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Abstract: Magnetic flux leakage (MFL) inspection is one of the most important and 

sensitive nondestructive testing approaches. For online MFL inspection of a long-range 

railway track or oil pipeline, a fast and effective defect profile estimating method based on 

a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a 

sampling point is related with not only the MFL signals before it, but also the ones after it, 

and all of the sampling points related to one point appear as serials or multi-power. Defect 

profile estimation has two steps: regulating a weight vector in an MAPA filter and 

estimating a defect profile with the MAPA filter. Both simulation and experimental data 

are used to test the performance of the proposed method. The results demonstrate that the 

proposed method exhibits high speed while maintaining the estimated profiles clearly close 

to the desired ones in a noisy environment, thereby meeting the demand of accurate  

online inspection. 

Keywords: nondestructive testing; magnetic flux leakage; affine projection; system 

identification 
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1. Introduction 

After the long-time operation of railway tracks or oil pipelines, many sorts of defects, like mechanical 

damage or cracks, may occur on their surfaces, which may trigger terrible accidents and lead to great 

financial losses and even personal casualties. To eliminate the hidden risks as much as possible, magnetic 

flux leakage (MFL) inspection, one of the most important and sensitive methods for electromagnetic 

nondestructive testing (NDT) of surfaces and near-surface area in ferromagnetic materials, can be widely 

used to detect such defects and is fully applied to make regular inspections [1–4]. 

MFL signals are acquired by an array of Hall effect sensors closely distributed above the surface of 

a measured object when the object is magnetically saturated by strong permanent magnets. For some 

facilities, such as an oil pipeline and railway track, inspections may be conducted at a large scale or a 

long distance. After removing noise from the acquired MFL signals by some signal processing 

methods, e.g., a modified wavelet transform domain adaptive FIR filtering algorithm [5], it is essential 

to find a fast and efficient feature extracting method to deal with the massive MFL signals. An online 

MFL inspection system consists of a high-speed MFL signal acquisition system and a fast feature 

extracting method. The former can be achieved by some technical means, e.g., a bobbin-type magnetic 

camera to inspect stress corrosion on a small-bore piping system at high speed [6] and an MFL 

detector with an advanced data processing system for long-range pipeline inspection [7]. 

The inverse method, a common method for MFL feature extraction, including a forward model and 

iterative algorithm, is of great interest. Artificial neural networks, the dipole model and the finite 

element model all have been used as a forward model [8–10]. Iterative algorithms include the gradient 

descent algorithm, the particle swarm optimization algorithm and the genetic algorithm [11–13]. 

Despite their favourable performance, they cannot reach the requirement of a short estimating time for 

online inspection. A fast inverse method used for estimating rectangular crack sizes has a 

computational cost of more than two seconds [12], and another fast method for arbitrary 2D defect 

profile reconstruction ranges from 14 to 64 s [1]. These inverse methods fail to extract features from 

MFL signals with high speed. 

To shorten the time, rapid inspection methods are in great demand. Adaptive filtering is an 

important technique in many applications, such as system identification, channel equalization, echo 

cancellation and active noise control [14–16]. The well-known least mean squares (LMS)  

algorithm [17,18] was widely used for adaptive filtering, because of its robustness and efficiency. 

However, its obvious drawback is the over dependence on the statistics of their input signals. The 

affine projection algorithm (APA) [19] generalizes a normalized LMS adaptive filtering algorithm and 

can overcome the problem of LMS. In recent years, APAs have been suggested for adaptive system 

applications as an efficient alternative because of the fast convergence rate [20–22]. This work 

modified the standard APA to form a new filtering algorithm, named the multi-power APA (MAPA), 

for fast estimating defect profiles from MFL signals. It can identify precisely the relationship between 

the inputs (MFL signals) and the outputs (defect profile) after being trained by a certain amount of 

data, thus obtaining a result close to the true defect profiles. The proposed method, which advances 

significantly in the aspect of estimation speed, can totally meet the demands of the fast inspection of  

long-distance devices or facilities. 
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The presentation of this paper proceeds as follows: in Section 2, two kinds of extracted features of 

defects and their identification by APA are discussed. Section 3 presents the detailed process of 

MAPA and fast defect profile estimation from MFL signals based on MAPA. The simulations and 

experimental results are shown in Section 4. Finally, conclusions are given in Section 5. 

2. Feature Extraction of Defects and System Identification by APA 

The extracting features of defects commonly consist of two types, defect size and defect profile, 

shown in Figure 1. Many studies [12,23] regard defects on the surface of materials as rectangles or 

slopes with a certain angle. Thus, the extracted features are just their length, width and depth, as well 

as angle, if needed. In this case, by regulating the parameters of a feature extracting model and the 

sizes of their paired defects, the trained model can extract the defect size information from MFL 

signals. This size extraction method is rather simple and easy to realize. Unfortunately, the shape of a 

surface’s defect can be arbitrary in the real world. We can obtain the information of an arbitrary defect 

only when the defect profile consists of enough sampling points distributing on the surface. 

Figure 1. Two types of defect features (2D defect). 

 

To estimate the whole profile of a defect, processing every sampling point is inevitable. Thus, the 

available time to every point should be short enough to achieve the fast estimation of a defect profile. 

System identification is the most common application of APA filters. The structure of a defect 

profile estimation system by APA is shown in Figure 2. Input x(k) is the MFL signal at the k-th 

sampling point. d(k) and y(k) are the desired depth and the output value of an APA filter, respectively. 

It is essential to regulate an APA weight vector in order to minimize the error between d(k) and y(k). 

When error e(k) is small enough after several generations, the APA filter can replace the actual defect 

profile system to estimate the corresponding defect profile from MFL signals. 

Figure 2. The system structure for identifying a defect profile by an affine projection 

algorithm (APA) filter.  
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3. Multi-Power APA and Fast Estimation of Defect Profiles 

In the defect profile estimation problem, different from time series or time-varying problems, the 

depth of the k-th sampling point is related with not only the MFL signals before the k-th sampling 

point, but also the ones after it. Conversely, we can conduct the analysis from the aspect of a defect 

leading to the significant change of MFL signals; the profile depth of the k-th sampling point and its 

former and latter ones decide the magnetic flux density of the k-th point together. 

In addition, for an N-order adaptive filter, the k-th output is calculated by: 

0

( ) ( ) ( ) ( ) (k)
N

T
i ap

i

y k w k x k i k
=

= − = w x  (1) 

where [ ]( )= ( ) ( 1) ( )
T

ap k x k x k x k N− −x   and [ ]0 1( )= ( ) ( ) ( )
T

Nk w k w k w kw   are the k-th input vector 

and weight vector, respectively. 

The k-th output of an adaptive filter is the sum of products between weight wi(k) and the first power of 

input x(k−i), but for the defect profile estimation, the MFL density of the k-th sampling point is also 

influenced by the higher power of an input, e.g., x2(k) and x3(k). To solve the problem of defect profile 

estimation, the corresponding improvements in view of the above two problems should be applied to APA. 

3.1. Multi-Power APA (MAPA) 

In some cases, reusing the past signals contributes to the fast convergence rate of an algorithm. Data 

reuse is an approach to speed up the convergence of an adaptive filtering algorithm if its inputs are 

correlative, according to [19]. 

In MAPA, we define the order of a MAPA filter as the sum of N1 and N2, where N1 means the use 

of the past N1 inputs and N2 means the use of N2 inputs after the current one. The N1 + N2 inputs are all 

correlative with the current one. As N2 inputs are added to figure out the current output, compared with 

the basic APA, the reuse number of inputs is also increased, not only the past L1 inputs in the basic 

APA, but also L2 inputs. According to the above description, the input matrix is given as follows: 
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Considering that all of the inputs to the P-th power and the ones below the P-th power are related 

with the current output, the elements of input matrix X(k) should be further expanded. Specifically, 
x(k) is replaced by 2( ) ( ) ( )

TPx k x k x k   . After the transformation, X(k) is changed to be a  

P(N1 + N2 + 1)-by- (L1 + L2 + 1) matrix Xmp(k): 
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where 2( ) ( ) ( ) ( )
TPk x k x k x k =  a  . 

Then, the MAPA filter computes output ymp(k) as: 
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where wmp(k) is a P(N1 + N2 + 1)-by-1 weight vector of the MAPA filter. 

The error vector between ymp(k) and the desired output profile is as follows: 

( ) ( ) ( )mp mpk k k= −e d y  (5) 

where 2 1( ) [ ( ) ( 1) ( ) ( 1) ( )]k d k L d k d k d k d k L= + + − −d   . 

The aim of the MAPA filter is to minimize the error between wmp(k) and wmp(k+1) or a constrained 

optimization problem: 

21
min ( 1) ( )

2 mp mpk k+ −w w  (6) 

where the constraint condition is ( ) ( ) ( 1)T
mp mpk k k− + =d X w 0 . 

By applying the method of Lagrangian multipliers, the above problem can be transferred to an 

unconstrained problem. 
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where ( )T
mp kλ  is an (L1 + L2 + 1)-by-1 vector of Lagrange multipliers at the k-th sampling point. 

Then, as the gradient of F(wmp(k+1)) to wmp(k+1) is zero, the relationship between wmp(k+1) and 

wmp(k) is obtained: 

( 1) ( ) ( ) ( )mp mp mp mpk k k k+ = +w w X λ  (8) 

Deriving from Equation (5) and the constrained condition, we have: 
1( 1) ( ) ( )( ( ) ( )) ( )T

mp mp mp mp mp mpk k k k k k−+ = +w w X X X e  (9) 

In order to keep the balance between convergence rate and steady-state estimation error to improve 

the performance of APA, the step size is added [14]. For the simplicity and fast execution speed of 

MAPA, we define a fixed step size µ, and then Equation (8) is changed to: 
1( 1) ( ) ( )( ( ) ( )) ( )T

mp mp mp mp mp mpk k k k k kμ −+ = +w w X X X e  (10) 

After the regulation of weights, the MAPA filter can replace the unknown system to obtain precise 

outputs close to the desired ones, i.e., the true profile of a defect. 
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3.2. Fast Defect Profile Estimation from MFL Signal Based on MAPA 

With the sensors scanning the surface of materials and sampling the magnetic flux density, the 

magnetic flux density at different sampling points is acquired and described as different voltages. 

Figure 3 shows the depth and voltages acquired at 600 consecutive sampling points. As the surface 

depth changes, different voltages are acquired by the sensors. We can say that a different magnetic flux 

density distributes on the surface. 

Figure 3. The depth and voltages acquired by sensors of 600 sampling points. 

 

To estimate the depth of a surface point-by-point or defect profiles by using MAPA, the voltages 

acquired by sensors at sampling points are regarded as the inputs of the MAPA filter, and the true 

depth at sampling points are treated as desired outputs. The first part of this method is to finish the 

regulation of the weight vector in the MAPA filter with the following steps: 

Step 1, initialization of an MAPA filter: weight vector wmp(0) is set as 0 and the step size is chosen 

in the range from zero to two. After the input and output series are given, the number of sampling 

points is determined as M. In addition, a weak disturbance is added by using a small constant γ to 

prevent the divisibility by zero and to ensure stability. 

Step 2, calculation of an error vector: According to Equation (3), the k-th output vector of the 

MAPA filter is calculated. After that, use Equation (4) to obtain error vector emp(k) between the output 

vector and desired output profile vector. 

Step 3, updating the weight vector: add the weak disturbance in the process of updating wmp(k) to 

wmp(k+1): 
1( 1) ( ) ( )( ( ) ( ) ) ( )T

mp mp mp mp mp mpk k k k k kμ γ −+ = + +w w X X X I e  (11) 

where I is the identity matrix of size L1 + L2 + 1 and γ is an adjustment parameter. 

Step 4, check the termination condition: if k exceeds the number of sampling points M, the result of 

the last generation wmp(M) is the final weight vector, and otherwise, return to Step 2 for calculating the 

next sampling point k + 1. 

Now, we can estimate a defect profile R with the MFL signals at z sampling points. 
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4. Simulation and Experiment 

The data used to verify the effect of the defect profile estimating method based on MAPA includes 

two parts: the simulation data generated by the software ANSYS and the data acquired by an 

experimental setup. The majority of the first part is used to finish the regulation of a weight vector in 

the MAPA filter, and then, both the remaining of the first part and the second part are applied to 

estimate defect profiles. 

An Intel Core i7 2.20GHz laptop on a Win7 professional operating system is used. The parameters 

described in Section 3 are crucial for the performance of an MAPA filter. After several tests, the 

suitable values for the defect profile estimation are listed in Table 1. 

Table 1. The values of parameters for multi-power APA (MAPA). 

Parameter Value 

N1 and N2 4 
L1 and L2 3 

μ  0.1 
γ  1 × 10−5 
P 2 

4.1. Simulation Data and Results 

We generate the simulation data with the software ANSYS. The 2D MFL data includes 240 defect 

samples with varying widths and depths. Figure 4 shows the MFL signals of four defects. As can be 

found in Figure 4, MFL signals are different because of the change of the depth and width of defects. 

The information of defect profiles is clearly contained in MFL signals. Two-hundred thirty samples are 

used to regulate the weight vector of the MAPA filter, and the remaining 10 samples are used to 

estimate defect profiles. The size of the sampling point interval is 0.508 cm. 

Figure 4. The Magnetic flux leakage (MFL) signals of four defects. 

 

For a good description of the estimation results, we use root-mean-square error (RMSE) to quantize 

the difference between the estimated and desired profiles. The RMSE values of 10 samples and their 

estimation time are listed in Table 2. In addition, the process of adjusting the weight vector costs  
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1.098 s. Two of the estimated ten profiles for sample No. 2 and sample No. 6 are also shown in  

Figures 5 and 6, respectively. 

Table 2. RMSE values and the estimating time. 

Defect Sample 
Defect Size 

RMSE Estimating Time (s) 
Width (cm) Depth (cm) 

1 2.54 0.90 0.0345 4.70 × 10−4 
2 2.54 1.52 0.0426 4.63 × 10−4 
3 3.56 0.51 0.0293 4.81 × 10−4 
4 3.56 1.40 0.0472 4.67 × 10−4 
5 4.57 0.38 0.0275 4.60 × 10−4 
6 4.57 1.65 0.0467 4.67 × 10−4 
7 5.59 1.52 0.0585 4.68 × 10−4 
8 6.60 1.52 0.0674 4.62 × 10−4 
9 7.62 1.65 0.0633 4.80 × 10−4 
10 8.64 0.38 0.0417 4.72 × 10−4 

Figure 5. Comparison of the true profile and estimated profile (sample No. 2). 

 

Figure 6. Comparison of the true profile and estimated profile (sample No. 6). 

 

From Table 2, Figures 5 and 6, we conclude that: 

(1) Compared with the listed time in [1,12], the proposed method costs less time. Though the 

process of weight vector regulation costs 1.098 s, it needs to operate once only. Therefore, the 

estimating time meets the demand of fast estimation or even online inspection.  
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(2) Despite the size difference among defects, the RMSE values are small enough. In other words, 

the estimated defect profiles are close to the true ones. The robustness of the proposed method is high 

to estimate different defects. 

4.2. Experimental Setup and Results 

In order to further verify the effect of the proposed method, a series of experiments were carried 

out. The schematic of the experimental equipment is shown in Figure 7. It includes a rotating platform, 

an excitation coil, sensors, a signal conditioning circuit, a data acquisition card, a receiving terminal  

(a personal computer here) and electric machinery. Many defects are distributed on the edge surface of 

a rotating platform. A magnetizing yoke with an excitation coil is used to generate a magnetic field. 

We have found that vibration judgment error will rapidly decay with the increasing of the magnetic 

sensor’s lift-off value. Therefore, setting a large lift-off value can effectively restrain the error caused 

by the random vibration of the detecting mechanism. Additionally, the noise judgment error will 

sharply increase with the increasing of the magnetic sensor’s lift-off value. Thus, when setting a small 

lift-off value, the signal-to-noise ratio (SNR) of the detection signal is large and the sensitivity of MFL 

detection system is high. Here, comprehensively considering the influence of various kinds of error 

sources, the magnetic pole is a 1 mm distance away from the rotating platform. The Hall sensor probe 

is located at the centre of the two magnetic poles of the magnetizing yoke at a 0.5 mm distance away 

from the edge surface, aiming to acquire MFL signals. After being regulated by the signal conditioning 

circuit, MFL signals are transmitted to the data acquisition card. Finally, the computer receives them. 

In addition, the speed of the rotating platform is controlled by electric machinery. 

Figure 7. Schematic of the experimental equipment. 

 

The type of material of the top surface of the rotating platform is U71Mn (steel rail, 71-Manganese 

material). Defects with different sizes are distributed on the top surface of the rotating platform with its 

speed ranging from 2 to 50 m/s. The types of Hall effect sensors and data acquisition card are 
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UGN3503 and ADLINK DAQ 2204. As the amplitude of the MFL signal is of a millivolt level, while 

the data acquisition card operates at the volt level, an AD620 instrumentation amplifier is applied to 

design an amplifying circuit, whose amplification factor is 100. In addition, to avoid the detection 

device magnetizing the rotating platform repeatedly, we lay out the magnetization reversal device 

opposite to the detection device. 

Figure 8 shows the experimental MFL signals gathered by sensors on groove defects. Different 

from simulated MFL signals, the experiment MFL signals include noise that appears when the Hall 

sensors acquire the signals. 

Figure 8. The experimental MFL signal gathered by sensors. 

 

Two estimated defect profiles for Sample 1 (0.04 cm width, 0.6 cm depth) and Sample 2 (0.02 cm 

width, 0.4 cm depth) are compared with the true ones by processing the experimental MFL signals 

shown in Figures 9 and 10. The RMSE values and estimation time are listed in Table 3. From them, we 

conclude that: 

(1) Despite the existence of noise in the experimental MFL signals, the profiles estimated by the 

proposed method are close to the true ones. The result shows that the method based on MAPA is 

robust in the face of noise. 

(2) The time to estimate defect profiles is as short as that for simulation data. The method is thus 

suitable for fast inspection in an industrial environment. 

(3) The RMSE value decreases with the decrease of the defect size. The proposed method can 

achieve more accurate results for small-sized defect estimation. 

Figure 9. Comparison of the true profile and estimated profile (Sample 1). 
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Figure 10. Comparison of the true profile and estimated profile (Sample 2). 

 

Table 3. RMSE values and the estimating time from experimental signals. 

Defect Size 
RMSE Estimating Time (s) 

Width (cm) Depth (cm) 

0.04 0.6 0.0522 4.13 × 10−4 
0.02 0.4 0.0190 4.02 × 10−4 

5. Conclusions 

In this paper, to estimate the defect profiles from MFL signals and meet the online inspection 

requirements, MAPA is proposed and applied to defect profile estimation. The major contribution of 

this paper is to achieve fast estimation of defect profiles from the magnetic flux leakage signal under 

the premise that the estimated profiles are clearly close to the desired ones in a noisy environment. The 

process of profile estimation includes the regulation of a weight vector in the proposed MAPA filter 

and the profile estimation with the filter. 

Both simulation and experimental data are used to verify the effect of the proposed method. The 

results validate that the defect profile estimating method based on MAPA achieves high performance 

and robustness despite noise polluted signals. The presented method can deliver both fast estimation 

speed and reasonable prediction accuracy. 
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