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Abstract: In this paper, a remote lab for experimenting with a team of mobile robots is

presented. Robots are built with the LEGO Mindstorms technology and user-defined control

laws can be directly coded in the Matlab programming language and validated on the real

system. The lab is versatile enough to be used for both teaching and research purposes.

Students can easily go through a number of predefined mobile robotics experiences without

having to worry about robot hardware or low-level programming languages. More advanced

experiments can also be carried out by uploading custom controllers. The capability to

have full control of the vehicles, together with the possibility to define arbitrarily complex

environments through the definition of virtual obstacles, makes the proposed facility well

suited to quickly test and compare different control laws in a real-world scenario. Moreover,

the user can simulate the presence of different types of exteroceptive sensors on board of

the robots or a specific communication architecture among the agents, so that decentralized

control strategies and motion coordination algorithms can be easily implemented and tested.

A number of possible applications and real experiments are presented in order to illustrate

the main features of the proposed mobile robotics remote lab.
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1. Introduction

Recent years have witnessed an impressive flourishing of remote laboratories for teaching and

research purposes (see, e.g., [1–4]). Remote labs allow students and researchers to address engineering

problems with real-world experiments, which are made available through the Internet by physical

laboratories spread all over the world. Students have the opportunity to practice subjects taught in classes

without worrying about the experimental setup, while researchers can test new ideas on testbeds which

have been already used by other research groups, thus producing quick and reliable comparisons of

different solutions. In many cases, remote labs have proven to be a successful trade-off between the need

for practical experiences and the shortage of resources or time.

A large number of remote labs are available nowadays in the fields of control and robotics,

where experimental validation plays a key role. This is the case, for example, for control applications,

in which accurate plant models are not available or difficult to estimate, and it is therefore customary to

bridge the gap between simulations and experimental tests on the physical process (see, e.g., [5–9] and

references therein).

Given the importance of experimentation in robotics, a number of virtual labs and remote

experimental setups have been designed for education in this field (see, e.g., the special issue [10] and

references therein). In [11] the educational impact of real, virtual and remote labs on the teaching of

robotics disciplines is compared. A remote lab devoted to programming embedded real-time systems

is described in [12], where teaching experiences with students programming a robotic arm to execute

coordinated tasks are reported. Another remote lab for interacting with a real robot has been proposed

in [13]. In this case, a PR2 robot (a two-armed robot with an omnidirectional base) is made available for

experimentation. An interesting feature in the implementation of this lab is the adoption of the Robot

Operating System (ROS) [14] as an open source middleware infrastructure to enhance flexibility and

interoperability. In the same spirit, is the recent work [15], where an open source architecture for easily

deploying remote robotics labs is presented. The proposed web-based framework can accommodate any

robotic device running the ROS operating system and, as such, is suited to perform a variety of robotics

experiments. As an example, this infrastructure has been exploited to construct a 3D object recognition

database for grasping purposes by means of crowdsourcing, i.e., by obtaining information from a large

number of people through the Internet [16].

When focusing on mobile robotics, only few specific remote labs are available. In this domain,

experimental setups are usually expensive and difficult to maintain due to space and technological

requirements. An example in this respect is the framework for tele-experiment in mobile robotics

proposed in [17], which takes explicitly into account the limitations introduced by the communication

architecture and constraints. The SyRoTek e-learning platform described in [18], which features a team

of small mobile robots performing navigation tasks in a restricted arena with obstacles. In [19], the

authors present a remote lab in which a tele-operated real robot has to construct a map of the environment

by exploiting noisy sensor measurements.

This paper presents a remote lab for mobile robotics, which enjoys all the benefits of practicing with

real robots, while at the same time minimizing the amount of work required to build a fully functional

setup for multi-agent systems. The mobile robots are based on the Lego Mindstorms NXT technology,
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which is becoming a widespread standard in control and robotics education (see, e.g., [20,21]). The

remote lab exploits the Matlab environment for the design of control strategies for the multi-robot team.

Users access the lab through standard web browsers, and a graphical interface allows them to select

one out of a set of predefined experiments, or to test user-defined controllers by uploading a Matlab

function. During the experiments, real-time visual feedback is ensured by video streaming. Relevant

data are depicted on-line in a dedicated window and can be downloaded at the end of the experiment

for offline analysis. An automatic battery recharge procedure (exploiting a suitable recharge station built

on purpose) is provided, to guarantee long term availability of the experimental testbed. The position

and orientation of each robot is available to the user in real time, so that it is possible to simulate the

presence of different types of exteroceptive sensors (e.g., sonars, range finders, etc.) on board of the

robots. Similarly, the user can simulate a specific communication architecture allowing the agents to

exchange information about their state, including features such as point-to-point communication links

between robot pairs, communication failures, noisy channels and so on. This allows the user to design

and test a number of decentralized multi-agent control techniques or motion coordination algorithms,

in the presence of a realistic sensorial and communication infrastructure. The proposed multi-robot

setup is embedded in the Automatic Control Telelab (ACT) [5,6], a remote laboratory developed at

University of Siena for teaching purposes, aimed at providing a variety of remote experiments in the

control systems field. The addition of such a facility enlarges the remote lab audience, attracting also

students involved in robotics courses. Thanks to its architecture, the proposed setup can be effectively

used for both educational purposes (e.g., remote exercises) and research activities (e.g., experimental

testing of innovative control laws). Besides presenting the main features of the multi-robot setup,

a further objective of the paper is to illustrate several possible experiences available to the user, such

as multi-agent coordination and decentralized control, pursuer-evader games and collision avoidance

problems, and to show how they can be useful both for research and for teaching purposes.

The paper is organized as follows. Section 2 introduces the multi-robot remote lab facility, describing

both hardware and software architectures. A typical interactive session is presented in Section 3.

Several applications available in the multi-robot remote lab are outlined in Section 4, while some related

experiments and teaching experiences are summarized in Section 5. Concluding remarks and possible

future developments are reported in Section 6.

2. System Overview

The main target of the remote lab is to provide an easy-to-use and powerful tool for performing

multi-robot experiments through the web. In the mobile robotics field, it is well-known that testing

control algorithms on real devices is in general a time consuming and costly task. By using the proposed

facility, one may perform a number of different experiments with a minimal effort, thus saving time and

money. Users may connect to the lab, upload a Matlab function implementing the desired multi-robot

control strategy, run the remote experiment, watch its behavior, and finally download the recorded data.

In Figure 1, a sketch of the developed setup is depicted. In the following, a detailed description of the

hardware and software architecture is reported.
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Figure 1. Hardware architecture.

2.1. Hardware Description

The proposed setup consists of four identical mobile robots able to move in a workspace of 4.5 × 3 m.

Robots are built by using the LEGO Mindstorms technology. They are equipped with two motors able to

drive the left and right wheels, and a steel ball transfer unit acts as third support. The core of each vehicle

is the NXT brick, which hosts a microprocessor providing computation capabilities, motor actuation, and

Bluetooth communication. Special markers are placed on the top of each vehicle (see Figure 2) allowing

for the visual detection of the robot poses. Robots have been designed to prevent overturn in case of

collision. Mechanical characteristics of vehicles are reported in Table 1.

Figure 2. The LEGO NXT mobile robots.
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Table 1. Physical characteristics of vehicles.

Parameter Value

Size (L × W × H) 0.18 × 0.18 × 0.19 (m)

Weight 0.76 (kg)

Wheel distance 0.1 (m)

Wheel radius 0.017 (m)

Max linear speed 0.2 (m/s)

Max angular speed 4.0 (rad/s)

The four vehicles feature a unicycle-like kinematics which is quite common in practice. Denoting by

pi(t) = [xi(t) yi(t) θi(t)]
′ the position and orientation of the i-th robot at time t (see Figure 3), the robot

pose evolves according to the model

ẋi(t) = vi(t) cos(θi(t)),

ẏi(t) = vi(t) sin(θi(t)), i = 1, . . . , 4 (1)

θ̇i(t) = ωi(t),

where vi and ωi are the linear and angular speed, respectively.

Figure 3. Sketch of robot pose. The shape of the robot reflects the top view of a real vehicle.
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Low-level control of the right and left wheel of each vehicle is in charge of a program running on the

NXT, written in the NXC (Not eXactly C) language. Such a program implements a PI-controller able to

make the wheel speed track a reference signal received through the Bluetooth connection.

In order to detect robot position and orientation, a visual system composed of two wide-angle cameras

placed on the lab ceiling is employed. Using two cameras allows one to enlarge the field at the price of

a higher computational effort.
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To ensure long term availability of the system, a crucial aspect regards automatic recharging of robot

batteries. To this purpose, once an experiment is over, an ad-hoc procedure drives the robots to a “box”

able to recharge their lithium batteries without any human intervention, thanks to two metal plates placed

on the bottom of each robot.

2.2. Software Description

Nowadays, many software technologies are available for the development of remote labs

(see, e.g., [22,23]). The solution adopted here consists in using a client-server architecture, where the

server is implemented as a Matlab function performing the following tasks.

1. Robot detection. To detect the robot poses, the images of the two wide-angle cameras are captured

by using the Matlab Image Acquisition Toolbox and they are filtered to extract the markers of each

robot by using functions for feature extraction provided by the Matlab Image Processing Toolbox.

An offline calibration procedure was performed to estimate the camera parameters in order to

correct the acquired images affected by barrel distortion. At this point, the two corrected images are

merged and the global coordinates are computed through suitable homogeneous transformations.

Moreover, a compressed version of these images is stored and used for online video streaming.

2. Robot control. User-defined controllers must be implemented as a Matlab function which will

be executed at each time step. Based on the state of the multi-agent system, this function has to

return the desired linear and angular velocities for each robot. Through this solution, users develop

their own control law by taking advantage of the wide set of powerful functions already provided

in Matlab and its toolboxes. Moreover, being Matlab a standard tool in the control systems and

robotics community, such a choice is convenient from the educational point of view, allowing

students to reduce the time needed to implement their own multi-robot control strategy.

3. Communication. Communication to robots is performed through the Bluetooth protocol. At each

sampling time, the desired robot speed computed by the user-defined controller is sent to each

vehicle. Moreover, robots can send messages to the server to inform it about their state, e.g., their

battery level.

4. TCP connection. Interaction with the user is achieved through a TCP connection between

the running Matlab function and a Java applet providing a graphical user interface (GUI, see

Section 3). The experiment can be started or stopped by the user, while during an experiment,

vehicle poses are sent by the server to the Java applet for online visualization.

5. Data storage. During an experiment, all the relevant data such as robot poses and computed

commands are stored in a Matlab structure. When the experiment is over, users may download

such data to perform offline analysis.

6. Automatic battery recharge. When an experiment is over, robots are driven to the recharge station.

Correct recharge is checked periodically by reading the battery level of each robot.

7. Safety system. To prevent robots from getting lost, the experiment is stopped whenever a robot

is going outside the workspace or when any error is detected (e.g., TCP communication drops).

In these cases, the experiment is stopped and a procedure is launched which drives the robots to a

safe position.
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Besides the previously described Matlab functions, a standard web server with PHP capabilities

(Apache web server) is running on the remote lab server. It allows users to connect to the remote lab, to

browse the site, to upload the controller and to download the experiment data.

3. Session Description

The only requirement needed by the user in order to perform remote experiments on the team of

robots is a web browser with Java capabilities. If a user wants to test a custom controller via simulations

before submitting it to the remote lab server, the Matlab environment is required. From the main page of

the mobile robotics section of the remote lab, users may choose the type of experiment to perform, like

generic experiments in empty environment or collision avoidance experiments with virtual obstacles.

When selecting the generic multi-robot experiment, the user is presented with the Control Interface

(Figure 4). The user can choose the controller to be used in the experiment among a set of predefined

control laws or a custom one. Predefined experiments are provided both for showing the capabilities

of the proposed remote lab and for helping users design their own tests. To perform a user-defined

experiment, one has to download and modify the provided template (Figure 5). The syntax of this

Matlab function is very simple. Input parameters are the robot poses (defined by the 3×N_robot

matrix Pose whose i-th column is ci = [xi(t), yi(t), θi(t)]
′, N_robot being the number of robots

involved in the experiment) and a data structure (Data) containing information about the state of

the experiment (e.g., current time, sampling time, etc.). Output arguments are the desired linear and

angular speed of each robot, embedded in the 2×N_robot matrix Command, and an optional structure

containing other information like the robot initial conditions. This type of user interaction gives the

system a high level of versatility, allowing users to practice with a number of different problems

related to multi-agent systems, ranging from single-robot to multi-robot experiences, from centralized to

decentralized control experiments.

Figure 4. The Control Interface.
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Figure 5. Template function for user-defined controllers.

function [Command, Exp_data]

=ACT_MR_template(Pose,Data)

%-- set initial pose

Exp_data.Initial_pose=[1.0 1.0 1.0 1.0

2.5 2.0 1.5 1.0

pi pi pi pi];

Command=zeros(2,4); % robot commands

end

Once a control law has been selected, a GUI shows up (Figure 6). This interface has been developed

as a Java applet to guarantee platform independence. From this GUI, a user may start and stop the

experiment, watch a graphical representation of the experiment and a streaming video.

Figure 6. The user interface.

The experiment reported in Figure 6 is related to a path planning task in the presence of virtual

obstacles. In order to test more advanced algorithms involving a non empty workspace, users may define

an arbitrary number of polygonal obstacles or pick up one out of a set of predefined environments. During

the experiment, at each time step the Robot Detection module computes additional information related to

the virtual obstacles which are then made available to the Robot Control function. Specifically, for each

robot, the distance to each obstacle and the obstacle point corresponding to the minimum distance to the

robot are computed (see Figure 7). The inter-vehicle distance is computed as well, thus allowing to treat

robots as moving obstacles and easing the implementation of algorithms preventing robot collisions.
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Finally, also a constantly updated occupancy grid is provided to the Robot Control function. The whole

workspace is partitioned into equally sized cells, each of them being marked with a binary value which

indicates whether it is currently free or occupied by a virtual obstacle or a robot.

When the experiment is over, a file in Matlab workspace format (.mat) containing all the relevant data

of the experiment can be downloaded for offline analysis.

In addition to the remote facilities described, two additional tools can be downloaded and used

locally, to help users in designing and evaluating their algorithms, namely the System Simulator and

the Experiment Player. Each of them consists in a Matlab function.

The System Simulator takes as input the designed control function and simulates the behavior of the

system returning a graphical animation of robots as well as numerical data. This tool is extremely useful

before testing a user-defined controller on the real setup, in order to guarantee the formal correctness of

the function (e.g., avoiding syntax errors) and to show the predicted robot trajectories. It is worthwhile

to note that, being a simulation, it is not guaranteed that the real experiment follows exactly the predicted

one (due to noise, model inaccuracies, etc.), but in any case it gives a flavor about the behavior of the

multi-robot system.

Figure 7. Virtual obstacles: for each robot, the minimum distance to each obstacle

(di, i = 1, 2) and the point of minimum distance (pi, i = 1, 2) are computed and stored

into a suitable Matlab structure.
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Through the Experiment Player it is possible to graphically playback the real experiment behavior

from the downloaded data. Moreover, one may use it also for creating an animation of the experiment.

All the experiment representations reported in Section 5 have been generated by using this tool.
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4. Possible Applications

Thanks to its high versatility, the proposed setup can be used to carry out a variety of experiments.

In the following, three classes of possible applications are outlined.

4.1. Pursuer-Evader Games

In many problems involving multi-agent systems, the agents compete with each other to pursue

their own objectives (non-cooperative scenario). A typical example is the pursuer-evader (PE) problem.

It was first introduced in the context of differential game theory with the aim of determining necessary

conditions for two moving agents to collide [24]. Since then, a number of different versions of the

problem have been addressed. When dealing with mobile robots, the motion domain is naturally

continuous and several additional aspects must be taken into account, such as the kinematic constraints

which often limit the maneuverability of real vehicles [25], or the presence of sensors featuring limited

field of view [26].

In order to exploit the developed experimental setup for designing and testing PE strategies, it is worth

noting that the robots feature the unicycle-like kinematics Equation (1). This motion model is quite

common in practice and suitable, for example, for the control laws proposed in [25,27]. Conversely,

the boundedness of the available free space poses some limitations on the feasible PE strategies. For

example, in this case it seems reasonable to assume that the evader is faster than the pursuer, which is

the opposite of what is usually done when moving in free space like in [25]. This is a further challenge

the user has to face when playing the role of the pursuer in the proposed setup.

The competitive nature of the PE problem makes it suitable to several teaching experiences where

students have to play against computer-controlled opponents or between each other.

4.2. Collision Avoidance

The collision avoidance problem, which represents one of the most basic issues in autonomous

navigation, is another good example of application of the remote lab for teaching purposes. An essential

condition for the successful operation of robots moving in non-empty environments is the safety

requirement, i.e., the ability of avoiding collisions which could cause damages to things or people.

Several collision avoidance algorithms have been investigated since long time, for different kinds of

robots and environments (see [28] for a comprehensive treatment of robot motion planning techniques).

One of the first and most intuitive obstacle avoidance algorithms is based on the concept of artificial

potential field, originally proposed in [29]. In this framework, the robot is assimilated to a particle

immersed in a potential field, and, as such, it moves according to a force which is the negative gradient of

the potential function. By suitably shaping the artificial potential it is possible to drive the robot towards

the target, while at the same time avoiding collisions with the obstacles. An alternative approach consists

of using extension theory in conjunction with ultrasonic sensor measurements [30]. When dealing

with a team of robots, these techniques can be suitably adapted to safely achieve desired geometrical

configurations. Collision avoidance strategies for one or more robots can be easily tested in the remote

lab. Users can conveniently define a map of the environment in terms of virtual obstacles, and then
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exploit the information that the system automatically makes available, like the distance between robots

and obstacles, to implement their favorite collision avoidance algorithms.

4.3. Multi-Agent Motion Coordination

Research-oriented applications of multi-agent systems like environmental monitoring, remote sensing

or exploration missions, require the motion of the team to be properly controlled to optimize

the performance (e.g., minimize completion time or maximize coverage), while at the same time

guaranteeing safety (e.g., avoid collisions among agents). The proposed setup allows one to test both

centralized and decentralized control architectures. In the former case, one assumes the existence

of a central unit having access to the state of the whole team. Given such information, the control

inputs of each agent are computed and sent back to the robots. While such an approach favors

simplicity and safety, it has the main drawback to be not tolerant to failures of the central unit or

of the communication infrastructure. For this reason, attention of the researchers has focused on the

development of decentralized control laws, in which each agent computes its inputs on the basis of its

own state and that of a limited number of neighbors. In this scenario, the motion coordination problem

is much harder and current research focuses on developing suitable controllers featuring desirable

properties like stability of the formation or optimality of the trajectories (see, e.g., [31–33]). Notice

that decentralized control laws are based on the information either gathered by the on-board sensors

or exchanged among agents. Although the robots do not carry any of such exteroceptive sensors, and

cannot directly communicate among themselves, the experimental setup is flexible enough to allow one

to simulate the presence of virtual sensors or inter-vehicle communication, along with the corresponding

technological limitations. In fact, from the pose of the vehicles provided by the vision system, the

required measurements can be easily generated via software, thus allowing the user to simulate various

types of on-board sensors (e.g., laser rangefinders, sonars, etc.) with different levels of sensor accuracy.

Then, the measurements can be processed according to the preferred sensor fusion approach, taking into

account which ones are available to each agent. The control law of each robot is computed on the basis of

the locally available information, thus preserving the decentralization of the algorithm. As an example,

Figure 8 reports the code for simulating a sensor detecting the distance from one robot to the others,

if the relative distance is less then a prescribed tolerance MaxDist.

Figure 8. Example of function for distance sensor.

function [Distances,Available]

=ACT_Distance_Sensor(Pose,Data,RobotIndex,MaxDist)

N_robot=size(Pose,2);

Distances=zeros(N_robot,1);

Available=zeros(N_robot,1);

for i=1:N_robot

Distances(i)=norm(Pose(1:2,i)-Pose(1:2,RobotIndex));

Available(i)=Distances(i)<MaxDist;

end

end
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5. Experiments

In this section, the results of some real experiments are reported in order to illustrate the wide

spectrum of experiences that can be proposed through the considered facility. In particular, we will first

illustrate a pursuer-evader problem, which can be proposed to both high-school and graduate students.

Then, obstacle avoidance techniques can be designed and tested, thanks to the possibility of including

virtual obstacles in the environment. Finally, some multi-agent motion coordination experiments will be

illustrated. Other examples can be found in [34].

5.1. Pursuer-Evader Games

The pursuer-evader game is a framework which allows one to create several educational scenarios

suited for students ranging from high-school to graduate and post-graduate. In fact, depending on the

given experiment and the chosen role, one can devise several tasks with different complexity. Moreover,

for a given task, the difficulty can be adjusted by varying the speed ratio between players. In the

following, two examples with increasing complexity are reported to show the potential of the proposed

facility as a tool for control education on mobile robotics.

Some experiments concerning PE games were conducted by a team of high school students,

within a teaching program aimed at stimulating students’ interest towards scientific and technological

university curricula.

Figure 9. Pursuer-evader games: the Matlab function implementing the pursuer algorithm.

function [Command Exp_data]

=ACT_pursuer(Pose,Data)

Exp_data.Initial_pose=[1 1.5 0; 2 2 0]’;

V=0.075; % linear speed (m/s)

w_max=1; % max angular speed (rad/s)

dX=Pose(1,2)-Pose(1,1);

dY=Pose(2,2)-Pose(2,1);

phi=Pose(3,1); % actual heading

phides=atan2(dY,dX); % desired heading

W=w_max*(wrapToPi(phides-phi));

if abs(W)>w_max, W=w_max*sign(W); end

Command=[V ; W];

end

In this respect, the use of a web-based remote lab to perform real experiments, and in general the

adoption of tools borrowed from the IT field, is an effective way to attract students’ attention and make

scientific studies more appealing (see, e.g., [35]). It was asked to three groups of students to design an

evader algorithm able to survive a pursuer within an empty environment. The pursuer strategy, unknown

to the students, was designed to make the pursuer continuously point towards the evader at maximum

speed (see Figure 9 for the Matlab code). To ease the task, a predefined function able to move the robot
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to a desired pose was provided to the students. This way, the control function only had to return a desired

reference pose for the evader, rather then the actual linear and angular velocity.

Among the algorithms designed by the three groups of students, the one which performed best

(hereafter named Algorithm 1) forces the evader to move to one out of four places near the vertexes of the

workspace, depending on the current position of the pursuer (Figure 10). The length of the experiment

was set to 300 s. Despite the simplicity of the proposed strategy, this algorithm turns out to work well,

and it was able to let the evader survive when the speed of the pursuer is less than 70% of the evader

speed. In Figures 11 and 12, the path of the two vehicles are reported for a PE speed ratio of 50% (evader

wins) and 80% (pursuer wins), respectively.

Figure 10. Pursuer-evader games: the evader strategy implemented in Algorithm 1.

12

3 4

Figure 11. Pursuer-evader games, Algorithm 1: pursuer (black) and evader (red) with a PE

speed ratio equal to 50%.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

2500

3000

x (mm)

y
(m

m
)

t = 300 (s)



Sensors 2014, 14 16499

Figure 12. Pursuer-evader games, Algorithm 1: pursuer (black) and evader (red) with a PE

speed ratio equal to 80%.
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From an educational viewpoint, it is interesting to compare the real experiments to the results obtained

through the provided simulator. In Figure 13, the simulated path of the two vehicles are reported for a PE

speed ratio of 50%. Notice that, for this experiment, robot trajectories in Figures 11 and 13 are similar

and the simulated experiment provides a good approximation of reality.

Figure 13. Pursuer-evader games, Algorithm 1: pursuer (black) and evader (red) with a PE

speed ratio equal to 50% (simulated experiment).
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The same PE environment has been used by undergraduate students to design more sophisticated

control laws for the evader (the pursuer algorithm is the same as in the previous experiment). As an

example, an evader strategy based on the potential field method is reported (Algorithm 2). Figures 14
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and 15 depict the path of two experiments where the speed ratio is set to 50% and 80%, respectively.

Differently from the previous example, in both cases the evader is able to escape the pursuer.

Figure 14. Pursuer-evader games, Algorithm 2: pursuer (black) and evader (red) with a PE

speed ratio equal to 50%.
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Figure 15. Pursuer-evader games, Algorithm 2: pursuer (black) and evader (red) with a PE

speed ratio equal to 80%.
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In Figure 16, the simulated experiment for a speed ratio of 50% is reported. Contrary to the previous

experiment, by comparing the simulated trajectory with the real one (Figure 14), one can observe that

the two paths differ significantly. It is worth remarking that this is due to the complex dynamics of

the overall system resulting from the coupling of the robot kinematics with the potential-based control

law implemented in Algorithm 2. This is a typical situation where a virtual experiment is not able to

reproduce a real one. In this case, practicing on real devices turns out to be very instructive.
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Figure 16. Pursuer-evader games, Algorithm 2: pursuer (black) and evader (red) with a PE

speed ratio equal to 50% (simulated experiment).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

2500

3000

x (mm)

y
(m

m
)

t = 300 (s)

5.2. Collision Avoidance

The possibility of including virtual obstacles in the environment allows one to easily test and compare

different collision avoidance algorithms. This application is specifically designed to stimulate the

students to tackle the collision avoidance problem on a real testbed, without the risk of causing damages

to the actual vehicles. In the example presented hereafter, an artificial potential field method, like the

one described in Section 4.2, is used to compute the instantaneous desired velocity vector of robots.

However, since the vehicles move according to the unicycle-like kinematics Equation (1), their velocity

vector cannot be arbitrarily set due to the nonholonomic constraints. Hence, a further step is necessary

to generate the references of the linear speed v and angular speed ω, given the nominal velocity provided

by the planning algorithm. To this purpose, a proportional controller has been implemented aiming to

align the robot heading θi to the angle of the desired velocity vector. Figure 17 shows the path of an

experiment involving one robot and four virtual obstacles. The robot starts at position pi = [3.70 2.70]T

and has to reach the target placed at pt = [0.65 1.00]T . It can be observed that in 85 s the robot

succeeds in reaching the desired target while at the same time avoiding the virtual obstacles. The effects

of the discrete-time implementation of the algorithm (with a sampling time Ts = 1 s), as well as of

the nonholonomic kinematics of the vehicle, are clearly visible in the second half of the robot path.

The unnatural oscillation between the last two obstacles is due to impossibility for the robot to follow

exactly the direction of fastest descent of the potential function, because of kinematic constraints and

discrete-time velocity updates. The final robot position (denoted by a small light point inside the black

circle in Figure 17) is slightly different from the desired one, since the task is considered accomplished

when the robot is close enough to the target (in this experiment, the threshold is set to 1 cm).
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Figure 17. Collision avoidance: single-robot and four obstacles (shaded regions): initial

robot pose (empty circle), final robot pose (filled circle), robot path (solid line).
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This application of the mobile robot facility is suited to both introductory control courses, in

which one can just ask the students to design a driving strategy preventing the robot from hitting the

obstacles, and to more advanced courses, where different types of path planning techniques can be taught

and tested.

5.3. Multi-Agent Motion Coordination

The first experiment concerns a decentralized control law for the collective circular motion of

multi-agent systems [33]. The objective is to put the vehicle in rotation about a static or moving reference

beacon, while at the same time keeping a minimum distance to the next rotating vehicle and avoiding

collisions among members of the team. The problem becomes harder if one explicitly considers a number

of constraints naturally arising in practice from technological limitations. It is supposed that robots are

indistinguishable, and that each agent can only take range and bearing measurements with respect to

“close enough” neighbors, i.e., vehicles falling inside the field of view of its sensors. The remote lab

provides all the necessary facilities to test such kind of control laws, allowing one to simulate sensors

featuring limited field of view and indistinguishable robots. Figure 18a–c refer to an experiment of

collective circular motion with the control law proposed in [33], for a team of four agents. In this case, a

slowly moving reference beacon (marked with a cross) was considered. It can be seen how the vehicles

proceed spiraling about the moving beacon and finally settle on a circle as the reference stops.

A second experiment of motion coordination concerns the cyclic pursuit problem. Differently from

the previous scenario, in this case robots are distinguishable and ordered, and each agent has to pursue

the next one, with the last pursuing the first one and thus closing the ring [32]. Robots are labeled from 1

to 4, and agent i has to follow agent i+1 (modulo 4). Depending on the control law driving each vehicle,

regular formations of the platoon may occur. In the most interesting scenario, the team coordination must

be achieved in a decentralized fashion, without the aid of a global controller that has access to the full
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state of the system. Figure 19a–c reports the results of an experiment where the cyclic pursuit algorithm

studied in [32] has been implemented. Roughly speaking, the forward and angular speed of a vehicle are

proportional to the distance and direction of its preceding neighbor, respectively. By properly selecting

the ratio of the gains of the two controllers, it is possible to achieve a team configuration where the

vehicles rotate equally spaced on a circle, like in Figure 19.

Figure 18. Collective circular motion: three snapshots taken at time t = 30 s (a);

t = 60 s (b); and t = 200 s (c). Initial (empty circle) and current (filled circle) robot

position; actual robot path (solid line); reference beacon (cross).
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The previous examples show how the proposed setup can be effectively used to evaluate the

performance of different multi-agent control strategies in a real-world scenario. This turns out to be

especially useful when analyzing the effects of many uncertainty sources often neglected in the control

design phase but usually occurring in practice. An additional benefit of the developed architecture is

the possibility to implement the desired control strategy directly in the Matlab programming language,

thus tremendously speeding up the implementation phase. As an example, the control law of the cyclic

pursuit experiment took less than ten lines of Matlab code.
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Figure 19. Cyclic pursuit: Three snapshots taken at time t = 20 s (a); t = 50 s (b); and

t = 150 s (c). Initial (empty circle) and current (filled circle) robot position; actual robot

path (solid line).
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6. Conclusions

The proposed multi-robot setup, embedded in the ACT remote laboratory, is a versatile resource which

has proven to be useful to both students and researchers. The proposed framework can be a powerful aid

when teaching robotics courses. As a matter of fact, it allows students to perform experiments with real

robots very easily. Control laws can be coded directly in the Matlab programming language, no specific

low-level software/hardware knowledge is required. At the same time, researchers can immediately test

new multi-agent control strategies and evaluate their effectiveness in a real-world scenario, thus bridging

the gap between simulation and experimental validation.

Several new features and extensions of this setup are currently under investigation. Since some

platforms are discontinuing the support of Java, different technologies for implementing the graphical

interface could be considered, like, e.g., HTML5 [36]. Given the encouraging results obtained in the past,

the remote lab is undergoing suitable modifications in order to organize worldwide student competitions

on relevant multi-robot problems. Moreover, the addition of a user-friendly graphical interface, allowing

the user to drag and drop the sensory equipment of the robots (possibly different from one another) and
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the obstacles present in the environment (possibly moving or partially known), will be the next steps

towards the development of a fully functional augmented-reality remote lab, where heterogenous real

robots equipped with virtual sensors move in real environments populated with virtual obstacles.
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