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Abstract: A constant false alarm rate (CFAR) target detector in non-homogenous 

backgrounds is proposed. Based on K-sample Anderson-Darling (AD) tests, the method  

re-arranges the reference cells by merging homogenous sub-blocks surrounding the cell 

under test (CUT) into a new reference window to estimate the background statistics. 

Double partition test, clutter edge refinement and outlier elimination are used as an  

anti-clutter processor in the proposed Modified AD (MAD) detector. Simulation results 

show that the proposed MAD test based detector outperforms cell-averaging (CA) CFAR, 

greatest of (GO) CFAR, smallest of (SO) CFAR, order-statistic (OS) CFAR, variability 

index (VI) CFAR, and CUT inclusive (CI) CFAR in most non-homogenous situations. 

Keywords: target detection; Constant False Alarm Rate (CFAR) detector; Anderson-Darling 

(AD) test; statistical signal processing; clutter edge; non-homogenous background 

 

1. Introduction 

Most target Constant False Alarm Rate (CFAR) detection algorithms are designed for a particular 

family of clutter distribution models. However, echo data in real environments are usually  

non-homogeneous and do not follow the assumed probability distribution model independent of which 

remote sensors are used such as radar, sonar, or chemical-detection sensors [1,2]. This is due to the 
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multi-source detection environment, which degrades detection performance especially in multi-target 

and clutter edge backgrounds [3]. 

The earliest CFAR detector, Cell Average (CA)-CFAR [4], is optimal in a homogeneous 

background when the reference cells follow an independent and identical distribution (IID) to the cell 

under test (CUT) by an exponential distribution. It does, however, suffer a serious performance 

degradation in multi-target and clutter edge backgrounds [5]. Later modifications of CA-CFAR include 

the Greater Of (GO) CFAR, which can minimize the false alarm rate in the case of a clutter edge, [6] 

and the Smaller Of (SO) CFAR, which offers better performance in a multiple target environment [7]. 

Approaches to improve performance in both homogenous and non-homogenous detection 

backgrounds fall into two broad categories [8]. One focuses on the modifications of the CA-CFAR, 

such as ACCA-CFAR [9]. The other detects the presence of non-homogeneity in the CFAR window 

before applying suitable CFAR methods. One example of the latter is Variability Index (VI)-CFAR, 

which provides low CFAR loss in a homogeneous environment and performs robustly with multiple 

targets and clutter edges [10]. However, the performance of the VI detector degrades when interfering 

targets are not confined to one side of the Cell Under Test (CUT). Multiple possible modifications to 

the VI-CFAR detector are used to improve the performance in such cases. Two examples are  

IVI-CFAR [11], MVI-CFAR [12].  

Thus, it can be concluded that identifying the type of the background may be the key to optimizing 

the detector in a multi-target or clutter edge environment. The current literature shows that clutter 

classification can improve the performance of detectors. Bouvier [13] used a statistical distribution 

model for clutter identification to classify the detection background into one of three categories: sea 

clutter, ground clutter or compound clutter. Oliver [14] introduced a method that uses textural features 

as the attributes for clutter representation. The class selection is determined by fitting parameters to the 

statistical distribution. 

In recent years the research community has proposed several intelligent method based solutions. 

Neinavaie [15] proposes a preprocessing algorithm, which can classify clutter using an on-line 

intelligent method. This method obtains a radar clutter map without geodata of the environment.  

Li proposes a cognitive detector that uses statistical distribution and image features to recognize clutter 

on-line [16]. The multi-strategy detector makes a decision based on the various parameters of the 

probability distribution function for each particular background. Pierucci [17] introduces a  

knowledge-based detection system that utilizes 11 feature values for recognizing types of clutter. 

These are derived from the second moments about the origin as the attributes of echoes.  

Another problem with the current methodology is that real datasets do not necessarily follow the 

assumed identical distribution of a prototypical clutter series. Testing the homogeneity of samples 

before identifying the distribution model for sample series may be a way to solve this problem.  

Zhang [18] proposed the AD-CFAR detection based on a K-sample AD test and analyzed its 

performance in a Rayleigh background. Kim [19,20] introduced an AD test based CUT inclusive (CI) 

CFAR algorithm using a 3 × 3 two-dimensional reference window as the minimum reference block. 

Better performance can be achieved by accumulating more reference cells.  
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This paper proposes a more effective method for clutter classification based on modified K-sample 

Anderson-Darling (AD) tests. Double partition test, clutter edge refinement and outlier eliminating are 

incorporated into the algorithm in order to improve performance in multi-target and clutter edge 

backgrounds. Comparison between different algorithms is based on the same number of reference 

windows. In the 2nd section of the paper, the basic theory of K-sample AD tests is introduced, and a 

homogenous clutter block extraction method based on Modified AD (MAD) tests is proposed. 

Comparison and simulation results are presented in Section 3 under homogenous, multi-target and 

clutter edge backgrounds. Conclusions drawn from these results are presented in Section 4. 

2. Homogenous Clutter Extraction Based on Modified AD Test 

2.1. K-Sample AD Tests 

K-sample AD tests [21] are used for testing the homogeneity of samples when the clutter model  

is unknown. 

We test the hypothesis: 

 (1) 

where F1, F2,…, FK are the Cumulative Distributed Functions (CDF) of clutter block. Let the clutter 

block vector be defined as: 

 (2) 

 (3)

where ni, is the number of the samples in block Bi, iN n=  and 
iInF  is the Empirical Distributed 
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It was previously shown that a homogeneity test of H0 may be carried out by comparing the degree 

of approximation between 2
KNA  and a Gaussian distribution [18]. The statistic TKN after 2

KNA  is 

normalized as: 

2 2 2[ ] ( 1)KN KN KN
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If 
1( )KN KT t α−< , then H0 is not rejected. Here, 1( )Kt α−  is the critical threshold of KNT  with the 

confidence level of α . If 1m K= − , then:  

1 2
0( )m

b b
t b

mm
α = + +  (11) 

with 0 1 2,  ,  b b b  derived in previous work [21]. 

2.2. Homogeneous Clutter Block Extraction 

The detection probability Pd and the false alarm probability Pf are derived based on ideal detection 

conditions in a nonhomogeneous environment, i.e., the clutter block (1 )iB i K≤ ≤  can be detected 

when there are interfering targets and clutter edge in the background [18,20].  

However, such circumstances cannot be assumed (see Figure 1). For example, in AD tests, let the 

sample numbers of the clutter blocks B1 and B2 be six, and block B1 be homogeneous. These two 

clutter blocks can be identified as homogenous with a confidence level α  according to Equations (10) 

and (11). Thus, in this situation, a Modified AD (MAD) CFAR detector is proposed in order to 

improve the performance. Compared with the AD-CFAR detector, a MAD based CFAR detector 

includes the operations of double partition test, clutter edge refinement and outlier eliminating  

as follows:  

The procedure for the double partition test is shown in Figure 2. Let the reference window be 

divided into six clutter sub-blocks of equal length. Initially, the 6-sample AD test is performed on the 

entire reference window. The normalized 2
KNA , i.e., KNT , being less than 1( )Kt α− , does not 

automatically fail to reject H0 because the K-sample AD test cannot delete the nonhomogeneous clutter 

sub-block shown in Figure 1 effectively. Thus, the double partition test for the whole reference 
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window is necessary after calculating the 6-sample AD test statistic 1( )KN KT t α−< . In this step, five 

equally spaced clutter blocks are generated by localizing the clutter block edge to the center of the 

clutter block in the 1st partition test. This 5-sample AD test may fail to reject H0 if 1( )KN KT t α−< . As 

non-homogenous clutter are shown in Figure 1b, high power clutter will fill in a clutter sub-block 

during the 2nd partition test if it straddles between two clutter blocks. In this case, a K-sample AD test 

can identify the nonhomogeneous reference window effectively, and then use the subsequent 

homogeneity identification method for the clutter sub-block.  

Figure 1. Sketch of non-homogenous background (a) The background with interferences; 

(b) The background with straddling clutter. 
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(b) 

After the double partition tests, a 2-sample AD test will work on the sub-blocks for homogeneous 

clutter block extraction and merging in the case that H0 is rejected. The simplified flow chart is shown 

in Figure 3. The procedures in the block with dotted line in Figure 3 are: 

Step 1:  Divide the reference samples x1, x2,…, xn into d = [n/m] blocks, each block has m samples. 

Step 2:  Let the clutter block next to the CUT be C1, C2, others be B1, B2,…, Bd−2, and Y = {C1, C2}. 

Step 3: K-sample AD test works on C1, C2 (K = 2), if they are homogenous, then go to Step 4, 

otherwise test whether Bi (i = 1, 2,…, d − 2) is homogenous as C1, C2. Merge homogenous 

blocks and get Y1 = {C1, Bi,}, Y2 = {C2, Bi,} till i = d − 2. Select the longer one between Y1 

and Y2, and let it be Y. 

Step 4: Test whether Y and Bi (i = 1, 2,…, d − 2) are homogenous. If yes, then Y = {C1, C2, Bi},  

till i = d − 2. 
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Figure 2. Double partition test. 
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Figure 3. Flow chart of homogenous clutter block extraction. 
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Clutter edge refinement is shown in detail in Figure 4. The algorithm described above will  

identify block C as it has the same distribution as B1 and B2 with a high probability if the clutter  

block C consists of clutter edge as is shown in Figure 4. In the clutter edge refinement section, a  

2-sample AD test is operated on D1 and D2 to locate the new position of the clutter edge to see if  

D1 and D2 have the same distribution. If yes, C can be determined to have the same distribution as  

B1 and B2. If no, the first part of C is identified as the same distribution as B1 and B2. Thus the accuracy 

of the extraction is a half-length of the sub-block, which can improve performance in clutter  

edge environment.  

Figure 4. Clutter edge refinement. 
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To eliminate the effect of multi-interference, an outlier-eliminating operation should follow the 

clutter homogeneity extraction. A conventional and effective curvilinear regression analysis [22] 

method is applied to the reference window. The upper confidence bound value can be set as 

100(1 )%α− . Then 2 or 3 order unary non-linear regression curves can be generated to estimate the 

background level of CUT to eliminate the outliers based on the least square method. 

3. Performance Comparison and Analysis 

In this section, Monte Carlo simulations were performed to test the performance of the  

MAD-CFAR detector in homogeneous, multi-target and clutter edge environments. The length of the 

reference window N is 36 for MAD-CFAR and CI-CFAR, which can be divided into 6 blocks for 

MAD-CFAR processing. The confidence level is 0.01 for AD test. For CI-CFAR, the 3 × 3 sub-block 

is resized to 6 × 1 sub-block. The compared CFAR algorithms are CA-CFAR, GO-CFAR, SO-CFAR,  

VI-CFAR, CI-CFAR, OS-CFAR. For VI-CFAR, Kvi is 6.72, and Kmr is 2.064. For OS-CFAR,  

k is 3 × N/4 where N is the number of reference cells. The noise of the detection background obeys 

exponential distribution. The upper confidence bound value of the outlier-elimination method is  

set at 0.85 ( =0.15α ). Table 1 describes the target and clutter scenario of each simulation and 

summarizes the simulation results. 
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Table 1. Summary of results. 

Type of the Environments 
Performance (A > B Means A is Better than B,  

A ≈ B Means A is Almost Same as B) 

Homogenous (Pd vs. Pf): CA>GO>MAD>VI>SO> OS>CI

One inteference 

r(0,1) 

Pd vs. Pf (ROC): MAD>CI>OS>SO>VI>CA>GO 

CFAR control(INR vs. Pf): MAD≈SO≈CI≈OS>VI>CA>GO 

Pd control(INR vs. Pd): SO≈CI≈OS>MAD≈VI>CA>GO

Two inteferences on one 

half side of the CUT 

r(0,2) 

Pd vs. Pf (ROC): MAD>CI>OS>SO>VI>CA>GO 

CFAR control(INR vs. Pf): MAD≈SO≈CI≈OS>VI>CA>GO 

Pd  control(INR vs. Pd): SO≈CI≈OS>MAD≈VI>CA>GO

One inteferences on each 

half side of the CUT 

r(1,1) 

Pd vs. Pf (ROC): MAD>CI>OS> CA>GO> SO>VI 

CFAR control(INR vs. Pf: MAD≈CI≈OS>VI>SO>CA>GO 

Pd control(INR vs. Pd): MAD≈CI≈OS>VI>SO>CA>GO

Clutter edge 

Pd vs. Pf (ROC) (Nc = N/2): CA>GO>VI>OS>MAD≈SO>CI 

Nc vs. Pf (Nc = N/2): GO>CA>MAD>>VI>OS>CI>SO 

CFAR control (Nc > N/2): GO>CA>MAD>OS>CI>VI>SO

3.1. Homogeneous Environment 

In the homogeneous environment, all the clutter sub-blocks follow the same distribution. For  

K-sample AD test, the MAD-CFAR detector can determine whether or not the selected clutter blocks 

are homogeneous with a high degree of certainty. For the Receiver Operation Characteristic (ROC) 

curve (Pd vs. Pf) Pf is set from 10−4 to 10−0.5, Signal-Noise-Ratio (SNR) of the target in CUT is 15 dB 

and the number of Monte Carlo simulation times is 106. Figure 5 represents the case in which all of the 

background clutter is homogenous. To test the detection performance of different CFAR algorithms, 

the number of reference windows is set to be identical. The ROC curves of MAD, GO, CA, VI-CFAR 

detector nearly coincide. However, the SO-CFAR and CI-CFAR detector show the worst performance, 

as is expected in [20] and [23] with the same number of reference cells as other detectors. 

Figure 5. Pd vs. Pf (ROC) in homogeneous environment. 
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3.2. Multi-Target Environment 

In the multi-target background, an AD based clutter extraction algorithm (CI-CFAR) cannot 

eliminate the clutter block with interference effectively as is shown in Figure 1a. Similar to the  

CA-CFAR method, it will determine whether or not the current clutter block follows the same 

distribution and select the whole reference window to estimate the power level of the clutter. Figure 6 

is the result of the environment given one interference. Here r(0,1) means one interference is located 

on one half of the CUT whereas r(1,1) represents one interference is located on each half of the CUT. 

The Clutter-Noise-Ratio (CNR) or Interference-Noise-Ratio (INR) is 20 dB and SNR is 15 dB. Pf and 

simulation time are same as in Section 3.1. 

Figure 6. Pd vs. Pf  (ROC) in the non-homogenous environment with one interference, r(0,1). 

 

Figures 7 and 8 are simulation results for the multi-interference environment with two interferences. 

Both INRs are 20 dB and SNR is 15 dB. Figure 7 is the case where there are two interferences on one 

half side of CUT. The ROC curves show nearly the same result as is in Figure 6. It indicates that the 

number of interferences on one half side of CUT does not affect the detection performance too much. 

However, Figure 8 with r(1,1) shows a different scenario especially for SO, GO and VI, which are 

sensitive to homogenous/non-homogenous of one half side of CUT.  

Considering the MAD-CFAR method, outlier elimination in the extracted homogeneous clutter 

sequence can help improve the performance in a multi-interference environment. Although K-sample 

cannot eliminate clutter sub-blocks with multiple targets effectively, outlier eliminating can act as an 

anti-interference method. It deletes the maximum value sample and uses the other values as references 

to estimate the clutter power in the clutter sub-block. It can thus increase the detection probability 

while maintaining the false alarm rate. As is shown in Figures 6–8, the proposed MAD based detector 

has the best performance, particularly when the number of interference targets is greater than one.  

CA-CFAR, VI-CFAR, alternatively, is sensitive to the scenarios where interference is located on one 

half or both half sides of CUT. 
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Figure 7. Pd vs. Pf  (ROC) in the non-homogenous environment with two interferences in 

one half of the reference window, r(0,2). 

 

Figure 8. Pd vs. Pf  (ROC) in the non-homogenous environment with one interference in 

each half of the reference window, r(1,1). 
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Figure 9. Pd vs. INR in the non-homogenous environment, r(0,1). 

 

Figure 10. Pf vs. INR in the non-homogenous environment, r(0,1). 

 

Figure 11. Pd vs. INR in the non-homogenous environment, r(0,2). 
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Figure 12. Pd vs. INR in the non-homogenous environment, r(1,1). 

 

Figure 13. Pf vs. INR in the non-homogenous environment, r(0,2). 

 

Figure 14. Pf vs. INR in the non-homogenous environment, r(1,1). 
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3.3. Clutter Edge Environment 

When the clutter edge crossed CUT, the Pf degraded sharply especially when the number of 

reference cells occupied by the clutter edge is equal to half of the number of the reference window.  

Let CNR be 10, SNR be 25, and Nc be N/2, which is the number of reference cells occupied by the 

clutter edge. Other simulation parameters are the same as in Section 3.1.  

Figure 15 is the result of the case in clutter edge with the above-mentioned simulation parameters. 

By using an edge refinement method, MAD-CFAR outperforms CI-CFAR and is close to SO-CFAR. 

Figure 15. Pf vs. Pd (ROC) in clutter edge environment. 

 

Figure 16. The false alarm performance in clutter edge environment. 
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and SO-CFAR in this measure. It had an inferior performance when compared to GO-CFAR and  

CA-CFAR. When Nc is bigger than N/2, the smoothness along Nc axis can show the CFAR control 

capabilities of detectors. In this case, MAD-CFAR outperforms OS-CFAR, CI-CFAR, VI-CFAR  

and SO-CFAR. 

We can conclude that using the two-time reference window partition, clutter edge refinement 

method help the proposed MAD-CFAR detector outperforms the CI-CFAR in ROC and have a good 

CFAR control capability. 

3.4. Computation Cost 

Table 2 lists the computation cost with 1000 times Monte Carlo simulation with Intel Core i7-2600 

CPU @ 3.4 GHz, 4 GB memory. MAD-CFAR costs a little more (1.16 times) than CI-CFAR. 

Table 2. Computation Cost. 

Algorithm 
Time Cost  

(s) 
(Time Cost) Divided by  

(Time Cost with CA-CFAR) 

CA-CFAR 2.33 1 

GO-CFAR 2.61 1.12 

SO-CFAR 2.57 1.10 

VI-CFAR 2.34 1.00 

MAD-CFAR 3.91 1.68 

CI-CFAR 3.37 1.45 

OS-CFAR 2.66 1.14 

4. Conclusions 

A modified AD test-based (MAD) CFAR algorithm is proposed in this paper. K-sample AD tests, 

double partition tests, clutter edge refinement and outlier elimination are used for target detection  

in a non-homogenous environment, such as multi-interference and clutter edge background. 

Simulations show that the proposed method has a perfect CFAR control capability and high detection 

performance in the background with multi-interferences and clutter edge. The results indicate that the 

MAD-CFAR detector outperforms CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR, VI-CFAR, CI-CFAR 

in most situations. 
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