptive offloading for pervasive 

computing. IEEE Perv. Comput. 2004, 3, 66–73. 

30. Yang, K.; Ou, S.; Chen, H.-H. On effective offloading services for resource-constrained mobile 

devices running heavier mobile internet applications. IEEE Commun. Mag. 2008, 46, 56–63. 



Sensors 2014, 14 17142 

 

 

31. Miettinen, A.P.; Nurminen, J.K. Energy efficiency of mobile clients in cloud computing. In 

Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (2010), Berkeley, 

CA, USA, 22 June 2010. 

32. Fortino, G.; Parisi, D.; Pirrone, V.; di Fatta, G. BodyCloud: A SaaS approach for community body 

sensor networks. Future Gener. Comput. Syst. 2014, 35, 62–79. 

33. Hsieh, J.-C.; Li, A.-H.; Yang, C.-C. Mobile, cloud, and big data computing: Contributions, 

challenges, and new directions in telecardiology. Int. J. Environ. Res. Public Health 2013, 10, 

6131–6153. 

34. Liu, W.; Nishio, T.; Shinkuma, R.; Takahashi, T. Adaptive resource discovery in mobile cloud 

computing. Comput. Commun. 2014, 50, 119–129. 

35. Tilevich, E.; Kwon, Y.-W. Cloud-based execution to improve mobile application energy efficiency. 

Computer 2014, 47, 75–77. 

36. Gao, Y.; Zheng, Y.; Diao, S.; Toh, W.-D.; Ang, C.-W.; Je, M.; Heng, C.-H. Low-power 

ultrawideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. 

Eng. 2011, 58, 768–772. 

37. Wang, Z.; Lim, E.G.; Tillo, T.; Yu, F. Review of the Wireless Capsule Transmitting and Receiving 

Antennas. In Wireless Communications and Networks-Recent Advances; InTech: Hampshire, UK, 

2012; pp. 978–953. 

38. Glukhovsky, A. Wireless capsule endoscopy. Sens. Rev. 2003, 23, 128–133. 

39. Halpern, M.; Jacob, H. Atlas of Capsule Endoscopy; Given Imaging Inc.: Norcross, GA, USA, 2002. 

40. Delvaux, M.; Gay, G. Capsule endoscopy: Technique and indications. Best Pract. Res. Clin. 

Gastroenterol. 2008, 22, 813–837. 

41. Bilstrup, K. A Preliminary Study of Wireless Body Area Networks; Technical Report IDE0854; 

School of Information Science, Computer and Electrical Engineering, Halmstad University: 

Halmstad, Sweden, 2008. 

42. Khan, T.H.; Wahid, K.A. An advanced physiological data logger for medical imaging applications. 

EURASIP J. Embed. Syst. 2012, 2012; 1–14. 

43. Harnett, C. Open wireless sensor network telemetry platform for mobile phones. IEEE Sens. J. 

2010, 10, 1083–1084. 

44. Microchip. Available online: http://www.microchip.com/ (accessed on 10 May 2014). 

45. Core Bluetooth Programming Guide. Available online: https://developer.apple.com/library/ios/ 

documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/ 

Introduction.html (accessed on 10 February 2014). 

46. Bluetooth Low Energy. Available online: http://developer.android.com/guide/topics/connectivity/ 

bluetooth-le.html (accessed on 4 April 2014). 

47. Bluetooth Low Energy Overview. Available online: http://msdn.microsoft.com/en-us/library/windows/ 

hardware/jj159880(v=vs.85).aspx (accessed on 24 April 2014). 

48. Kumar, K.; Lu, Y.-H. Cloud computing for mobile users: Can offloading computation save energy? 

Computer 2010, 43, 51–56. 

49. Gianluigi, C.; Raimondo, S. An innovative algorithm for key frame extraction in video 

summarization. J. Real-Time Image Proc. 2006, 1, 69–88. 



Sensors 2014, 14 17143 

 

 

50. Rubner, Y.; Puzicha, J.; Tomasi, C.; Buhmann, J.M. Empirical evaluation of dissimilarity measures 

for color and texture. Comput. Vision Image Underst. 2001, 84, 25–43. 

51. Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification 

based on featured distributions. Pattern Recognit. 1996, 29, 51–59. 

52. Puzicha, J.; Hofmann, T.; Buhmann, J.M. Non-parametric similarity measures for unsupervised 

texture segmentation and image retrieval. In Proceedings of the 1997 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997; 

pp. 267–272. 

53. Puzicha, J.; Buhmann, J.M.; Rubner, Y.; Tomasi, C. Empirical evaluation of dissimilarity measures 

for color and texture. In Proceedings of the Seventh IEEE International Conference on Computer 

Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1165–1172. 

54. Scharcanski, J.; Gavidao, W. Hierarchical summarization of diagnostic hysteroscopy videos.  

In Proceedings of the 2006 IEEE International Conference on Image Processing, Atlanta, GA, 

USA, 8–11 October 2006; pp. 129–132. 

55. Zheng, J.; You, H. A new model-independent method for change detection in multitemporal SAR 

images based on Radon transform and Jeffrey divergence. IEEE Geosci. Remote Sens. Lett. 2013, 

10, 91–95. 

56. International Commission on Illumination. Available online: http://eilv.cie.co.at/term/157 (accessed 

on 25 March 2014). 

57. Bianconi, F.; Harvey, R.; Southam, P.; Fernández, A. Theoretical and experimental comparison  

of different approaches for color texture classification. J. Electron. Imaging 2011, 20, 043006-1-17. 

58. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity 

search in large time series databases. Knowl. Inf. Syst. 2001, 3, 263–286. 

59. Dobra, A.; Garofalakis, M.; Gehrke, J.; Rastogi, R. Processing complex aggregate queries over data 

streams. In Proceedings of the 2002 ACM SIGMOD International Conference on Management of 

Data, Madison, WI, USA, 4–6 June 2002; pp. 61–72. 

60. Precup, O.V.; Iori, G. Cross-Correlation measures in the high-frequency domain. Eur. J. Financ. 

2007, 13, 319–331. 

61. Zhang, T.; Yue, D.; Gu, Y.; Wang, Y.; Yu, G. Adaptive correlation analysis in stream time series 

with sliding windows. Comput. Math. Appl. 2009, 57, 937–948. 

62. Monitor Wifi Status and Information with BroadcastReceiver. Available online: http://android-er. 

blogspot.kr/2011/01/monitor-wifi-status-and-information.html (accessed on 25 December 2013). 

63. Monitoring the Battery Level and Charging State. Available online: http://developer.android.com/ 

training/monitoring-device-state/battery-monitoring.html (accessed on 5 May 2014). 

64. Bianconi, F.; Fernández, A. An appendix to “Texture databases—A comprehensive survey”. 

Pattern Recognit. Lett. 2014, 45, 33–38. 

65. Riaz, F.; Silva, F.B.; Ribeiro, M.D.; Coimbra, M.T. Invariant gabor texture descriptors for 

classification of gastroenterology images. IEEE Trans. Biomed. Eng. 2012, 59, 2893–2904. 

66. Zhang, J.; Tan, T. Brief review of invariant texture analysis methods. Pattern Recognit. 2002, 35, 

735–747. 

67. Reljin, I.S.; Reljin, B.D. Fractal geometry and multifractals in analyzing and processing medical 

data and images. Arch. Oncol. 2002, 10, 283–293. 



Sensors 2014, 14 17144 

 

 

68. Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal measures and their 

singularities: The characterization of strange sets. Phys. Rev. A 1986, 33, 1141–1151. 

69. Takahashi, T.; Murata, T.; Narita, K.; Hamada, T.; Kosaka, H.; Omori, M.; Takahashi, K.;  

Kimura, H.; Yoshida, H.; Wada, Y. Multifractal analysis of deep white matter microstructural 

changes on MRI in relation to early-stage atherosclerosis. NeuroImage 2006, 32, 1158–1166. 

70. Goncalves, W.N.; Bruno, O.M. Combining fractal and deterministic walkers for texture analysis 

and classification. Pattern Recognit. 2013, 46, 2953–2968. 

71. Sztojánov, I.; Crisan, D.; Mina, C.P.; Voinea, V.; Chen, Y. Image processing in biology based on 

the fractal analysis. Image Proc. InTech 2009, 323–344. 

72. Xu, Y.; Ji, H.; Fermüller, C. Viewpoint invariant texture description using fractal analysis. Int. J. 

Comput. Vision 2009, 83, 85–100. 

73. Hu, Z.; Cai, Y.; Li, Y.; Xu, X. Support vector machine based ensemble classifier. In Proceedings of 

the 2005 American Control Conference, Oregon, Portland, 8–10 June 2005; pp. 745–749. 

74. Claesen, M.; de Smet, F.; Suykens, J.; de Moor, B. EnsembleSVM: A library for ensemble learning 

using support vector machines. J. Mach. Learn. Res. 2014, 15, 141–145. 

75. Kim, H.-C.; Pang, S.; Je, H.-M.; Kim, D.; Bang, S.-Y. Constructing support vector machine 

ensemble. Pattern Recognit. 2003, 36, 2757–2767. 

76. Valentini, G.; Muselli, M.; Ruffino, F. Cancer recognition with bagged ensembles of support vector 

machines. Neurocomputing 2004, 56, 461–466. 

77. Rakotomamonjy, A.; Guigue, V. BCI competition III: Dataset II-ensemble of SVMs for BCI P300 

speller. IEEE Trans. Biomed. Eng. 2008, 55, 1147–1154. 

78. Tsang, I.W.; Kocsor, A.; Kwok, J.T. Diversified SVM Ensembles for Large Data Sets. In Machine 

Learning: ECML 2006; Springer: Berlin, Germany, 2006; pp. 792–800. 

79. Jaffar, M.A.; Hayder, Z.; Hussain, A.; Mirza, A.M. An intelligent ensemble based systems for 

breast cancer diagnosis. In Proceedings of the 2009 International Conference on Computer 

Engineering and Applications, Manila, Philippine, 6–8 June 2009; pp. 316–320. 

80. Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1999. 

81. Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support 

vector machines. Mach. Learn. 2002, 46, 131–159. 

82. Gastrolab. Available online: http://www.kolumbus.fi/hans/gastrolab/vid000.htm (accessed on 15 

January 2014). 

83. Wireless Capsule Endoscopy Video Atlas—Homepage. Available online: www.wceatlas.org 

(accessed on 10 January 2014). 

84. Flinn, J.; Satyanarayanan, M. Powerscope: A tool for profiling the energy usage of mobile 

applications. In Proceedings of the Second IEEE Workshop on Mobile Computer Systems and 

Applications, New Orleans, LA, USA, 25–26 February 1999; pp. 2–10. 

85. Shu, P.; Liu, F.; Jin, H.; Chen, M.; Wen, F.; Qu, Y.; Li, B. eTime: Energy-efficient transmission 

between cloud and mobile devices. In Proceedings of the IEEE INFOCOM, Turin, Italy, 14–19 

April 2013; pp. 14–19. 

86. Okun, O.; Priisalu, H. Unsupervised data reduction. Signal proc. 2007, 87, 2260–2267. 

87. Spillner, J.; Müller, J.; Schill, A. Creating optimal cloud storage systems. Future Gener. Comput. 

Syst. 2013, 29, 1062–1072. 



Sensors 2014, 14 17145 

 

 

88. Makhoul, J.; Kubala, F.; Schwartz, R.; Weischedel, R. Performance measures for information 

extraction. In Proceedings of the DARPA Broadcast News Workshop, Washington, DC, USA,  

28 February–3 March 1999; pp. 249–252. 

89. SYNMED UK. Available online: http://www.synmed.co.uk/ (accessed on 19 January 2014). 

90. MiroCam Wireless Capsule Endoscopy Video of Small Bowel phlebectasia. Available online: 

http://www.youtube.com/watch?v=zBYbFQzldtU (accessed on 19 January 2014). 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


