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Abstract: With the development of 3D displays, user’s eye fatigue has been an important 

issue when viewing these displays. There have been previous studies conducted on eye 

fatigue related to 3D display use, however, most of these have employed a limited number 

of modalities for measurements, such as electroencephalograms (EEGs), biomedical 

signals, and eye responses. In this paper, we propose a new assessment of eye fatigue 

related to 3D display use based on multimodal measurements. compared to previous works 

Our research is novel in the following four ways: first, to enhance the accuracy of 

assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial 

temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 

3D display; second, in order to accurately measure BR in a manner that is convenient for 

the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) 

camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured 

using a remote thermal camera, which can enhance the measurement of eye fatigue, and 

fourth, we perform various statistical analyses to evaluate the correlation between the EEG 

signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect 

size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the 

highest, while those of the FT, BR, and EEG with other data are second, third, and fourth 

highest, respectively. 
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1. Introduction 

The recent rapid development of 3D displays has resulted in the need for various types of 3D 

devices such as anaglyphs, passive and active glasses, and non-glasses device types. However, with the 

increasing prevalence of 3D displays, user eye fatigue has become an important health issue when one 

is viewing a 3D display. Eye fatigue caused by fatigue, eyestrain, and dizziness, etc. is usually induced 

by the discordance between accommodation and convergence when viewing 3D displays [1]. Many 

previous studies have therefore focused on measuring eye fatigue, which is classified into two 

categories: Single modality-based and multiple modality-based methods. 

Single modality-based methods measure eye fatigue using a single modality such as the image features 

captured by a camera [2–5], and they use only bio-signals [6–12]. In previous studies, eye blinks were used 

to measure eye fatigue, and they were observed from images captured by a camera [2,4,5]. Other studies 

showed that visual fatigue could be measured by analyzing eye movements and eye blinks [3]. In one 

study [5], the authors quantitatively measured the eyestrain for a 3D display, and their measurements 

were based on the eye blinking rate (BR). In this case, they calculated the levels of various factors 

considering eye foveation modal and edge information. 

In general, methods that involve the use of image features obtained by a camera have the advantage 

of causing less discomfort to the participants during experiments than methods involving the use of 

bio-signals, which require the attachment of cumbersome sensors to one’s body in order to measure the 

bio-signals. In addition, bio-signals may contain noises caused by muscle movements. However, the 

speed with which conventional cameras (such as web-cams) can acquire images is usually lower than 

what is possible when acquiring bio-signals due to the larger volume of data to be transmitted from the 

camera to the computer. 

In previous studies, eye fatigue has therefore been measured by analyzing eye movements using 

electrooculography (EOG) signals [6]. Other studies showed that electroencephalograms (EEGs) that 

are based on an event-related potential (ERP) may be used to measure visual fatigue [7,9]. Chen et al. 

showed that the alpha, beta, and delta bands of EEG signals can be used to measure visual fatigue  

for 3D TV [8]. In another previous study, visual fatigue was evaluated by analyzing the user’s 

electrocardiography (ECG) signals [10]. Qian et al. showed that the blink signals extracted from EEG 

data may indicate eye fatigue [11]. Mun et al. proposed a method for identifying the steady-state 

visually evoked potential (SSVEP) and ERP, which are linked to 3D cognitive fatigue for stereoscopic 

3D displays using EEG signals [12]. In a previous study, they also measured eye fatigue when viewing 

3D displays, and used ECGs and subjective evaluation (SE) [13]. 

With respect to multiple modality-based methods, eye fatigue has been measured using multiple 

sensors simultaneously [14,15]. Kim et al. proposed a method for measuring eye fatigue on a 3D display 

using ECG sensors, the galvanic skin response (GSR), and the skin temperature (SKT) with SE [14]. Eye 

fatigue when viewing 3D displays has also been measured using the power of the beta bands of EEGs 

and BRs considering a Bayesian network [15]. These methods have the advantage of usually being 

more accurate than the methods involving a single modality. However, the attachment of multiple sensors 

may cause much discomfort to the user, which can lead to incorrect eye fatigue measurements [14]. In 

addition, the accuracy enhancement of measurement of eye fatigue just by two modalities of EEG and 

BR is limited [15]. 
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To overcome these problems of previous works, we propose a method of assessing eye fatigue 

caused by 3D displays based on multimodal measurements including EEG signals, eye BR, and facial 

temperature (FT) with SE both before and after watching a 3D display. To accurately measure the BR 

in a manner that is more convenient to the user, we implement a remote gaze-tracking system using a 

high-speed mega-pixel camera that can measure the BR of both eyes. Changes in the FT are measured 

using a remote thermal camera that can enhance the measurement of eye fatigue. Table 1 shows 

summarized comparisons of previous and proposed methods for measuring eye fatigue. 

Table 1. Summarized comparisons of previous and proposed methods used to measure  

eye fatigue. 

Category Method Advantages Disadvantage 

Using 

single 

modality 

Camera-based 

method [2–5] 

Eye blink [2–5] 

and eye 

movement [3] 

were analyzed. 

- Less discomfort to user than the 

bio-signal-based method because 

sensors not attached to body. 

- Less affected by the movements 

of muscle, head, or body than the 

bio-signal-based method. 

Lower acquisition speed of 

images than bio-signal-based 

method. 

Bio-signal-based 

method [6–12] 

EOG [6],  

EEG [7–9,12], 

ECG [10,13], and 

blink signal from 

EEG [11] were 

analyzed. 

Faster acquisition speed of data 

than camera-based method. 

- More discomfort to user 

than the camera-based 

method because of attachment 

of sensors to body.  

- More affected by the 

movements of muscle, head, 

or body than the  

camera-based method. 

Using 

multiple 

modalities 

Multiple  

bio-signal based 

method [14] 

Multiple bio-

signals such as 

ECG, GSR, and 

SKT were 

measured. 

Higher accuracy of eye fatigue 

measurement than single  

modality-based method. 

More discomfort to user 

because of attachment of 

multiple sensors, which can 

induce incorrect eye fatigue 

measurement. 

Hybrid method 

using both  

bio-signal and 

camera-based 

methods 

EEG and BR were 

measured [15]. 

- Higher accuracy of eye fatigue 

measurement than single  

modality-based method. 

- Less discomfort to user than 

multiple bio-signal based method. 

The accuracy enhancement of 

eye fatigue measurements 

using only two modalities 

(EEG and BR) is limited. 

EEG, BR, and FT 

were measured 

(proposed 

method). 

- Higher accuracy of eye fatigue 

measurement than single  

modality-based method. 

- Less discomfort to user than 

multiple bio-signal-based methods. 

- Higher accuracy of eye fatigue 

measurement than [15] by using 

more modalities. 

Additional thermal  

camera is required. 
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The remainder of this paper is structured as follows: In Section 2, we describe the proposed system 

and the feature analysis. Then, the experimental setup and results are described in Section 3. Finally, 

we present the conclusions in Section 4. 

2. Proposed Method for Measuring Eye Fatigue 

2.1. Experimental Procedure for Proposed System and Method 

Figure 1 shows the experimental procedures used in our research. First, a SE was carried out in 

order to check the subject’s condition before watching the 3D display. In order to measure the natural 

blink of the subjects, the eye BR was measured for 1 min. before the user was made to watch the 3D 

display. Also, prior to watching the 3D display, the user’s EEG data and FT were measured for 5 min. 

with eyes closed in order to minimize visual stimuli. The subjects then watched the 3D display for 30 min. 

The eye BR was measured for the last 1 min of watching in order to compare the variations in the eye 

BR immediately before and after watching the 3D display. After watching the display, the EEG data 

and FT were again measured for 5 min. while the user’s eyes were closed in order to minimize visual 

stimuli, and these measurements were used to compare the variations in the EEG and FT data. A SE 

was carried out to check the subject’s condition after watching the 3D display. 

Figure 1. Experimental procedures used in our research. 

 

As shown in Figure 2a, a user wears both a headset-based EEG device and active shutter glasses [16] 

for the experiment. As shown in Figure 2b, the user wearing shutter glasses and the EEG device 

watches 3D content shown on a 60-inch smart TV with a display resolution of 1920 × 1080 pixels.  

In order to assess eye fatigue, we measured the EEG signals, eye BR, and FT using the EEG device, 

high speed camera [17], and thermal camera [18], respectively. 
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Figure 2. Proposed system for the assessment of eye fatigue. (a) Proposed experimental 

device; (b) Example of experimental environment. 

 
(a) 

 
(b) 

We used a commercial EEG device with a low-cost Emotiv EPOC headset that consists of  

16 electrodes, including two reference nodes for measuring EEG signals [19], as shown in Figure 2. 

The placement of electrodes complies with the international 10-20 system like previous researches [20,21], 

as shown in Figure 3. EEG data were processed using a built-in digital 5th-order Sinc filter. The 

sampling rate of the Emotiv EPOC system was 128 Hz (128 samples/s) [20,22]. 

Figure 3. International 10–20 electrode placement system. 
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A high-speed camera of 4 mega pixels was used to measure the eye BR and to acquire both images of 

both eyes. The camera acquires images with a resolution of 2048 × 2048 pixels at a speed of 150 fps [17]. 

However, the actual acquisition speed of images is much lower than 150 fps because of the larger amount 

of data to be transmitted from the camera to the computer, and then to be written to the hard disk. In order 

to improve the image acquisition speed, a cropped image with 2048 × 512 pixels (including both eyes) is 

captured. To enhance the accuracy of the detection of the pupil region, a near infrared (NIR) illumination 

of 850 nm was used, as shown in Figure 2b, which does not dazzle the user’s eye [23]. 

As shown in Figure 2, a thermal camera was used to measure the FT based on changes in the eye 

fatigue. The captured thermal image has a resolution of 320 × 240 pixels with 14 bits, and its capturing 

speed ranges from 50 to 60 fps. However, the actual capture speed of images is much lower than 50 fps 

because of the large amount of data to be transmitted from the camera to the computer, and then to be 

written by the hard disk. The temperature of the thermal camera ranges from ‒20 °C to 100 °C, and its 

accuracy is ±1 °C or ±1% [18]. As shown in Figure 2b, a commercial web-camera (Webcam C600) [24] 

was attached close to the thermal camera in order to locate the user’s face and nose. Because it is 

difficult to find accurate positions of the face and nose in the thermal image, we used the positions of 

the face and nose in the web-camera image to define the areas of the face and nose in the thermal 

image. The web-camera captures an 800 × 600 pixel 24-bit image at a speed of 30 fps using the NIR 

illuminator. The NIR illuminator is used to detect the face and nose in a manner that is robust to 

illumination variations. 

As shown in Figure 2b, the distance between the subject and the 3D TV is set at about 250 cm 

considering the guidelines for watching 3D TV [25]. The distance between the subject and the high-speed 

camera is about 80 cm, while the distance between the subject and the thermal camera is about 100 cm, 

and the distance between the subject and the NIR illuminator is about 60 cm. 

2.2. Analysis of EEG Data for Measuring Eye Fatigue 

To measure eye fatigue, we analyzed the beta band (13–30 Hz) of the EEG data because the power 

of EEG signals in the beta band is usually stronger when viewing 3D displays [7,10]. The EEG signals 

are determined based on the voltage levels measured from each electrode. The measured EEG signals 

are normalized by adjusting the DC level, and a further normalization of the min-max scale was 

performed to represent the EEG magnitude within the range −1 to 1. Then, the power of the beta band 

was calculated by performing a Fourier transform with a window length of 128 samples. 

2.3. Analysis of BR for Measuring Eye Fatigue 

Eye BR has previously been used in the measurement of eye fatigue. A higher eye fatigue is related 

to a higher eye BR [2,3,26]. Therefore, in our research, the eye BR was measured using a high-speed 

camera. In order to accurately measure the eye BR in a manner that is convenient to the user, we 

implemented a remote gaze-tracking system using a high-speed mega-pixel camera that can measure 

the eye blinks of both eyes. 
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With the captured image, the region of the corneal specular reflection is located using image 

binarization. Two areas of the eyes are detected based on the detected region of the corneal specular 

reflection using sub-block based template matching, which is based on the scheme of integral images 

in order to reduce the computational complexity [27]. The means of each sub-block (R0 ~ R8) are 

calculated as shown in Figure 4, where R0 and R1 ~ R8 represent the candidate pupil regions and its 

neighboring ones, respectively. The mean of the gray value of the pupil region is usually lower than 

those of the other regions. Therefore, the mean of the gray value of Ro in the candidate pupil region is 

compared with the means of the gray values of R1 ~ R8 in the neighboring regions, as shown in Figure 4. 

The sum of the difference of the mean values of R0 and the neighboring regions (R1 ~ R8) is then 

calculated. In order to find the pupil position for which the sum of the difference value is a maximum, 

the 3 × 3 mask in Figure 4 moves by the overlapping of one pixel. Within the area detected by the  

sub-block-based template matching, the boundary of the pupil is located using the ellipse fitting 

method, as shown in Figure 5a. For closed eye, as shown in Figure 5b, the ellipse fitting method fails, 

whereas for opened eyes, the ellipse fitting method is successful. We are therefore able to differentiate 

between images with both open and closed eyes, and the eye BR is counted based on the number of 

images with closed eyes during a one-minute interval.  

Figure 4. Example of sub-block-based template matching algorithm. 

 

Figure 5. Example of measurement of eye blinking. (a) Open eyes; (b) Closed eyes. 

 
(a) 

 
(b) 
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2.4. Analysis of Variation of FT for Measuring Eye Fatigue 

Changes in the FT were measured using a remote thermal camera, which can enhance the 

measurement of eye fatigue. A web-camera [24] is attached beside the thermal camera because it is 

difficult to detect the facial features in the thermal image. Therefore, with the detected areas of the face 

and nose in the web-camera image, the areas of the face and nose are defined considering the image 

disparity between the web-camera and thermal camera. The degree of image disparity is obtained in 

advance by calibrating the camera.  

The web-camera captures the image with the NIR illuminator. The reason for using the NIR illuminator 

is to detect the face and nose in a manner that is robust to variations in illumination. As shown in Figure 6a, 

the detection of the face region is achieved by the adaptive boosting (Adaboost) method [28], and the 

center of both nostrils based on the detected face region is located using binarization. The regions of the 

face and center of the nose are defined in the thermal camera image based on the regions of the face and 

center of the nose in the web-camera image, as shown in Figure 6b. 

Figure 6. Example of detection of face and nose. (a) The detected regions of face and nose 

in the web-camera image; (b) The defined regions of the face and nose in the thermal 

camera image. 

(a) (b) 

Figure 7. Example of the measurement region for variation of FT. 
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Based on the detected center of the nose, variations in the cheek regions (30 × 30) are analyzed for 

the measurement of eye fatigue, as shown in Figure 7. 

3. Experimental Setup and Results 

The data acquisition for the experiments was done using two desktop computers and a laptop 

computer. All of the EEG signal, eye image, and thermal image data were acquired simultaneously. 

The desktop computer that was used to acquire images of both eyes with a high-speed camera was 

equipped with a 3.07 GHz CPU (Intel (R) Core (TM) i7 CPU 950) and 6 GB RAM. The desktop 

computer used to acquire the EEG signals using the Emotiv EPOC headset was equipped with a  

2.33 GHz CPU (Intel (R) Core (TM) 2 Quad CPU Q8200) and 4 GB RAM. The laptop computer used 

to acquire the web-camera and thermal camera images was equipped with a 2.50 GHz CPU (Intel (R) 

Core (TM) i5-2520M) and 4 GB RAM. 

The proposed algorithm for the measurement of eye fatigue was implemented as a C++ program 

using the Microsoft Foundation Class (MFC) and OpenCV library. A total of 15 subjects participated 

in the experiments (average age: 26.89, standard deviation: 1.96). The numbers of male and female are 

12 and 3, respectively. We already obtained the written and informed agreements from each participant 

of our experiments. The luminance of the room was 321 lux., and the highest brightness of the display 

was 99.546 cd/m2. We used the sample video entitled “Summer in Heidelberg” for our experiments, 

which is mostly composed of landscape scenes as shown in Figure 2b, and we already obtained the 

permission from the video copyright owner [5,29]. In order to measure the rate of natural eye blink in 

the last 1 min of Figure 8, any artificial sign, indication or instruction for user’s alertness was not given 

to each participant. There was no drowsy or dozing person in the experiments. 

Figure 8. Experimental procedure. 

 

The experimental procedure is presented in Figure 8. In order to enhance the accuracy of the eye 

fatigue assessment, changes in the EEG signal, eye BR, and FT were measured with SE both before 

and after watching the 3D display. In previous research [8], they measured the variations of EEG data 

caused by eye fatigue on 3D TV by using 16 electrodes on the whole area of head. They also measured 

the EEG data while a user is closing his eyes before and after watching 3D TV. We refer to this paper 

for our experimental design of measuring EEG signal using multiple electrodes while a user is closing 
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his eyes. To compare the subject’s state before and after watching the 3D display, SE was performed 

using a questionnaire form. The SE before and after watching the 3D display was performed based on 

the six questions in Table 2 using a 10-point scale (1: Not at all ~ 10: Yes, very much). These 

questions were developed based on previous studies [5,30]. The average and standard deviation of the 

score obtained by SE of the 15 subjects before and after watching the 3D display are presented in 

Figure 9 and Table 3. 

Table 2. Items in questionnaire form for SE. 

Six Questions for SE 

I have difficulties in seeing 
I have a strange feeling around the eyes 

My eyes feel tired 
I feel numb 

I feel dizzy looking at the screen 
I have a headache 

Figure 9. Comparison of SE scores before and after watching the 3D display. 

 

Table 3. The average and standard deviation of SE scores. 

 Before Watching 3D Display After Watching 3D Display 

Average 1.623 3.478 
Standard deviation 0.582 1.37 

The average SE score after watching the 3D display is observe to be higher than that before watching 

the 3D display, as indicated by Figure 9 and Table 3. The statistical analysis was performed using an 

independent two-sample T-test [31], which is widely used as a statistical hypothesis test. The calculated  

p-value is 0.0001, which is less than the confidence level of 99% (0.01). The null-hypothesis (the two 

average scores of SEs before and after watching the 3D display are the same) is rejected, and the two scores 

of SE before and after watching the 3D display are significantly different [31]. 

Figure 10 and Table 4 show the measured amplitudes of the beta band of each electrode of the EEG 

signal before and after watching the 3D display. As shown in Figure 10, the amplitude of the beta band 

of each electrode is stronger after watching the 3D display than before watching the 3D display. The 



Sensors 2014, 14 16477 

 

 

electrode that shows a significant difference before and after watching the 3D display was selected 

using the T-test, as shown in Table 4. The P7 of the lowest p-value (0.0795) of all the electrodes was 

selected, as shown in Table 4. Although the p-value of the P7 node is lowest as 0.0795, it does not 

show the significant difference with the confidence level of 95% or 99% because the p-value is larger 

than the thresholds for 95% (0.05) and 99% (0.01), respectively. This is because EEG signals contain 

noise that is caused by movements of the facial muscle. Nevertheless, we used the EEG signal of P7 

node because its significant difference is relatively higher than those of other nodes, and the level of 

inter-correlations between each measurements of EEG, BR, FT, and SE score are measured as shown 

in Tables 8 and 9. 

In total 16 electrodes are used in our EEG measurement device as shown in Figure 3, and the strength 

of attachment (on head) of some nodes of backside of head (P7, P8, O1, and O2 of Figure 3) is relatively 

lower than that of others due to the individual variations of head shape. Among them, the strength of 

attachment of P8 node is lowest, and the consequent variation of movement of P8 node on head is larger 

than others during experiment, which causes the large standard deviation value of Figure 10. 

Table 4. The average and standard deviation of the EEG signal. 

Electrode AF3 AF4 F3 F4 

 Before After Before After Before After Before After 

Average 0.0921 0.1091 0.0916 0.1001 0.1059 0.1178 0.1033 0.1102 

Standard 

deviation 
0.0435 0.0353 0.0368 0.0362 0.0575 0.0526 0.046 0.0472 

P-value 0.2491 0.5279 0.5575 0.6909 

Electrode F7 F8 FC5 FC6 

 Before After Before After Before After Before After 

Average 0.0906 0.1165 0.0763 0.1118 0.1081 0.1086 0.0859 0.107 

Standard 

deviation 
0.0347 0.0431 0.0362 0.0823 0.0753 0.048 0.0403 0.0347 

P-value 0.0814 0.1424 0.9812 0.1365 

Electrode O1 O2 P7 P8 

 Before After Before After Before After Before After 

Average 0.1002 0.1159 0.1054 0.1218 0.0769 0.103 0.0984 0.1608 

Standard 

deviation 
0.0494 0.0438 0.064 0.0475 0.0369 0.0415 0.0466 0.1343 

P-value 0.3662 0.4323 0.0795 0.1076 

Electrode T7 T8    

 Before After Before After     

Average 0.1037 0.1324 0.0954 0.0999     

Standard 

deviation 
0.0668 0.0729 0.0568 0.0429     

P-value 0.2708 0.8071    
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Figure 10. Comparisons of beta band of EEG data before and after watching 3D display. 

 

Figure 11 and Table 5 show the measured eye BRs before watching the 3D display and during the last 

1 min of watching the 3D display. As shown in Figure 11, the BR increased in the last 1 min of watching 

the 3D display compared to the value before watching the 3D display. The p-value is 0.2876, which is 

larger than confidence levels of 99% (0.01) or 95% (0.05). It is therefore difficult to say that there is a 

significant difference in the BR before watching the 3D display and in the last 1 min of watching the 3D 

display. The BR increased by 21.07% (100 × (22.6 – 18.667)/18.667) in the last 1 min of watching the 

3D display relative to the value before watching the 3D display, as shown in Table 5. 

Figure 11. Comparison of BR before watching the 3D display and in the last 1 minute (of 

30 min) of watching the 3D display. 

 

Table 5. The average and standard deviation of the eye BR. 

 Before Watching 3D Display 
During the Last 1 Min of  

Watching 3D Display 

Average 18.667 22.6 
Standard deviation 9.832 10.041 
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As shown in Figure 12 and Table 6, the amplitude of the FT decreased after watching the 3D 

display compared to the value before watching the 3D display. The p-value is 0.00089, which is much 

less than the confidence level of 99% (0.01). We can therefore deduce that there is a significant 

difference in the FT amplitudes before and after watching the 3D display. 

Figure 12. Comparison of FT amplitude before and after watching the 3D display. 

 

Table 6. The average and standard deviation of FT. 

 Before Watching 3D Display After Watching 3D Display 

Average 15221.233 15099.446 
Standard deviation 94.511 79.937 

For the next analysis, we measured the difference between the amount of data before and after 

watching the 3D display using the effect size in descriptive statistics. In statistics, the effect size has 

been used to represent the power of an observed phenomenon, and it is generally accepted as a 

descriptive statistic [5,32]. 

Based on previous research [33], we can define Cohen’s d values of 0.2, 0.5, and 0.8 as small, 

medium, and large, respectively. In Table 7 and Figure 13, Cohen’s d represents the difference 

between two means divided by the standard deviation of the data. By calculating Cohen’s d, effect 

sizes of 0.2 to 0.3, around 0.5, and 0.8 to infinity may be considered as having “small,” “medium,” and 

“large” effects, respectively [5,32]. For example, in Table 7, Cohen’s d of the EEG data before and 

after watching the 3D display is 0.6644, which is closer to 0.8 (large effect) than to either 0.2 (small 

effect) or to 0.5 (medium effect). Therefore, we deduce that the difference in the EEG data before and 

watching the 3D display has a large effect size. It is often the case that 0.5 is used among the values of 

around 0.5, and we also used 0.5 for the medium effect. Therefore, the disparity (0.1356) between 0.8 

and 0.6644 is smaller than that (0.1644) between 0.6644 and 0.5, and we regard this case (0.6644) as 

the large effect size as shown in Table 7. As another example, Cohen’s d for the BR before and in the 

last 1 min of watching the 3D display is 0.3958, which is closer to 0.5 than to either 0.2 or 0.8. Thus, 

we deduce that the difference in the BR before and in the last 1 min of watching the 3D display has a 

medium effect size. In the cases of the FT and SE, the effect sizes are large. 



Sensors 2014, 14 16480 

 

 

Based on the p-value and Cohen’s d value, we find that the difference between the SEs before and 

after watching the 3D display is largest. In addition, the differences between FT, EEG, and BR are 

second, third, and fourth largest, respectively. 

Figure 13. Calculated Cohen’s d values of each measurement. 

 

Table 7. The calculated Cohen’s d values before and after watching the 3D display (In the 

case of the BR, the calculated Cohen’s d before and in the last 1 min of watching the  

3D display). 

 Cohen’s d Effect Size 

EEG 0.6644 Large 
BR 0.3958 Medium 
FT 1.3914 Large 
SE 1.763 Large 

For the next analysis, we measured the correlation between two sets of data from among EEG, BR, 

FT, and SE data. To do this, we calculated the gradient, R2, and correlation value between two sets of 

data, as shown in Table 8. With the data distributed in 2-dimensional (2D) space, an optimal fitted line 

is obtained by linear regression, and the gradient and R2 value can be calculated. R2 represents the 

confidence level of the predicted regression line. If the regression line fits the data more reliably, the 

R2 value increases [5]. 

Table 8. The results of gradient, R2, and correlation between each set of acquired data. 

 Gradient R2 Correlation 

EEG vs. BR −0.33 0.1285 −0.3585 
EEG vs. FT −0.1154 0.0156 −0.125 
EEG vs. SE −0.1584 0.0421 −0.2052 
BR vs. FT 0.0381 0.0014 0.038 
BR vs. SE 0.5582 0.4427 0.6653 
FT vs. SE 0.4593 0.3015 0.5491 



Sensors 2014, 14 16481 

 

 

The correlation value ranges from −1 to 1. Correlation values of −1 and 1 represent negative and 

positive relationships, respectively. If the correlation value is 0, it is almost uncorrelated. Because only 

the FT is reduced after watching the 3D display, as shown in Figure 12, whereas the SE, EEG, and BR 

increase as shown in Figures 9–11, the FT data were multiplied by −1 in order to make them 

consistent. As shown in Table 8 and Figure 14, the absolute correlation value and R2 value between the 

BR and SE are greatest, and that between the BR and FT is lowest in the measurement of eye fatigue 

with a 3D display. 

Figure 14. Calculated correlation value between each set of measurement. 

 

In order to simplify the comparison, we show the correlation matrix (based on the correlation value 

of Table 8) in Table 9. The correlation matrix of four sets of measured data (EEG, BR, FT, and SE) 

before and after (or in the last 1 min) watching the 3D display was calculated to enable the analysis of 

the statistical relationships [34]. 

Table 9. Correlation matrix of four measured data of before and after (or in the last one 

minute) watching 3D display. 

 EEG BR FT SE 
The Sum of All the Correlation 

Values with Other Data 

EEG 1 −0.3585 −0.125 −0.2052 −0.6887 
BR −0.3585 1 0.038 0.6653 0.3448 
FT −0.125 0.038 1 0.5491 0.4621 
SE −0.2052 0.6653 0.5491 1 1.0092 

As shown in Table 9, the relationships between the EEG and BR, EEG and FT, and EEG and SE 

were negatively related. Therefore, we find that the beta band of EEG data shows the inconsistent 

results with other data. This is because EEG signals contain noise that is caused by movements of the 

facial muscle. The relationships between the BR and FT, BR and SE, and FT and SE were positively 

related. As shown in Table 9, the absolute correlation value between BR and SE is highest, and that 

between BR and FT is lowest for the measurement of eye fatigue on the 3D display. 
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In order to quantitatively assess the individual correlations and the consistency of one data with 

others, we calculate the summed value of all the correlation values excluding the auto-correlation value 

of 1 (for example, correlation value between EEG and EEG). As shown in Table 9 and Figure 15, the 

correlation of SE with other data is highest based on the largest sum of 1.0092. In addition, those of the 

FT, BR, and EEG with other data are second, third, and fourth highest, respectively. 

Figure 15. Calculated summed value of all the correlation values. 

 

Previous researches showed that the level of eye fatigue increases after watching 3D displays [8–14], 

and there is no ground-truth value of the level of eye fatigue. Therefore, we measured the differences 

of four measurements of EEG, FT, BR, and SE score before and after (in the last one minute in case of 

BR) watching 3D display as the changed level of eye fatigue as shown in Tables 3–6 and Figures 9–12. 

However, because the units of each measurement value are not identical, we cannot regard the absolute 

difference value of each measurement as the difference of the level of eye fatigue. Therefore, we 

measured the difference between the amount of data before and after (or in the last one minute) 

watching the 3D display using the effect size in descriptive statistics as shown in Table 7. Based on 

Table 7 and Figure 13, we find that the difference between the SEs before and after watching the 3D 

display is largest. In addition, the differences between FT, EEG, and BR are second, third, and fourth 

largest, respectively. 

However, if we measure the sum of correlation value of each measurement with others as shown in 

Table 9 and Figure 15, the correlation of SE with other measurement data is highest. In addition, those 

of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. From these, 

we find that the difference between the BRs before and in the last one minute for watching the 3D 

display is smaller than that between the EEGs as shown in Table 7, but the BRs are more credible than 

the EEGs considering the correlation with other data of Table 9. By conclusion, we find that the order 

of credibility of measurements for the eye fatigue on 3D display is SE, FT, BR, and EEG, respectively. 

4. Conclusions 

In this paper, we propose a novel assessment of eye fatigue caused by 3D displays based on a 

multimodal measurement method. In order to enhance the accuracy with which we assess the eye 

fatigue, we measured the changes in the EEG signal, eye BR, FT, and SE before and after (or in the 



Sensors 2014, 14 16483 

 

 

last 1 min) of watching a 3D display. To accurately measure the eye BR in a manner that is convenient 

to the user, we implemented a remote gaze-tracking system using a high-speed mega-pixel camera that 

can measure the eye blinks of both eyes. The change in the FT is measured using a remote thermal 

camera that can enhance the measurement of eye fatigue. Experimental results showed that the 

correlation between BR and the SE score is highest, while that between BR and FT is lowest for the 

measurement of eye fatigue with a 3D display. In addition, the sum of all the correlation values of SE 

with other data (FT, BR, and EEG) is highest, and those of FT, BR, and EEG with other data are 

second, third, and fourth highest, respectively. 

Because we aim at collecting accurate data of EEG, BR, and FT for the accurate measurement of 

the level of eye fatigue by non-intrusive way to user, our system is somewhat complicated as shown in 

Figure 2. In future work, we plan to simplify our capturing system. In addition, we would perform a 

more accurate evaluation of eye fatigue by combining the EEG signal, eye BR, FT, and SE based on 

approaches such as fuzzy rule or principal component analysis (PCA). 
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