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Abstract: In this paper, we present a novel texture image feature for Emotion Sensing in 

Speech (ESS). This idea is based on the fact that the texture images carry emotion-related 

information. The feature extraction is derived from time-frequency representation of 

spectrogram images. First, we transform the spectrogram as a recognizable image. Next, 

we use a cubic curve to enhance the image contrast. Then, the texture image information 

(TII) derived from the spectrogram image can be extracted by using Laws’ masks to 

characterize emotional state. In order to evaluate the effectiveness of the proposed emotion 

recognition in different languages, we use two open emotional databases including the 

Berlin Emotional Speech Database (EMO-DB) and eNTERFACE corpus and one  

self-recorded database (KHUSC-EmoDB), to evaluate the performance cross-corpora. The 

results of the proposed ESS system are presented using support vector machine (SVM) as a 

classifier. Experimental results show that the proposed TII-based feature extraction 

inspired by visual perception can provide significant classification for ESS systems. The 

two-dimensional (2-D) TII feature can provide the discrimination between different 

emotions in visual expressions except for the conveyance pitch and formant tracks.  

In addition, the de-noising in 2-D images can be more easily completed than de-noising  

in 1-D speech.  

Keywords: emotional feature extraction; emotion sensing; spectrogram; texture image 

information 
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1. Introduction 

Human emotion recognition can facilitate emotional information from speech, facial expressions, 

gestures, and so forth. Recently, emotion recognition methods have fused both speech and visual data 

to recognize human emotional states. It is desirable to improve the recognition accuracy for 

audiovisual-based methods while comparing the results with emotion sensing in speech. In [1–3], some 

feature extraction methods have been provided to increase the accuracy of facial expression 

recognition. However, there is a tradeoff between accuracy and computing power for recognizing 

human emotional states from audiovisual signals. In fact, speech can provide a most natural and 

fundamental interface for human-computer interaction (HCI). With the exponential growth in available 

computer power and the significant progress in speech technologies, emotion sensing in speech (ESS) 

systems has important roles in HCI. ESS has several potential applications, such as the interfaces  

with robots [4–6], call center environments [7], and enhancement of speech and speaker recognition 

performance [8]. 

In general, ESS is a computational task consisting of two major parts: feature extraction and 

emotion machine classification. In fact, the emotional feature extraction part is a crucial issue in any 

ESS system and is emphasized in this paper. The extracted features must carry sufficient information 

to represent the emotional states of a speaker. From the reported findings on speech features, most 

works adopt prosodic features [9–12]. For example, Schuller et al. [9] utilized 20 pitches and  

energy-related features to recognize seven discrete emotions. In [10], the authors used pitch, formant, 

intensity, speech rate and energy related features to classify neutrality, anger, laughter and surprise.  

In [11], fundamental frequency, energy and audible duration features were extracted to recognize 

sadness, boredom, happiness and anger in a corpus recorded by eight professional actors. In [12], the 

prosodic features, derived from pitch, loudness, duration and quality features were extracted to 

recognize a 400-utterance database. Those features are regarded as pitch-related features, energy-related 

features and speaking rate ones. Other features mentioned in the literature are spectral features [13–15]. 

In [13], the Mel-frequency predictive cepstral coefficients (MFCCs) were selected with pitch, log 

energy, formant and band energies to perform in a SONY AIBO database. In [14], various speech 

features, namely, energy, pitch, zero crossing, phonetic rate, linear predictive cepstral coefficients 

(LPCCs) and their derivatives, were tested and combined with MFCCs. In [15], the short time log 

frequency power coefficients along with MFCCs were adopted as emotion speech features to recognize 

six emotions in a 60-utterance corpus. In general, these spectral features are LPCCs-related or  

MFCCs-related features. 

According to the above statement, the conventional feature parameters are usually based on  

one-dimensional (1-D) information. A two-dimensional (2-D) Gabor filter bank was applied to  

mel-spectrograms in [16,17]. The resulting outputs of the Gabor filters were concatenated into  

two-dimensional vectors and used as features in the speech recognition experiments. In [18], a similar 

method was applied in speech discrimination and enhancement. In recent studies [19–21], a 2-D Gabor 

filter bank was described for decomposing localized patches of spectrograms into components representing 

speech harmonistic, formants, vertical onsets/offsets, noise and overlapping simultaneous speakers. 

For a few years now, a large number of low-level descriptors (LLD) and functional have promoted 

the extraction of very large feature vectors (brute-force extraction), and up to many thousands of 
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features are obtained either by analytical feature generation [22–24] or, in a few studies, by 

evolutionary generation. Such brute-forcing also often includes hierarchical functional application 

(e.g., mean of maxima) to better cope with statistical outliers. In [25], Schuller’s group used large scale 

brute-force feature sets for emotion recognition. In Escalona Mena’s work [26], the author proposed a 

signal feature extraction using acoustic low-level descriptors. The average accuracy is above 82% for 

seven-class tasks.  

Compared with the conventional feature extraction, we present in this paper a novel texture image 

feature for ESS systems. This idea is based on the fact that the texture images carry emotion-related 

information. The feature extraction is derived from time-frequency representation of spectrogram 

images. First, we transform spectrograms as recognizable images. Next, we use a cubic curve to 

enhance the contrast of these speech spectrogram images. Then, the texture image information (TII) 

derived from the spectrogram images can be extracted by using Laws’ masks to characterize emotional 

states. In addition, large scale brute-force feature sets are utilized with the proposed TII features. In 

order to evaluate the effectiveness of the proposed emotion recognition in different languages, we used 

two open emotional databases, including the Berlin Emotional Speech Database (EMO-DB), and the 

eNTERFACE corpus and one self-recorded database (KHUSC-EmoDB), to evaluate the cross-corpora 

performance. The results of the proposed TII-base ESS system are presented using support vector 

machine (SVM) as a classifier. It is found that the large-scale brute-force feature sets also improve the 

average accuracy of emotion recognition, regardless of the need for more computational time. 

The remainder of this paper is organized as follows: Section 2 introduces the emotion speech 

database including two open databases (EMO-DB and eNTERFACE) and one self-recorded database 

(KHUSC-EmoDB). Section 3 defines the framework of the proposed ESS system. Next, texture image 

information for the paper’s main motivation, spectrogram image calculation for transforming 1-D 

speech signals into 2-D images, a cubic curve method for image enhancement, Laws’ mask for feature 

definition, and the SVM-based machine for classification are separately described in detail.  

In addition, the utilized large-scale brute-force feature sets together with the proposed TII features are 

also presented. The experiments and results are discussed in Section 4. Finally, Section 5 provides the 

discussion and conclusions.  

2. Emotional Speech Database 

To demonstrate effectiveness of the proposed TII-based feature extraction applied to ESS systems, 

we carried out experiments on three emotional datasets: EMO-DB, eNTERFACE and KHUSC-EmoDB. 

In the following, we will discuss and describe the quality of these three emotional datasets.  

2.1. EMO-DB 

The Berlin Speech Emotion Database (EMO-DB) [27] was recorded at the Technical University, 

Berlin. It contains seven classes of basic emotions (Anger, Fear, Happiness, Disgust, Boredom, 

Sadness, and Neutral). Ten professional German actors (five men and five women) spoke ten sentences 

in German. Table 1 shows the ten different sentences in German. The 535 sentences were not equally 

distributed between the various emotional states. This distribution of emotional sentences for EMO-DB 

is shown in Table 2. 
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Table 1. The emotional sentences for EMO-DB. 

EMO-DB 

Rank Sentence 

1 Der Lappen liegt auf dem Eisschrank. 
2 Das will sie am Mittwoch abgeben. 
3 Heute abend konnte ich es ihm sagen. 
4 Das schwarze Blatt Papier befindet sich da oben neben dem Holzstuck. 
5 In sieben Stunden wird es soweit sein. 
6 Was sind denn das fur Tuten, die da unter dem Tisch stehen. 
7 Sie haben es gerade hochgetragen und jetzt gehen sie wieder runter. 
8 An den Wochenenden bin ich jetzt immer nach Hause gefahren und habe Agnes besucht. 
9 Ich will das eben wegbringen und dann mit Karl was trinken gehen. 

10 Die wird auf dem Platz sein, wo wir sie immer hinlegen. 

Table 2. Distribution of emotional sentences for EMO-DB. 

EMO-DB 
Anger Boredom Disgust Fear Happiness Sadness Neural Total 

127 81 46 69 71 62 79 535 

2.2. eNTERFACE Corpus 

The eNTERFACE corpus is a further public, yet audio-visual emotion database. It consists of  

six emotional classes: Anger, Disgust, Fear, Happiness, Sadness, and Surprise [28]. The 42 subjects 

(eight women) from 14 nations were recorded in English in an office environment. Table 3 presents  

the selected emotional sentences. In addition, Table 4 shows the distribution of emotional sentences  

for eNTERFACE in which the 1277 sentences were not equally distributed between the various  

emotional states. 

Table 3. The emotional sentences for eNTERFACE. 

eNTERFACE Database 

Rank Sentences 

1 What??? No, no, no, listen! I need this money!  
2 I don’t care about your coffee! Please serve me!  
3 I can have you fired you know!  
4 Is your coffee more important than my money?  
5 You’re getting paid to work, not drink coffee! 
6 Life won’t be the same now  
7 Oh no, tell me this is not true, please!  
8 Everything was so perfect! I just don’t understand!  
9 I still loved him (her)  
10 He (she) was my life  
11 That’s great, I’m rich now!!!  
12 I won: this is great! I’m so happy!! 
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Table 3. Cont. 

eNTERFACE Database 

Rank Sentences 

13 Wahoo... This is so great.  
14 I’m so lucky!   
15 I’m so excited! 
16 Oh my god, there is someone in the house!  
17 Someone is climbing up the stairs  
18 Please don’t kill me...  
19 I’m not alone! Go away!   
20 I have nothing to give you! Please don’t hurt me! 

Table 4. Distribution of emotional sentences for eNTERFACE. 

eNTERFACE 
Anger Disgust  Fear Happiness Sadness Suprise Total 

215 215 215 207 210 215 1277 

2.3. Self-Recording Database (KHUSC-EmoDB) 

The recording of the corpus of KHUSC-EmoDB comprises Mandarin language sentences.  

Its contents were all produced by students from Shih-Chien University. The emotional voice of this 

corpus is recorded from four women and 13 men. Each speaker is recorded in all four emotions 

(Happiness, Fear, Sadness and Anger), so a total of 408 sentences for four emotions are presented  

in Table 5.  

In order to guide the recording before the recording’s emotional performance, a pre-process was 

done by viewing the corresponding emotional film or video content. In our experiment, seventeen 

normal recordings of a young person watching four different movies were made to register 

“Happiness”, “Fear”, “Sadness” and “Anger” and other emotions. The 408 sentences expressing the 

different emotional sentences were equally distributed among the various emotional states as shown  

in Table 6. 

Table 5. The emotional sentences for KHUSC-EmoDB. 

KHUSC-EmoDB Database 

Rank Sentence 

1 怎麼會這樣(zen3 me0 hui4 zhe4 yang4) 
2 你在哪?(ni3 zai4 na3) 
3 這是我的書(zhe4 shi4 wo3 de0 shu1) 
4 真沒想到你會這樣(zhen1 mei2 xiang3 dao4 ni3 hui4 zhe4 yang4) 
5 我做了一個夢(wo3 zuo4 le0 yi1 ge0 meng4) 
6 他知道這件事了(ta1 zhi1 dao4 zhe4 jian4 shi4 le0) 

Table 6. Distribution of emotion for KHUSC-EmoDB. 

KHUSC-EmoDB 
Anger Happiness Sadness Fear Total 

102 102 102 102 408 
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3. Proposed ESS System 

Figure 1 shows a block diagram of the proposed ESS system using TII features. The feature 

extraction block computes the proposed TII features and the TII features are available to determine the 

emotional status of a speaker from his/her speech. 

Figure 1. Diagram of the proposed TII-based ESS Algorithm. 

 

The proposed texture image informant (TII) features consists of four main parts: (i) pre-emphasis, 

(ii) gray-scale spectrogram image calculation, (iii) cubic curve contrast, and (iv) texture information 

extraction by Laws’ mask. The classification block includes a SVM based classifier. SVM, a 

supervised learning algorithm, is usually used for classification and regression. It has been very 

popular in recent years due to its remarkable performance. In order to let the proposed TII-based ESS 

be insensitive to different languages, cross-corpus training will be required. The support vector 

machine (SVM) is used as classification tool with Laws’ Mask (5 × 5) 42-dimentional feature vectors: 

Mean, SD and Entropy. The related-blocks of the proposed ESS system are then described in the 

following subsections. 

3.1. Texture Image Information (TII) Features 

In this section, a new method that extracts texture image features from speech spectrograms is 

presented. It is well known that a 2D narrowband speech spectrogram is a graphical display of the 

squared magnitude of the time-varying spectral characteristics of speech [29]. It is compact and highly 

efficient representation carrying information about parameters such as energy, pitch F0, formants and 

timing. These parameters are the acoustic features of speech most often used in emotion recognition 

systems [30–32]. The additional advantage is that by analyzing a speech spectrogram, it is more likely 

to preserve and take into account speech features that are caused by specific psycho-physiological 

effects appearing with certain emotions.  
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Figure 2. The input speech signals and the corresponding spectrograms. Speech uttered in 

Mandarin sentence “SHIH-CHIEN-TA-HSIAO.” (a) “Neutral” speech. (b) “Anger” speech. 

(c) Spectrogram of “Neutral” speech. (d) Spectrogram of “Anger” speech. 

 

The input speech signals and the corresponding spectrograms for various emotion spectrograms 

used as an example are shown in Figure 2. The two speech signals pronounce in Mandarin the sentence 

“SHIH-CHIEN-TA-HSIAO”, one uttered with “Neutral” emotion and the other with “Anger” emotion. 

Some visible differences can be observed in terms of signal duration and amplitude in Figure 2a,b.  

The speech uttered with “Anger” emotion has less duration than that uttered with “Neutral” emotion. 

The average amplitude of the signal has a higher value in case of the speech signal uttered with 

“Anger” emotion. Compared to the speech uttered with “Neutral” emotion in Figure 2c,d, the 

spectrograms show that the frequencies have shifted upward or have higher values in the speech signal 

uttered with “Anger” emotion.  

With increasing level of stress, the spectrograms revealed increasing formant energy in the higher 

frequency bands, as well as clearly increasing pitch for strong level stress. Other acoustic information, 

such as the formants also vary under different levels of stress. These observations indicate that the 

representation of texture image on spectrogram usually contains distinctive patterns that capture 

different characteristics of “Neutral” emotion and “Anger” emotion signals. Furthermore, the TII 

features in spectrograms can be used to discriminate the differences between various emotional levels 

in speech. In conclusion, the texture image information (TII) feature can provide the discrimination 

between different emotions in visual expression except for the conveyance pitch and formant tracks.  

In addition, the de-noising in images can be more easily completed than de-noising in speech signals. 
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3.2. Spectrogram Image Calculation 

In this subsection, the 1-D speech signals are transformed into 2-D spectrogram images. Inspired  

by the concept of spectrogram image features [33], we generate the spectrogram images with  

time-frequency-intensity representation as shown in Figure 3.  

Figure 3. Extraction of the proposed TII features. 
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First, the time-frequency-intensity representation, ( , )X k t , is determined by applying to the input 

signal with the windowed Short-Time Fourier Transform (STFT), which is given by: 
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where [ ]x n  is the input speech signal after pre-emphasis. N  is the length of the window, [ ]w n  is the 

Hamming window function and k  corresponds to the frequency ( ) sf k kf N= , where sf  is the 

sampling frequency in Hertz. 

Owing to the logarithmic of the human perception of sound, the log-spectrogram defined as: 

log ( , ) log( ( , ) )S k t X k t=
 

(2)

Next, the spectrogram image representation, Im ( , )Spec gR k t , is defined by the log-spectrogram is 

normalized into a grayscale normalized image, within the range from 0 to 1: 

log min
Im

max min

( , )
( , )Spec g

S k t S
R k t

S S

−
=

−
(3)

3.3. Image Contrast Enhancement Using Cubic Curve 

The feature extraction task can be processed smoothly while upgrading the contrast of the  

gray-scale spectrogram images. A cubic curve is utilized to enhance the image to adjust its contrast [34]. 

Figure 4 shows the appropriate adjusting curve. It is observed that the adjusting curve contains an 

inflection point, so a variety of different curvatures of the curve can be produced by controlling the 

inflection point. Based on the above motivation, adjusting the curve inflection point to change the 

image contrast is utilized. 
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Figure 4. The different compensation curves based on different turning points. 

 

First, we assume that curve must pass through the two points (0,0) and (255,255), and the cubic 

curve is as in Equation (4) shown below: 

3 2( )  y f x ax bx cx d= = + + +  
(4)

where x is the pixel value in the original image, y is the pixel value of the image after adjusting the 

curve. In Figure 4, “A” represents a cubic curve inflection point in the x-coordinate. In order to 

determine the unknown variables in all three curves, the study uses parameter “A” to obtain the needed 

compensation curve, wherein all variables in the cubic curve calculated by Equation (5) are replaced in 

Equation (8) below: 

{ } { } { }{ }xxxA IxIxIx ∈∈∈ −+= minmax7.0min  (5)

2 2 23 (255) 3 255 3b a a a b= × − × − × × ×  (6)

2 2

1

(255) 3 255 3
a

A A
=

− × × + ×  
(7)

( ) 2552551 2 ×−×−= bac  (8)

where I  is an image, x  is the image pixel value at any point in the image. { }xIx∈min  is represented as 

a minimum pixel value. { }xIx∈max  is expressed as the maximum pixel value of the image. 

In general, the texture information is the main resonance frequency of the speech signal. After 

contrast adjustment, the size of each frequency component of spectrogram for the original speech 

sound is highlighted. Then, the image can obviously reflect the texture information in the spectrogram. 

Observing Figure 5, we can see the original “Happiness”, “Fear”, “Sadness” and “Angry” emotions in 

four spectrograms without/with contrast adjustment. The performances show different texture image 

information in the spectrograms. After compensating by image contrast, each texture image 

information for each emotion can effectively displayed and discriminated. 
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Figure 5. Spectrogram without/with contrast adjustment after the original image: (a) and 

(b) represent “Happiness”, (c) and (d) denote “Fear”, (e) and (f) are “Sadness”, (g) and  

(h) are “Angry”. 

without contrast adjustment with contrast adjustment 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

3.4. Extraction of Texture Image Information by Laws’ Masks 

The TII features derived from spectrogram images will be extracted by the Laws’ masks based on 

the principle of texture energy measurement [35]. The Laws’ masks are well described for texture 

energy variation in image processing. In general, the Laws’ masks consist of five masks derived from 

1-D vectors, such as edge ( 5E ), level ( 5L ), spot ( 5S ), ripple ( 5R ) and wave ( 5W ). All the masks were 

expressed in the Equations (9)–(13): 

5 Edge detection: [ 1 2 0 2 1] E = − − (9)
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5 Level detection: [1 4 6 4 1]L =  
(10)

5 Spot detection: [ 1 0 2 0 1] S = − −  
(11)

5 Ripple detection: [1 4 6 4 1] R = − −  
(12)

5 Wave detection: [ 1 2 0 2 1] W = − −  
(13)

2-D filters of size 5 × 5 were generated by convoluting any vertical 1-D vector with a horizontal 

one. Finally, the 25 combinations of 2-D mask are shown in Table 7. 

Table 7. The result list for mutual combinations of 2-D laws’ masks. 

L5
TL5 E5

TL5 S5
TL5 W5

TL5 R5
TL5 

E5
TL5 E5

TE5 S5
TE5 W5

TE5 R5
TE5 

S5
TL5 E5

TS5 S5
TS5 W5

TS5 R5
TS5 

W5
TL5 E5

TW5 S5
TW5 W5

TW5 R5
TW5 

R5
TL5 E5

TR5 S5
TR5 W5

TR5 R5
TR5 

First, we convoluted the image with each 2-D mask to extract texture information from an image 
Im(i,j) of size (M × N). For example, The 

5 5E EM  is used to filter the image Im(i,j), we can see the 

regarded as “texture image” (
5 5

TImE E ) shown in the Equation (14): 

5 5 ( , ) 5 5TIm ImE E i j E EM= ⊗
 

(14)

All the 2-D masks, except 
5 5L LM , had zero mean. According to Laws, the normalization 

Norm(TIm )mask can be determined while the contrast of all the texture images ( , )TIm i j  is normalized 

by the texture image 
5 5

TImL L shown in the Equation (15): 

5 5
Norm(TIm ) TIm TImmask mask L L=  

(15)

Next, we can calculate a non-linear interval by processing a normalized TIm and yield through a 

“Texture Energy Measurements, (TEM)” filter. These consist of a moving non-linear window average 

of the absolute values in Equation (16): 

7 7

( , ) ,
7 7

TEM Norm(TIm )i j i u j v
u v

+ +
=− =−
   =    

(16)

However, not all mask energy can be used as the input basis of texture energy. Hence, we rotate the 

values within 25 masks from yielded TEM, and take out unchangeable 14 Rotationally Invariant 

Texture Energy Measurements (noted RITEM) values before and after rotation. The RITEM represents 

the calculation value of Laws’ Mask, which are the values specially used to measure the texture energy 

as seen in the Equation (17): 

5 5 5 5 5 5RITEM (TEM TEM ) 2E L E L L E= +  
(17)
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After Equation (17), we use this results to extract three texture feature values: Mean, Standard 

Deviance (SD) and Entropy in Equations (18)–(20). These three features are used to judge the 

variation of texture information. Equation (18) to Equation (20) are the calculation formulae of three 

features values, where TR(i,j) represents the unchangeable values within 25 masks from TEM before 

and after rotation, M N×  represents the size of whole image. Finally, each equation will have  

14-dimensional feature vectors. A total of three feature vectors are 42-dimensional and the feature 

vectors will be used as the input for training the SVM classifier: 

0 ( , )0 RITEM
Mean

M N
i i jj

M N

= =    =
×  

(18)

2
0 ( , )0 (RITEM Mean)

SD
M N
i i jj

M N
= =  −

=
×  

(19)

2
0 ( , )0 (RITEM )

Entropy
M N
i i jj

M N
= = 

=
×  

(20)

3.5. Support Vector Machine (SVM) 

After extracting the texture image information, the next stage is emotional state classification. The 

support vector machine (SVM), a supervised learning algorithm, is usually used for classification and 

regression. It has been very popular in recent years due to its remarkable performance. In this paper, 

we adopt the SVM as our emotion classifier. The SVM needs to be given a set of samples belonging to 

two classes for the training phase. To completely distinguish these two classes [36], we need to find a 

hyper-plane. We have the training data set: {In,Tn}, where 1, 2,...,n N=  and nI  is the n-dimensional 

input feature vector. Tn ∈  {1,−1} is target output of emotional class labeled. The training data is used 

to find the best hyper-plane, and is used to classify the data. Then, the decision function is given  

as follows: 

(I, w, ) sgn(I w+ )fD c c= ⋅  
(21)

Considering the optimization problem, the optimal separating hyper-plane can be determined by 

minimizing 
2

(w) w 2φ =  as: 

(w I ) 1,  1,2,...,n nT c n N⋅ + ≥ =   
(22)

By introducing Lagrange multipliers α , the constrained problem becomes: 

2

1

1
min (w, ) w ( )

2

N

n
n

dϕ ξ
=
Ξ = +

 
(23)

Then, we employ a kernel function (I, I )nk , the decision function for final hyper-plane is shown  

as below: 

1
(I) sgn (I, I )

N

f n n n
n

D T k cα
=
 = + 

   
(24)



Sensors 2014, 14 16704 

 

 

Figure 6 shows the classification decision of SVM recognition. The compared sequence and 

scheduling method is based on the recognition results of SVM. We can see that the emotional state 

with higher recognition rate is compared a priori with other emotional states. First, the unknown 

emotional TII feature input via classification decision is “Happiness” or “Sadness”. At the same time, 

“Fear” is also a classification decision or “Neutral”. Next, assuming that the recognition results are 

“Happiness” and “Fear”, and then the “Neutral” and “Angry” can judge each other. Finally, the 

classification result is then compared with “Angry” to determine which emotion state it really is. 

Figure 6. The classification decision applying in SVM. 

 

4. Experiments and Results 

In our experimental results, we use three types of corpora to compare and demonstrate the proposed 

TII-based emotion sensing system for recognizing emotional states. The corpus consists of three 

corpora: EMO-DB, eNTERFACE, and KHUSC-EmoDB and has been described in Tables 1 to 6. The 

three corpora are split into two to form the training and testing sets. In order to reasonably evaluate the 

performance of the proposed TII-based feature extraction in each corpus, this paper uses a common 

emotional class among the corpus for testing sets. In addition, the SVM classifier is trained on the 

training set. First, the proposed TII-based ESS system are evaluated under the extracted four common 

emotional class labels: “Happiness”, “Fear”, “Sadness” and “Anger” from the three corpora. Second, 

the performance of the proposed TII-based algorithm will be evaluated with confusion matrix of the 

methodology between emotions for all speakers. 

4.1. The Corpora 

In this subsection, the common emotional states from three corpora: EMO-DB, eNTERFACE, and 

KHUSC-EmoDB are extracted. There are four types of emotional class labels: “Happiness”, “Fear”, 
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“Sadness” and “Anger” in Table 8. In order to further evaluate the cross-corpus performance, the row 

labeled as “Mixed” is used to represent a mix of the three abovementioned corpora. The total of the 

mixed corpora is 1584 sentences.  

Table 8. Description of the collected speech database. 

Emotional State 

Corpora 
Happiness Fear Sadness Anger Total 

EMO-DB 71 69 62 127 329 

eNTERFACE 207 215 210 215 847 

KHUSC-EmoDB 102 102 102 102 408 

Mixed 380 386 374 444 1584 

4.2. Confusion Matrix 

Tables 9–12 are the confusion matrices, which are widely used graphical tools that reflect the 

performance of an algorithm. Each row of the matrix represents the instances of a predicted class, 

while each column represents the instances of an original class. Thus, it is easy to visualize the 

classifier’s errors while trying to accurately predict each original class’ instances. Moreover, the 

original classes listed in the second row are the four emotional classes. The rows 3–7 in Tables 10 and 11 

and rows in Table 12 are used to record the amount (percentage) of the test data being classified to the 

original emotion. Finally, the last row of each table is the average recognition accuracy of the proposed 

ESS with TII features for each corpus.  

4.3. Evaluation of Contrast Adjustment without/with Cubic Curve  

The comparison between without/with cubic curve, which is used for image enhancement, will be 

evaluated in this subsection. In fact, the spectrogram of the original image contains many non-voiced 

parts of the information on pronunciation. After contrast adjustment with the cubic curve, we can 

efficiently enhance non-voiced pronunciation in the spectrogram images, so the intensity variation for 

the emotional status of speaker pronunciation can be presented in detail.  

Figure 7. Recognition accuracy without/with cubic curve among the three corpora. 
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Figure 7 shows the emotion recognition accuracy without/with cubic curve among the three 

corpora: EMO-DB, eNTERFACE, and KHUSC-EmoDB. For the EMO-DB, the average rate for 

correct emotional recognition is about 65%. In contrast, the evaluation of contrast adjustment with 

cubic curve can achieve an average rate 72.5% for correct emotional recognition. In the eNTERFACE 

corpus, the contrast adjustment without/with cubic curve also achieves 60% and 65%, respectively. For 

KHUSC-EmoDB, the evaluation result with cubic curve (59%) is better than the result without cubic 

curve (54%). In conclusion, it is observed that the recognition accuracy performed on EMO-DB is 

better than in the other two corpora. Based on the above experiments, we can understand the contrast 

adjustment with cubic curve is helpful for the proposed EES system. Therefore, the next evaluations 

will utilize the method of contrast adjustment with cubic curve to perform the all experiments. 

4.4. Evaluation of the Proposed TII-Based ESS Using SVM Classifier on Three Corpora 

In Table 8, we have found that there are different amounts of examples of each emotional state in 

each speech database. To be fair in it evaluation of the various emotional recognition rates, our 

experiments use a minimum number of emotional class in each corpus as a test standard. The training 

set and testing set are not overlapped in order to achieve an open test. For example, 62 sentences is the 

minimum among the four kinds of emotion. We use 62 sentences as the number of each emotional test 

on the EMO-DB speech database. Then, the test set and training set number is 31, respectively. In 

addition, 207 sentences is the minimum for the “Happiness” emotion for the eNTERFACE speech 

database. We use 103 sentences as test set and 104 sentences as training set, respectively. Because 102 

sentences is the same number for each emotional state in the KHUSC-EmoDB database, the testing set 

and training set are both 51 sentences, respectively.  

Figure 8. Evaluation of TII-based ESS on EMO-DB, eNTERFACE and KHUSC-EmoDB. 
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In Figure 8, the evaluation of TII-based ESS using SVM on EMO-DB shows that the recognition 

accuracy of the “Anger” emotion can achieve 80.65% and outperform other emotional recognition 

accuracies. Furthermore, the evaluation of TII-based ESS using SVM for four-class task can achieve 

77.42% average accuracy of emotion recognition in the EMO-DB. In other words, the figure shows 

that the recognition accuracy of “Anger” emotion also can achieve 80.65%. The recognition accuracies 
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of “Happiness” and “Fear”, however, are lower than for other emotional states. The average accuracy 

on eNTERFACE is about 73.06%, and it is lower than that on EMO-DB. In addition, the evaluation 

results reveal that the proposed TII-based ESS using SVM can model the emotional states in the 

KHUSC-EmoDB except for the “Fear” emotional classification. However, the performance on 

KHUSC-EmoDB is also lower than that on EMO-DB. For the comparison among the three corpora, 

the evaluation results on EMO-DB outperform the other two corpora. It is found that the proposed  

TII-based ESS is suitable to apply on the EMO-DB. 

4.5. Evaluation of on Cross-Corpora for Training/Testing 

In order to let the proposed TII-based ESS be insensitive to different language, cross-corpus 

training will be required. The support vector machine (SVM) is used as classification tool with Laws’ 

Mask (5 × 5) 42-dimentional feature vectors: Mean, SD and Entropy. 

Figure 9. Evaluation of mixed corpora for training and three corpora for testing.  
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Figure 9 shows the results of the proposed TII-based ESS with a mixed database set for cross-corpora 

training/testing. This figure shows the confusion matrix of the results of the average accuracy of the 

proposed approach on the three corpora for testing and mixed corpora for training. In EMO-DB, the 

lowest accuracy of emotional recognition is 64.52% in “Fear”, and it is same as that in “Sadness”. 

Finally, the average accuracy of the proposed approach for testing EMO-DB is 68.55%. In 

eNTERFACE, the figure also shows that “Happiness” and “Fear” are both classified with 60.19% 

accuracy. The average accuracy with 69.78% has been improved against other two corpora for testing. 

In addition, the evaluation results of the average accuracy of the proposed approach on KHUSC-EmoDB 

for testing. We can find that the emotional recognition accuracy in “Fear” is 50.98% and is the lowest 

among all the emotional states. The average accuracy is 59.8%. For the comparison between the two 

corpora KHUSC-EmoDB and EMO-DB, the evaluation results of the proposed ESS under  

KHUSC-EmoDB are lower than the results under EMO-DB. Observing the Figure, we can conclude 

that the performance of the proposed ESS for KHUSC-EmoDB is lower than that for other two 

corpora. In addition, experimental results show that the accuracy for the emotional state “Fear” is the 

lowest among all the emotional states. 
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4.6. Comparison with the Existing Method 

In this subsection, a comparison of the proposed TII-based ESS with existing techniques will be 

presented. Table 9 shows a comparison between the proposed TII feature set with SVM classifier and 

the existing algorithms that use standard MFCC features with the HMM/SVM classifiers in Ashish’s 

work [37] and using brute-force features with SMO classifier in Escalona Mena’s. Observing Table 9, 

it is found that we have a five-class task for Ashish and a seven-class task for Escalona Mena while the 

proposed TII-based ESS system is a four-class task. In addition, the feature sets and classifier are also 

different among the three ESS systems.  

The evaluation of ESS on EMO-DB with the Ashish method using MFCC features with HMM 

classifier is shown in Table 10. Results show that high accuracy is observed in the classification of 

“Anger”. The average of recognition accuracy is 69.88%. However, the average recognition rate for 

the three common emotional labels “Anger”, “Happiness” and “Sadness” (called AHS Accuracy)  

is 67.66%.  

Table 9. A comparison between the proposed method and some existing methods. 

Author Corpus Emotional Class Feature Set Classifier 

The proposed EMO-DB 

Happiness 

Fear 

Sadness 

Anger 

TII  

(42-dimentional 

feature vectors) 

SVM 

Ashish [37]  EMO-DB 

Happiness 

Sadness 

Anger 

Surprise 

neutral 

MFCC 

(39-dimentional 

feature vectors) 

HMM 

SVM 

Escalona Mena [26] EMO-DB 

Anger 

Boredom 

Disgust 

Fear-Anxiety 

Happiness 

Neural 

Sadness 

brute-force  

feature extraction 

(LLD and functionals) 

SMO 

Table 11 presents that the evaluation of ESS on EMO-DB proposed by Ashish using the MFCC 

features with SVM classifier. We also find that the classification of “Happiness” is the worst result. 

The average accuracy can only achieve a performance of 67.66%. In AHS accuracy, the results also 

get only 66.66%.  
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Table 10. Evaluation of ESS proposed by Ashish using MFCC feature with HMM classifier. 
C

or
p

u
s                   Original 

                            Emotion 

Predicted Emotion 

Recognition Rate (%) 

Anger Happiness Sadness Surprise Neutral 

E
m

o-
D

B
 

Anger 83.33% 16.67% 0.00% 0.00% 0.00% 

Happiness 0.00% 57.14% 14.29% 28.57% 0.00% 

Sadness 0.00% 0.00% 62.50% 12.50% 25.00% 

Surprise 28.57% 0.00% 0.00% 71.43% 0.00% 

Neutral 0.00% 0.00% 25.00% 0.00% 75.00% 

Average Accuracy (%) 69.88% 

AHS Accuracy (%) 67.66% 

Table 11. Evaluation of ESS proposed by Ashish using MFCC feature with SVM classifier. 

C
or

p
u

s Original 

Emotion 

Predicted Emotion 

Recognition Rate (%) 

Anger Happiness Sadness Surprise Neutral 

E
M

O
-D

B
 

Anger 71.42% 14.29% 0.00% 14.29% 0.00% 

Happiness 0.00% 57.14% 14.29% 28.57% 0.00% 

Sadness 0.00% 0.00% 71.43% 0.00% 28.57% 

Surprise 22.39% 14.28% 0.00% 63.33% 0.00% 

Neutral 0.00% 0.00% 25.00% 0.00% 75.00% 

Average Accuracy (%) 67.66% 

AHS Accuracy (%) 66.66% 

Table 12 shows the evaluation of the ESS system using the brute-force feature with SMO classifier. 

We also find that the classification of “Anger” is the best result. The average accuracy can achieve a 

high performance of 82.50%. Furthermore, the results can achieve 83.33% in AHS accuracy. 

Table 13 shows the comparison evaluation of the ESS system with the corresponding feature 

extraction. The performance of brute-force feature extraction with SMO has proven to be a very good 

presentation. Based on the findings, the brute-force feature extraction is then utilized in the proposed 

TII-based ESS system with SVM classifier. It is found that the two feature extractions can compensate 

for each other when low accuracy of some emotional state occurs. For example, the accuracy of 

“Happiness” emotion can be improved from 70.00% to 78.80%. Furthermore, the AHS Accuracy has 

increased from 83.33% to 85.88%. 
  



Sensors 2014, 14 16710 

 

 

Table 12. Evaluation of ESS proposed by Escalona Mena using brute-force feature with 

SMO classifier. 

C
or

p
u

s Original 

Emotion      

Predicted Emotion 

Recognition Rate (%) 

Anger Boredom Disgust 
Fear-

Anxiety 
Happiness Neural Sadness 

E
M

O
-D

B
 

Anger 90.00% 0.00% 2.50% 2.50% 5.00% 0.00% 0.00% 

Boredom 0.00% 75.00% 0.00% 0.00% 0.00% 75.00% 7.50% 

Disgust 2.50% 2.50% 87.50% 2.50% 0.00% 2.50% 2.50% 

Fear-Anxiety 5.00% 0.00% 2.50% 85.00% 7.50% 0.00% 0.00% 

Happiness 12.50% 0.00% 2.50% 15.00% 70.00% 0.00% 0.00% 

Neural 0.00% 15.00% 2.50% 2.50% 0.00% 80.00% 0.00% 

Sadness 0.00% 10.00% 0.00% 0.00% 0.00% 0.00% 90.00% 

Average Accuracy (%) 82.50% 

AHS Accuracy (%) 83.33% 

Table 13. The comparison evaluation of ESS for three common emotional states. 

                     Emotional States 

Methods 
Anger Happiness Sadness AHS Accuracy 

TII-based feature extraction 

with SVM 
80.65% 77.42% 74.19% 77.42% 

brute-force feature extraction 

with SMO 
90.00% 70.00% 90.00% 83.33% 

MFCC feature extraction 

with HMM 
83.33% 57.14% 62.50% 67.66% 

MFCC feature extraction 

with SVM 
71.42% 57.14% 74.43% 66.66% 

TII + brute-force feature 

extraction with SVM 
90.50% 78.80% 88.34% 85.88% 

Table 14 shows the computational time for extraction of the various feature sets. The computation 

time is evaluated under a Windows platform using an Intel Duo-core processor at 2.26 GHz. Although 

the average accuracy for brute-force extraction of acoustic parameters is obviously higher than that for 

the proposed TII-based feature extraction, it needs more computational time to maintain its high 

performance. Considering the efficiency, the proposed TII-based feature extraction on ESS system is 

superior to the brute-force feature extraction on the ESS system. 
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Table 14. The computational time with/without brute-force feature set on the ESS system. 

        Requirement 

Feature Set 
Computational Times (sec) 

TII-based feature extraction with SVM 2.1 

brute-force feature extraction with SVM 3.5 

TII + brute-force feature extraction with SVM 3.8 

5. Discussion and Conclusions 

In this paper, a novel feature extraction based on texture image information (TII) features for 

emotion sensing in speech is presented. The TII features are shown to be a reliable source for emotion 

feature extraction, which is known to give more time-frequency-intensity representation. The 

experimental evaluations on the three emotional datasets: EMO-DB, eNTERFACE and KHUSC-EmoDB 

show statistically significant performance improvements with the TII features as compared to the 

MFCC features.  

First, we also performed the evaluation of contrast adjustment with/without cubic curve. The 

evaluation reveals that the cubic curve can enhance the texture information. Second, the three texture 

feature sets: Mean, Standard Deviance and Entropy successfully describe the discrimination between 

various emotion states. We can show that the TII feature set can more successfully identify emotion 

status than the other conventional features through spectrogram image calculation and Laws’ masks. 

Next, the LLD and functional for the large scale brute-force feature sets are utilized with the proposed 

TII features. In order to evaluate the large scale brute-force feature sets associated with the proposed 

TII feature set, the robustness of ESS with various languages has been tested. Our experiment results 

also show that the TII feature set with the large scale brute-force feature sets can improve the 

robustness of ESS under various languages. Although the average accuracy for brute-force extraction 

of acoustic parameters is obviously higher than that for the proposed TII-based feature extraction, it 

needs more computational time to ensure the high performance. Considering the efficiency, the 

proposed TII-based feature extraction on ESS system is superior to the brute-force feature extraction 

on ESS systems. In comparison with the existing ESS algorithm, we also find that the proposed feature 

set is excellent for distinguishing emotion, and superior to other method using 1-D MFCC. 

Experimental results show that the correct classification rates range from 65.20% to 77.42% for 

different language databases. In our future work, a strategy for multi-resolution will be integrated into 

the TII-based feature extractor, resulting in a high accuracy performance for an ESS system. 
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