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Abstract: In the application of a micro-/nano-mechanical resonator, the position of
an accreted particle and the resonant frequencies are measured by two different physical
systems. Detecting the particle position sometimes can be extremely difficult or even
impossible, especially when the particle is as small as an atom or a molecule. Using the
resonant frequencies to determine the mass and position of an accreted particle formulates
an inverse problem. The Dirac delta function and Galerkin method are used to model and
formulate an eigenvalue problem of a beam with an accreted particle. An approximate
method is proposed by ignoring the off-diagonal elements of the eigenvalue matrix. Based
on the approximate method, the mass and position of an accreted particle can be decoupled
and uniquely determined by measuring at most three resonant frequencies. The approximate
method is demonstrated to be very accurate when the particle mass is small, which is the
application scenario for much of the mass sensing of micro-/nano-mechanical resonators.
By solving the inverse problem, the position measurement becomes unnecessary, which
is of some help to the mass sensing application of a micro-/nano-mechanical resonator by
reducing two measurement systems to one. How to apply the method to the general scenario
of multiple accreted particles is also discussed.

Keywords: inverse problem; mass sensing; resonator sensor; resonant frequency;
Galerkin method



Sensors 2014, 14 16297

1. Introduction

In proteomics, mass spectrometry plays an important role in identifying protein species with small
sample volume [1,2]. Characterizing the proteome at the single-cell or single-molecule level can
accelerate the identification of protein, disease biomarkers and, thus, new drug development [3,4].
However, conventional mass spectrometry typically involves the measurement of around 108

molecules [5], and mass sensing of a cell or a molecule is thus often beyond its limit [4].
Furthermore, because mass spectrometry actually measures the mass-to-charge ratio [1,2], it involves
three experimental stages: ionization, separation and detection. For a small and thermostable compound,
there is no effective ionizing technique, which is a major restriction for the mass spectrometry
application [2]. Ionization may cause structural changes in a protein [5] or damage fragile biological
macromolecules [6]. The mass sensing mechanism of a mechanical resonator is the resonant frequency,
which shifts when a mass is loaded. The first two stages of ionization and separation are unnecessary
for a mechanical resonator, because it can work with neutral species [7]. The motion of a mechanical
resonator can be recorded by a single-electron transistor [8,9], the interferometric technique [10], a
photodiode [11–13] or a piezoresistive readout [14], from which the resonant frequencies are found. By
scaling down in size and selecting materials with high Young’s modulus-to-density ratios, the resonant
frequency of a mechanical resonator increases, which leads to a higher sensitivity of mass sensing [6].
Because of the high mass sensitivity and frequency stability, a micro-/nano-mechanical resonator
provides a label-free, high-throughput and rapid detection of biological and chemical molecules [15].
The ultimate mass sensing limit for a micro-/nano-mechanical resonator is imposed by thermodynamic
fluctuation, which has been theoretically proven to be well below one Dalton (1 Dalton ≈ 1.65 × 10−24 g
is approximately the mass of a proton or a neutron) [16]. The holy grail of achieving the sensitivity
to detect the mass of one Dalton has been a major driving force for the recent development of a
mechanical resonator sensor. The sensitivity of micro-/nano-mechanical resonators has been improving
roughly about an order of magnitude per year for several years [4]. The micro-/nano-mechanical
resonator sensors, which can detect the adsorption of a protein [4], a biomolecule [15], a cell [17],
a virus [18] and an atom [9,19], have been developed. The holy grail has recently been obtained by
Chaste et al. [20], who developed a carbon nanotube-based resonator capable of detecting one Dalton
mass. Although the achievements are very impressive, there is a fundamental problem to be solved
for the above micro-/nano-mechanical resonator sensors: they can detect the resonant frequency shifts
induced by a single atom/molecule, but they cannot measure the mass of individual atoms/molecules [5].

The reason is that the resonant frequency shifts are determined by two convolving coupled parameters:
the accreted mass and its position. To detect the position, additional equipment, such as a scanning
electron microscope (SEM) [10,21] and optical microscope [13], are needed, which are inconvenient
and time-consuming [21]. Besides, SEM has the problem of being applied to non-metallic materials,
and the optical imaging method becomes invalid when adsorbate is as small as an atom/molecule
or when there is not enough contrast between a cell and solution [15,17]. Tracing the sprayed
atoms/molecules/nanoparticles and finding their landing locations on a resonator are also extremely
difficult, if not impossible [4]. The uncertainty of the particle position has been a major obstacle of
accurately measuring its mass [15]. For a micro-/nano-mechanical resonator sensor, the most important
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problem to be solved, according to Prof. Knobel [6], is to determine the atom/nanoparticle position.
Because a micro-/nano-mechanical resonator sensor measures the (shifts of) resonant frequencies, in
a real application, the following inverse problem is encountered: How to use the resonant frequencies
to determine both the mass and position of an adsorbate? Dohn et al. [21] did the pioneering work
of using multiple resonant frequencies to determine the mass and position of an accreted particle by
the (approximate) Rayleigh–Ritz method and the error minimization procedure. Hanay et al. [5] also
used multiple resonant frequencies to determine the masses and positions of multiple accreted proteins
by a statistics method. Unlike the above two methods, this study presents a straightforward method
to tackle the inverse problem, which shows that the mass and position of an accreted particle can be
uniquely determined by measuring two or three resonant frequencies/eigenfrequencies. The accuracy
of the inverse problem solving method is also demonstrated and compared with the previous ones. The
model and the inverse problem solving method are developed for the case of one accreted particle.
In a real application, the scenario of only a single adsorbate landing on a micro-/nano-mechanical
resonator is (almost) impossible. There are a number of proteins [4,5], atoms [9,19], molecules [20]
and nanoparticles accreted on the surfaces of a micro-/nano-mechanical resonator. How to apply the
inverse problem solving method to such scenario is also discussed.

2. Model Development

Figure 1a is a schematic of a cantilever beam with an accreted particle. A micro-/nano-mechanical
resonator is often modeled as a beam structure [4,5,9,19,20]. For brevity, the beam governing equation
is given as follows [22–24]:

[m+MoδD(x− xo)]
∂2w

∂t2
+ c

∂w

∂t
+ EI

∂4w

∂x4
= 0. (1)

where m is the beam mass per unit length and m = ρbh (ρ, b and h are the mass density, width and
thickness of the beam, respectively). Mo and xo are the mass and position of an accreted particle,
as shown in Figure 1b. δD is the Dirac delta function, which indicates that the accreted particle is
modeled as a concentrated mass [22–24]. E, w and c are the beam Young’s modulus, displacement
and viscous damping, respectively. I is the moment of inertia and I = bh3/12 for a rectangular
cross-section beam. There are two major assumptions in Equation (1): (1) the accreted particle only
introduces the mass addition effect [25]; and (2) the application of the Dirac delta function assumes
that the particle size is extremely small compared with that of the resonator. The accreted particles
can change the resonator stiffness, which is mainly induced by two mechanisms: the stiffness of
particles [26,27] and surface stress [28,29]. As the particle size is assumed very small, its stiffness
can be ignored [26,27]. The presence of surface stress generates both the bending moment and axial
force [29,30]; the axial force is responsible for the stiffness change. Surface stress is an important sensing
mechanism for many receptor-based sensors [28,31], which is often induced by the receptor-ligand
binding. The receptor-ligand binding is both highly sensitive and selective for the identification of
an adsorbate/ligand [31]. However, it suffers from poor reproducibility, because of device-to-device
variations in the coating. The challenges for developing robust and stable recognition methods through
functionalized coatings (i.e., the receptor materials) and even interpreting the responses of receptor-based
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sensors still remain [31]. For a beam with a non-functionalized surfaces, surface stress is often very small
and ignored. Because there is no stiffness change, the resonator described by Equation (1) is the so-called
mass-loading sensor [25].

By introducing ξ = x/L, τ =
√
EI/(mL4)t and W = w/L (L: beam length) [22,23], Equation (1)

is nondimensionalized as follows:

[1 + αδD(ξ − ξo)]
∂2W

∂τ 2
+ C

∂W

∂τ
+
∂4W

∂ξ4
= 0. (2)

where α and C are defined as follows:

α =
Mo

mL
, C = c

√
L4

EIm
(3)

Physically, α is the ratio of the accreted mass to that of a uniform beam; C is the dimensionless
damping. The Galerkin method is an efficient method for the eigenfrequency computation of a beam
with small concentrated masses [22], which assumes the following form for W (ξ, τ):

W (ξ, τ) =
N∑
j=1

aj(τ)φj(ξ), (4)

whereN is the mode number. φj(ξ) is the j -th mode of a uniform cantilever beam [32], and the first three
are shown in Figure 1c; aj(τ) is the unknown j-th modal amplitude with the presence of the concentrated
mass [22]. Substitute Equation (4) into Equation (2), time φi(ξ) and integrate from 0 to 1; the following
governing equations are derived:

Mq̈+Dq̇+Kq = 0. (5)

Here, (̇) = ∂
∂τ

and q is a vector given as q = (a1, a2, ....., aN)
T . M, D and K are theN×N matrices of

mass, damping and stiffness, respectively, which are given as the following by using the orthonormality
property of φj(ξ) [22,23]:

Mij = δij + αφi(ξo)φj(ξo), Dij = Cδij, Kij = κ4j δij. (6)

where δij is the Kronecker delta function; κ2j is the j-th (dimensionless) eigenfrequency of a uniform
undamped beam, and the first three κ2j of a cantilever beam are given as follows [32]:

κ21 = 1.8752 = 3.516, κ22 = 4.6942 = 22.034, κ23 = 7.8552 = 61.697. (7)

Equation (5) is a damped nongyroscopic system and needs to be rewritten in the following form to
formulate an eigenvalue problem [33]:

M∗ẋ+K∗x = 0. (8)

where x = (q̇,q) is a 2N vector; M∗ and K∗ are the 2N × 2N matrices defined as follows [33]:

M∗ =

(
M 0

0 −K

)
, K∗ =

(
D K

K 0

)
(9)
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By letting x(τ) = eiωτX, Equation (8) formulates a standard eigenvalue problem of AX = iωX with
A = −(M∗)−1K∗ [33]. For Equation (8) to work, α and ξo must be supplied. Solving the eigenvalue
problem of Equation (8) is not an easy task. As far as the concentrated mass is not located at the fixed
end or node (i.e., φj(ξo) = 0), there are off-diagonal elements, and obtaining the analytical solution to
Equation (8) is extremely difficult, if not impossible. With the presence of damping, the eigenvalue of ω
is a complex variable of ω = R+ iI . The real part (R) is the eigenfrequency, and the imaginary part (I)
indicates the stability of the system [34]. Equation (8) yields 2N accurate eigenvalues of R and I .

If the concentrated mass is small, the following approximate analytical solution can be derived. By
assuming W =

∑N
j=1 bje

iωτ (τ)φj(ξ) (ω = R + iI) and repeating the same procedure of the Galerkin
method above, the following equation is derived:

GB = 0. (10)

where B= (b1, b2, ....bN)
T and Gij = Gr

ij+iG
i
ij with Gr

ij = κ4jδij − ICδij − (R2 − I2) − [δij +

αφi(ξo)φj(ξo)] and Gi
ij = RCδij − 2RI[δij + αφi(ξo)φj(ξo)]. To have a nontrivial solution of B, the

determinants of both the real part Gr
ij and imaginary part Gi

ij must be zero. Therefore, det(Gr
ij) = 0

and det(Gi
ij) = 0 formulate the eigenvalue problem for R and I , which can only be solved numerically.

If the effect of off-diagonal elements are ignored, R and I are analytically obtained as follows by setting
each diagonal element to zero:

Rj =

√
κ4j

1 + αφ2
j(ξo)

− C2

4[1 + αφ2
j(ξo)]

2
, (11)

Ij =
C

2[1 + αφ2
j(ξo)]

. (12)

Rj = κ2j recovers the j-th eigenfrequency of a uniform undamped beam when α = 0 and C = 0 [22].

It is noteworthy to point out that when C = 0, Rj =
√
κ4j/[1 + αφ2

j(ξo)] is the same one obtained by the
Rayleigh–Ritz method [21]; R1 also recovers the one obtained by using the curve fitting method when
ξo = 1 (at which φ1(1) = 2) [10].

Figure 2 presents two case studies on the accuracy of Equation (11) as compared with Equation (8)
for 0 ≤ ξo ≤ 1. Clearly, Equation (11) approximates much better for the case of α = 0.1 and C = 0.1,
than that of α = 0.3 and C = 1. The reason is simple: Equation (11) ignores the off-diagonal elements,
which become more important as α increases. The higher mode has higher mass sensitivity, because the
effective mass of α is larger for higher modes [13], which is also the reason causing the larger error of
Equation (11) for higher modes. As noticed in Figure 2, there is no error when a concentrated mass is
placed at the node(s). There is no node for the first mode φ1; ξnd = 0.782 is the node of the second mode
φ2; ξnd = 0.504 and ξnd = 0.867 are the two nodes of the third mode φ3. Mathematically, there are no
off-diagonal elements, because φi(ξnd) = 0 (i ≥ 2), and physically the effective mass of α becomes zero
at node(s), which thus has no impact on the eigenfrequency of the corresponding mode.

From Equation (11), we have:

αφ2
j(ξo) =

κ4j +
√
κ8j −R2

jC
2 − 2R2

j

2R2
j

. (13)
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Actually, there are two solutions for αφ2
j . As for mass accretion on a mass resonator, αφ2

j is positive,
as given in the above equation. The other solution of negative αφ2

j physically corresponds to a crack
formation [34,35] or a vacancy defect [36], which is thus discarded. By setting j =1, 2 and 3 and from
Equation (13), we have the following:

φ2
2

φ2
1

(ξo) =

(
R1

R2

)2
κ42 +

√
κ82 −R2

2C
2 − 2R2

2

κ41 +
√
κ81 −R2

1C
2 − 2R2

1

, (14)

φ2
3

φ2
1

(ξo) =

(
R1

R3

)2
κ43 +

√
κ83 −R2

3C
2 − 2R2

3

κ41 +
√
κ81 −R2

1C
2 − 2R2

1

. (15)

For the convenience of statement, we define left-side functions of the Equations (14) and (15) as
F21(ξo) = φ2

2/φ
2
1(ξo) and F31(ξo) = φ2

3/φ
2
1(ξo); right-side functions as S21(R1, R2) = (R1/R2)

2(κ42 +√
κ82 − 2R2

2C
2−2R2

2)/(κ
4
1+
√
κ81 − 2R2

1C
2−2R2

1) and S31(R1, R3) = (R1/R3)
2(κ43+

√
κ83 − 2R2

3C
2−

2R2
3)/(κ

4
1 +

√
κ81 − 2R2

1C
2 − 2R2

1). One outstanding feature of Equations (14) and (15) is that α does
not explicitly appear, whose information is contained in R1, R2, R3. S21 and S31 are constants for given
R1, R2, R3. φ1, φ2 and φ3 are the given functions of the first, second and third modes of a uniform
undamped cantilever beam [32], respectively; the only variable in F21 and F31 is ξo.

Figure 1. (a) Schematic diagram of a cantilever resonator with an accreted particle; (b) the
coordinate system, the particle position and the beam length; (c) the first three modes of a
uniform cantilever.
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Figure 2. (a–c) The first, second and third eigenfrequencies with α = 0.1 and C = 0.1,
respectively; (d–f) the first, second and third eigenfrequencies with α = 0.3 and C = 1,
respectively. The solid lines are the results obtained by Equation (8), and dashed lines are
those obtained by Equation (11). The solid triangles indicate the nodes.
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3. Results and Discussion

Two examples on how to use Equations (14) and (15) to determine the concentrate mass position
and then use Equation (13) to find the corresponding mass are presented. For the first example of
(α, ξo) = (0.1, 0.9) and C = 0.1, the first three eigenfrequencies are computed as R1 = 3.086,
R2 = 21.162 and R3 = 61.25 by using Equation (8). Compared with those of a uniform undamped
cantilever presented in Equation (7), all of these three eigenfrequencies decreases because of the
concentrated mass and damping. In the application of a mass resonator, α and ξo are the two unknown
parameters to be determined; R1, R2, R3 are obtained by the experimental measurement. Now, suppose
the above three Ris computed by Equation (8) are the experimentally obtained values, which give
S21 = 0.2824 and S31 = 0.04914. Equation (14) is first used, i.e., F21(ξo) = S21 = 0.2824.
Equation (14) is nonlinear, and the Newton–Rhapson method is required to solve ξo. Figure 3 presents
the F21 − ξo relation. As seen in the inset of Figure 3, there are two solutions in 0.636 ≤ ξo ≤ 1 and
only one solution for ξo < 0.636, which physically means that if a concentrated mass locates at any
place of ξo < 0.636 (or say S21 > 1), its position can be uniquely determined by Equation (14). ξo of
F21(ξo) = 0.2824 is solved as ξo1 = 0.701 and ξo2 = 0.884; substitute these two ξos values
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into Equation (13), and two corresponding α1 = 0.213 and α2 = 0.105 are obtained. Now, we
have two possible combinations of (α, ξo) = (0.213, 0.701) and (0.105, 0.884). Physically, these
two combinations generate the same first and second eigenfrequencies, which is the typical scenario
encountered in solving an inverse problem [27,29]. To tell which one is the correct one, F31(ξo) =

S31 = 0.04914 is needed, which gives four solutions of ξo1 = 0.4903, ξo2 = 0.5182, ξo3 = 0.8409

and ξo4 = 0.8949. Again, substitute these four ξos into Equation (13) and four corresponding αs are
obtained as: α1 = 0.692, α2 = 0.5727, α3 = 0.1222 and α4 = 0.102. There are four combinations,
(α, ξo) = (0.692, 0.4903), (0.5727, 0.5182), (0.1222, 0.8409) and (0.102, 0.8949), and physically, these
four combinations generate the same first and third eigenfrequencies. As seen in Figure 4, there are four
solutions in 0.451 ≤ ξo ≤ 1, and only one in ξo < 0.451. Again, this means that if a concentrated
mass locates at any place of ξo < 0.451 (or say S31 > 1), its position can be uniquely determined by
Equation (15). Now, compare the two combinations obtained by Equation (14) and four combinations
obtained by Equation (15); it is not hard to conclude that the only overlapped combination is (α, ξo) =
(0.105, 0.884)/(0.102, 0.8949). Here, the (small) difference between these two combinations is caused
by our approximate analytical expression having different errors on different modes, as analyzed above.
However, it is still good enough for us to tell which two combinations overlap. Compared with the
actual combination of (0.1, 0.9), the accuracy of our method is demonstrated. Alternatively, instead of
using F31(ξo) = S31, F32(ξo) = φ2

3/φ
2
2(ξo) = S32 can also be used to determine (α, ξo) together with

F21(ξo) = S21. However, keep in mind that F32 becomes infinite at ξnd = 0.782, which is the node of
φ2 and makes the numerical solution more difficult and less accurate. The first three eigenfrequencies of
(0.1, 0.9), two combinations obtained by Equation (14) and four combinations obtained by Equation (15)
are listed in Table 1. Mathematically, Equation (14) or Equation (15), which, in essence, only uses the
information of two (measured) eigenfrequencies, cannot uniquely determine the actual combination of
(α, ξo). Physically, Table 1 contains all of the possible combinations of (α, ξo) (six in total) determined
by two eigenfrequencies; the actual combination of (α, ξo), which needs to satisfy all three (measured)
eigenfrequencies, is among these six possible combinations. There is another effective way to determine
the concentrated mass and its position. Equation (14) gives the two combinations with the same first
and second eigenfrequencies. If the third eigenfrequency is computed, as seen in Table 1, R3 = 54.9 for
(0.213, 0.701), which deviates significantly from the input/measured value of 61.25 and is thus excluded.
The above solution procedure can be summarized by the following flow chart (Figure 5). Measuring the
mode shapes, which is frequently done in the structural damage identification [35], can also be used
to determine the combination. Although Equation (14) gives two combinations with the same first and
second eigenfrequencies, their corresponding mode shapes are different, and mode shape comparison
can thus help to determine the right combination. However, the method of the mode shape comparison
can be very difficult, especially when the concentrated mass is very small.

In the above example, the concentrated mass of α = 0.1 and damping C = 0.1 (corresponding
to a quality factor of Q ≈ 35) are both relatively large. As demonstrated in the next example, our
method achieves a much better accuracy for smaller α and C, which is the case in many mass resonator
applications [9,10,13,16]. Because the eigenfrequency of a beam is proportional to

√
EI/(mL4) =

h/L2
√
E/ρ [23], there are two major methods to enhance the mass resonator sensitivity: (1) to scale

down the resonator size [8,16,26] to achieve a larger h/L2; and (2) to use the materials with large E/ρ,
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such as graphene [12] and carbon nanotube [9,20]. Both methods result in increasing eigenfrequencies.
With a large eigenfrequency, a tiny fractional change in eigenfrequency is still absolutely large enough
to be detected [6], and the sensitivity is thus enhanced.

Table 1. The first three eigenfrequencies for different combinations of (α, ξo). The
combinations are found by Equations (14) and (15), which use the information of two
eigenfrequencies.

(α, ξo)/Ri R1 R2 R3

(0.1, 0.9) 3.086 21.162 61.25
(0.213, 0.701) 3.084 21.334 54.9
(0.105, 0.884) 3.086 21.353 61.58
(0.692, 0.4903) 3.075 15.264 61.54
(0.5727, 0.5182) 3.077 16.142 61.52
(0.122, 0.8409) 3.085 21.78 61.36
(0.102, 0.8949) 3.085 21.22 61.37

Figure 3. F21 as a function of ξo and the solution of S21 = 30.5. The inset shows the two
solutions when S21 = 0.2824.
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Figure 4. F31 as a function of ξo. The inset shows the four solutions when S31 = 0.04914.
There are four ξo solutions in 0.451 ≤ ξo ≤ 1 when S31 ≤ 1 and there is only one ξo solution
in ξo < 0.451 when S31 > 1.
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Figure 5. The solution procedure flow chart.
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For comparison reasons, the characteristics of Dohn’s method [21] is summarized as follows:
(1) the damping effect is not included; (2) (at least) four eigenfrequencies are needed to determine the
concentrated mass and position; (3) a robust and complex fitting procedure is needed; and (4) more
importantly, their method has “inherent shortcomings”, which cannot correctly determine the mass
position when ξo < 0.2 or α < 0.0084 [37]. The second example is presented to show that our
method further stands out in the application scenario of ξo close to the fixed end with smaller α and
C. (α, ξo) = (0.0084, 0.1) and C = 0 [21] are taken and R1 = 3.516 and R2 = 22.034 are computed
by Equation (8), which as inputs give S21 = 30.5. By using Equation (14), ξo = 0.1 is uniquely
determined as presented in Figure 3; then substitute this ξo = 0.1 value into Equation (13), α = 0.0084

is obtained. Now, this method obtains the exact combination of (0.0084, 0.1) and only requires the
measurements/inputs of two eigenfrequencies.

In a real application, a micro-/nano-mechanical resonator can be cleaned by passing a large electric
current, which generates Joule heating and thus boils off the adsorbates [20]. However, it is (almost)
impossible to control the adsorption process to realize the scenario of just one adsorbate. As the model
and method are developed for the one particle case, we have to address how the inverse problem solving
method can be applied to the general scenario of multiple accreted particles. Theoretically, when the
particle number N ≥ 2, we can still repeat the above solving procedures with the measurement of up
to 3N resonant frequencies. However, if N is large, the method becomes more complex and much
less efficient. Furthermore, experimentally measuring a large number of resonant frequencies is also
a big problem, especially for those (very) high modes. Fortunately, we can avoid solving the problem
of multiple particles. The reasons are the following three. Firstly, the current state-of-the-art micro-/
nano-mechanical resonators are very sensitive, which can detect the shifts of resonant frequencies
induced by a single adsorption event. The step-wise decrease of resonant frequency recorded in the
experiments indicates the discrete nature of adsorbates arriving at the micro-/nano-mechanical resonator
one by one, which is also the hallmark of sensing the individual adsorption events of one protein [4,5],
one atom [9,19] and one molecule [20]. By building the histogram of count versus frequency shift for the
ensemble of sequential single gold atom adsorption, Jensen et al. [19] were able to identify with a certain
confidence level that the gold atomic mass ranges between 0.1 zg and 1 zg, as compared with the true
value of 0.327 zg (1 zg = 10−21 g). Proteins in solution often aggregate to form different oligomers, which
have different masses [4]. By building the histograms of event probability versus frequency shift for the
ensembles of sequential single protein adsorption, Naik et al. [4] achieved a marvelous result: from the
data of 578 individual adsorption events, they can tell that the “nominally pure” protein of bovine serum
albumin (BSA) consists of a monomer, dimer, trimer, tetramer, pentamer and their composition. With the
help of the second resonant frequency, Hanay et al. [5] achieved an even more astonishing result: from
the data of 74 individual adsorption events, they can identify 14 different isoforms and their composition
of the human IgM antibody. Our inverse problem solving method can do similar work with one datum
of one single adsorption event. The underlying rationale is that the above statistics methods [4,5,19]
deal with two convolving parameters of an adsorbate: mass and position; therefore, they need tens or
hundreds of data to “decouple” these two parameters by assuming certain distribution rules, such as
Gaussian; because our method can determine the mass and position of an adsorbate, one adsorption
event is enough. Secondly, we need the assumption that the mass of previously adsorbed particles is
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very small compared with that of a resonator. When there are multiple (unknown) adsorbates, α defined
in Equation (3) becomes the following:

α =
Mo

mL+
∑N

i Mi

≈ Mo

mL
(16)

where N is the (unknown) number of adsorbates and Mi is the corresponding (unknown) mass; Mo is
the mass of an incoming particle. The above approximation holds by assuming

∑N
i Mi � mL. As

discussed above, one great advantage of a micro-/nano-mechanical resonator sensor is to detect the tiny
fractional shifts of resonant frequencies, and a very tiny amount of mass can thus be sensed. In Chiu’s
experiment [9], the mass of the carbon nanotube resonator is around 1000 zg; the adsorbates are the
molecules of noble gas, and the atomic masses of xenon and argon are 0.218 zg and 0.066 zg, which
corresponds to α = 2.18 × 10−4 and α = 6.6 × 10−5, respectively. The mass of previously adsorbed
particles has little or no impact on the resonant frequency; the mass and position of a landing adsorbate
are mainly or solely responsible for the step-wise resonant frequency drop observed in the experiments,
which is also the implicit assumption used in the above statistics methods [4,5,19]. Thirdly, the multiple
resonant frequencies induced by an adsorbate can be measured (almost) simultaneously between two
individual adsorption events [5]. The resonant frequency of a micro-/nano-mechanical resonator can be
as high as one gigahertz or even higher [8,20], and the time required to measured the resonant frequencies
is extremely small. On the other hand, the adsorption rate is relatively slow, for example, the argon
adsorption rate is 0.09 atom per second [9]. In conjunction with these three conditions, our inverse
problem solving method can determine the mass and position of a particle by one single adsorption event,
which is more efficient than the statistics approaches [4,5,19]. Furthermore, the statistics approaches
are complex, and histogram analysis is time-consuming, which hinders their application in real-time
particle mass spectrometry [37]. On the other hand, solving Equations (14) and (15) is much simpler
and straightforward, which is capable of real-time analysis.

4. Conclusions

An approximate analytical solution for the eigenfrequencies of a mass resonator with a cantilever
structure is presented, and its accuracy for small concentrated mass and damping is also demonstrated.
The approximate analytical solution is obtained by ignoring the off-diagonal elements of the mass matrix
formed by the Galerkin method. The error of the approximate analytical solution becomes large when
the concentrated mass or damping is large. The approximate analytical solution can be used to uniquely
determine one concentrated mass and its position by measuring at most the first three eigenfrequencies
(sometimes only two). The possibility of applying the method to the practical application of the
micro-/nano-mechanical resonator mass sensing is discussed. The method can be easily extended to
the resonator with the clamped-clamped boundary conditions [8,16,20] by simply changing the mode
shape function of φi.
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