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Abstract: Along with the dose rate and the total irradiation dose measurements, the 

knowledge of the beam localization and the beam profile/energy distribution in the beam 

are parameters of interest for charged particle accelerator installations when they are used 

in scientific investigations, industrial applications or medical treatments. The transverse 

profile of the beam, its position, its centroid location, and its focus or flatness depend on 

the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new 

type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was 

demonstrated. Its operating principle relies on the measurement of the peak wavelength 

changes for an array of FBG sensors as function of the temperature following the exposure 

to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force 

cooled to a reference temperature with which the temperature influencing each sensor 

during beam exposure is compared. Commercially available FBGs, and FBGs written in 

radiation resistant optical fibers, were tested under electron beam irradiation in order to 

study their possible use in this application. 

Keywords: fiber Bragg grating; electron beam; on-line beam profilometry; radiation-hardened 

optical fiber 
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1. Introduction 

Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam 

localization and the beam profile/energy distribution in the beam are parameters of interest for charged 

particle accelerator installations when they are used in scientific investigations, industrial applications 

or medical treatments. The transverse profile of the beam, its position, its centroid location and its 

focus or flatness depend on the instrument operating conditions or on the beam exit setup.  

Various methods have been proposed to evaluate the beam transverse profile: arrays of Faraday 

cups [1,2]; ionization chamber and imaging plates [3]; micro strip metal detector [4]; pepper-pot 

device, slit-grid method [5] or rotating slits [6]; Optical Transition Radiation (OTR), Secondary 

Emission Monitors (SEM) [7,8]; phosphor afterglow [9]; scintillating screen [8,10] or scintillating gas 

detector [11] and charge coupled device (CCD) camera; flat panel detectors [12], arrays of p-i-n  

diodes [13] or IonCCD [14]; moving wire scanners [15,16] or vibrating wire scanners (VWS) [17]; 

Compton-scattered laser light [18]; mesh of scintillating optical fibers [19]; detection of 

Bremsstrahlung radiation scattered by special foils [20].  

The present paper reports the proof-of-concept (the design and the implementation) of a beam 

profile instrument for electron beams, based on an array of fiber Bragg gratings (FBGs). The behavior 

of commercially available FBGs and FBGs developed in radiation-hardened optical fibers was 

investigated for the first time under electron beam irradiation, for possible inclusion in the instrument 

for electron beam profilometry. Tests were carried out under electron beam irradiation at the National 

Institute for Laser, Plasma and Radiation Physics.  

2. Operating Principle 

In the case of FBGs one or several gratings are inscribed in the optical fiber core by various means 

able to modulate the fiber-refracting index. As it has a broad spectral band, an optical signal 

propagates along the optical fiber, a narrow, specific wavelength is reflected, and all other wavelengths 

are transmitted. This way, the grating acts as a very selective wavelength filter. If a FBG is subjected 

to external factors (temperature, strain), the period of the grating changes, which implies a 

modification of the reflected wavelength. The shift of this peak wavelength can be linked to the 

magnitude of the external stimulus [21]. Under these conditions, the grating operates as an intrinsic 

optical fiber sensor. The two mentioned effects induce a change in the peak wavelength simultaneously, 

so, in order to monitor only one of the external parameters, the two effects have to be decoupled.  

Exposed to radiation, optical fiber gratings undergo a significant or less significant change in their 

parameters, depending on the type of the optical fiber (photosensitive optical fibers with various dopants 

or hydrogen-loaded [22]), the technology used to produce the grating (Type I, Type II, Type IIA  

FBGs [22], long-period gratings [23,24]) or the characteristics of the irradiation field (gamma-ray [22],  

neutron [25], proton beams [26]). When such gratings are irradiated under high total irradiation doses 

they show remarkable radiation resistance [27] or demonstrate some vulnerability to ionizing  

radiation [28], recommending them for radiation dosimetry.  

Based on FBGs’ response to temperature under irradiation we designed an instrument for the 

evaluation of electron beam transverse profile in real time. The paper describes the construction and 
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operation of the developed beam profile instrument. According to our knowledge, this is the first report 

on FBGs exposed to electron beam irradiation. 

3. Implementation and Results 

The basic idea of the instrument relies on the wavelength change of FBGs exposed to an electron 

beam as their temperature increases because of the energy they receive from the incident charged 

particles. Statistically, spatial mapping of the temperature change is associated with the spatial 

distribution of the beam energy. In this way, two-dimensional (2D) temperature mapping can be used 

to evaluate the transversal characteristics of the beam (shape, uniformity, flatness, localization, hot spots 

detection, etc.). Figure 1 presents a schematic drawing and the practical implementation of the equipment 

as it was designed to operate, for vertical irradiation geometry in conjunction with the linear accelerator 

(LINAC) machine developed at the National Institute for Laser, Plasma and Radiation Physics. 

Figure 1. (a–c) The schematic drawing of the electron beam profile instrument based on 

FBGs: 1—mechanical stops; 2—limiting switches. (d, e) the practical implementation of 

the instrument. 

 
(a) 

 
(b) 
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Figure 1. Cont. 

 
(c) 

(d) (e) 

From a mechanical point of view, the profile meter has two distinct horizontal planes: in the upper 

one, a mechanical shutter can be moved along the longitudinal axis of the structure, while the lower 

plane constitutes the detection plane. In Figure 1c,d the shutter is in the open position enabling the 

electron beam, which is perpendicular to the two planes from above, to reach the detection plane where 

the FBGs sensor array is located. The shutter includes a 20 mm thick Al board designed to stop the 

electron beam from traveling towards the detection plane when closed.  

The 2D temperature sensor is located in the detection plane. It includes an array of FBGs embedded 

into a polystyrene backplane in order to thermally isolate the individual sensors from one another and 

to prevent any strain from being applied to the gratings during irradiation. The sensors are placed into 

an array format and are read sequentially by a four-channel sm125 Micron Optics interrogator. The 

sensor array is exposed periodically to the electron beam, until its temperature reaches a limiting value 

established by the operator. The upper limit of the temperature depends on sensor characteristics 

(maximum operating temperature, the dynamic range of the wavelength change with temperature, etc.). 
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The limiting temperature value is detected either by monitoring the maximum wavelength shift of all 

the gratings or with a thermocouple which is simultaneously exposed to the charged particle beam. The 

mechanical shutter blocks the electron beam incident on the sensor array as the limiting temperature is 

reached. This way, no more energy is transferred towards the gratings, which are subjected to an 

accelerated cooling process, as a fan blows air over them. The operator has the possibility to set the 

lower limit of the sensor temperature, either as a wavelength change or as indicated by the 

thermocouple. After cooling is achieved, the shutter opens and the exposure of the sensing array to the 

electron beam energy begins.  

The instrument is controlled by a laptop computer through a specially designed interface and a VI 

developed in LabVIEW. The limits of how far the shutter opens or closes are detected by the controller 

based on the signals received from two limiting switches. The extreme positions of the shutter are 

signaled to the operator on the graphical user interface by two virtual light-emitting diodes (LEDs). 

The cycle can run continuously or can be controlled manually by the operator. During the period the 

shutter is off (open) the sensors are scanned continuously and data regarding their wavelength values 

are saved on the laptop hard drive (HD). The acquired data are processed to build three-dimensional 

(3D) arrays containing information on the sensors’ position in the detecting plane and the instant value 

of their peak wavelength. This way, between subsequent “shutter off” and “shutter on” commands, the 

spatial change of the beam energy in the transverse plane is recorded. At the end of the data acquisition 

cycle, the controller displays the distribution of the beam energy, as detected by the gratings array. 

This map indicates the beam energy at every sensor location by measuring at each point the excursion 

of the peak wavelength between the lower limit reached by the end of the cooling cycle and the final 

value read at each location at the end of the exposure process.  

The “exposure time” is set by the operator as a function of the beam energy, sensitivity of FBGs 

and the speed of the heating process (dose rate). The Micron Optics interrogator is controlled through 

an Ethernet connection, while the temperature from the thermocouple is collected with a  

NI-cRIO-9211 temperature data logger by a USB connection. The acquisition rate in our case is 

conditioned by the interrogator scanning frequency (1 Hz), the number of channels (four channels in 

our application) and the time required for processing information associated with each channel (i.e., 

the number of gratings per channel). Theoretically, the unit can accommodate up to 80 sensors. A 

larger number of sensors can be interrogated using an external multiplexing unit (i.e., Micron Optics  

sm041-408 or sm041-416).  

The instrument has no moving parts in the detection plane and, if needed, can operate in vacuum, as 

the sensors connected in a daisy-chain setup can be coupled with the interrogator through an optical 

fiber, multi-port vacuum feedthrough device [29]. In such a case, the air cooling has to be replaced by 

thermoelectric cooling. The instrument can be controlled remotely (in our setup the distance is about 

15 m apart from the irradiation zone), so that no other components or devices are exposed to irradiation 

or to high electromagnetic interferences. Only the FBGs, the thermocouple and the mechanical shutter 

are placed in the irradiation area.  

The spatial resolution, which can be achieved with such a profile meter, is set along one axis by the 

distance between two sensor rows (located 3–5 mm apart) and along the other axis by the length of 

individual FBGs (which in our case was either 12 mm for commercial the products we used, or 4 mm 

for the custom designed components). The dynamic range for the beam energy detection with FBGs 
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depends on the span between the low and high temperature values. In our study, we set the low 

temperature value to 18 °C, while the highest temperature was 65 °C, as allowed by the upper limit 

imposed by the FBGs used. An extended range can be achieved between 18 °C and 200 °C if high 

operating temperature gratings are used instead. This dynamic range ensures a linear response of the 

sensor over the temperature range. The resolution of the acquired signal is 0.1 °C, corresponding to the 

best spectral resolution provided by the interrogator. The temporal resolution of the equipment is 

dependent on the electron beam dose rate. In the experimental setup we used (an increase of the FBGs 

temperature up to 37 °C and the air flow provided by a PC fan) the cooling time was about  

1–2 min. The presence of “hot spots” or non-uniformities of the beam energy distribution are locally 

responsible for the upper temperature limit. The mechanical shutter “turn-on” and “turn-off” times are 

in the order of 30 s and can be adjusted by the operator according to the experiment needs. 

The reason for the inclusion in the setup of the shutter and the fan is to eliminate the bias present 

after each exposure, as the sensor array needs quite a long time to cool down based on only 

convection. Figure 2 illustrates this bias when the sensor array is exposed to increased total doses and 

the cooling is provided only by air convection. In the illustrating curves, the positive slopes correspond 

to the FBGs exposure to the electron beam, while the negative slopes reflect the FBGs cooling, by 

natural convection as the irradiation is stopped. As can be noticed from the acquired data, it is difficult 

to naturally cool the sensor array after the exposure stops. The presence of this biasing level in the 

wavelength readout leads to a long time interval between exposures, as requested by the natural 

convection. By closing the shutter, the irradiation of the sensors is stopped and they are simultaneously 

cooled to the reference temperature of 18 °C. This approach also has the advantage of checking the 

beam quality by obstructing the beam for very short durations. The force cooling is also required as the 

temperature in the operating room varies when the accelerator is subjected to various operating 

conditions. The shutter can be used in the “on” (closed) position as support for the samples to be 

irradiated, so the operator can switch between sample irradiation and beam quality check.  

For all measurements, we considered only the wavelength shift of each sensor against the initial 

level when the measurements started. The presence of the bias signal along with the imposed upper 

temperature during the irradiation limits the dynamic range of the instrument. A higher dynamic range 

can be achieved by: (i) blocking the electron beam simultaneously by force cooling the sensors;  

(ii) using FBGs able to operate under higher temperatures. 

Whatever the situation is, during the exposure of the sensor array, data are acquired continuously at 

the rate of one scan per second. With this approach, the full “history” of the electron beam energy 

distribution changes during the monitoring process is available to the operator, who can correlate these 

changes with the operating conditions initially set (beam current, magnetron voltage, voltage on the 

injection section of the machine, etc.).  

In order to use FBGs as sensors in the proposed electron beam profile instrument and to assess their 

degradation under this type of radiation exposure we tested some commercially available FBGs and a 

FBG from a set written in a radiation-hardened optical fiber. Gratings in single mode (SM)  

andnon-photosensitive radiation-hardened fibers were written by a two-beam interferometer and deep 

ultraviolet femtosecond laser radiation [30]. The produced FBGs have a peak wavelength between 

1545 nm and 1554 nm and a reflectivity varying between 30% and 90%. The commercially available 

products are from Technica SA, written in SMF-28 optical fiber, and operating at λ = 1516 nm,  
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1526 nm, 1536 nm, 1546 nm, each grating having a length of 12 mm, and the following parameters: 

reflectivity > 80%; BW@3 dB < 0.3 nm; Side Lobe Suppress Ratio (SLSR) > 15 dB;  

Acrylate recoating. 

Figure 2. The effect of the bias during the wavelength reading, after subsequent exposure 

of the same sensor to different doses, in the case of natural cooling by convection. 

 

For the evaluation of the FBGs degradation under electron beam irradiation, tests were done by 

subjecting the gratings to temperature cycling, heating and cooling them from room temperature to  

65 °C, in a temperature-controlled chamber type Memmert UE 400, in order to evaluate their behavior 

after irradiation. These tests were run initially and between the irradiation steps. During the 

temperature cycling tests, we monitored the Bragg wavelength change and the full spectrum of the 

gratings. The chamber temperature was increased linearly via commands from the controller we 

developed, while the cooling was done through natural convection. For both the heating and the 

cooling process, the controller acquired data from the NI temperature data logger and from the Micron 

Optics interrogator. An example of a calibration curve used for the evaluation of the temperature 

sensitivity for one of the tested FBG is given in Figure 3. After each test, the modifications of the full 

width at half maximum (FWHM), the temperature sensitivity and the SLSR were estimated. For the 

total irradiation doses reached during the irradiation campaigns no significant changes of these 

parameters were noticed.  

Figure 4 compares the spectral characteristics of a commercial available FBG before any irradiation 

and after it was subjected to a cumulated total dose of 292 kGy, both measurements being done under 

strict temperature control at 23 °C. As can be noticed, even for extensive exposure to the electron 

beam for over 130 min, no visible degradation of the FBG parameters was observed. The total dose 

present in the operation state of the instrument we designed was much lower than the dose received 

during the reliability tests.  

The description of the beam profile instrument operating principle and the requirements of the tests 

performed between the irradiation steps underline the two sets of functions which have to be 
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performed by the controller: (i) to control and to measure the chamber temperature and to acquire the 

spectrum of a single FBG during the heating-cooling processes; (ii) to collect information on the Bragg 

wavelength shift from the sensors included in the detection array; to monitor the temperature in the 

detection plane during the exposure and the cooling of the sensor array; to switch the shutter and the 

cooling fan “on” and “off” as appropriate; to save the acquired data on HD; to display the recorded 

data as a 2D/3D representations; to make possible the recall of the stored data. 

Figure 3. Calibration curve of the fiber Bragg gratings (FBG) sensor. 

 

Figure 4. The evaluation of the commercially available FGB parameters: (black) before 

the irradiation; (red) after exposure to electron beam, measurements done at 23 °C.  
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Based on these needs, the controller assists the operator with both running the instrument as an 

electron beam profile meter and with testing the possible irradiation-induced degradation of the 

gratings. To perform these tasks, the controller includes two main units: (i) a custom developed board, 

a high-side switch 2n06lh5 with the gate driver, controlled by 5 V; a dual full bridge driver able to 

provide 4 A current to operate a DC motor driving the shutter; the freewheeling diodes for motor 

overload protection; the 5 V regulator used to monitor the proximity switches states, switches which 

detect the limits of the shutter travel; (ii) an Arduino UNO board (ATmega328 microcontroller; 32 KB 

flash memory and 1 KB EEPROM). 

The Arduido board supervises the operation of the controller and of the motor, which drives the 

shutter (sense, speed, detection of the limits). The control of the motor by the Arduino UNO board is 

done using the LIFA program (LabVIEW Interface for Arduino). 

Four graphical windows are available to the operator: “Shutter”; “Thermocouple”; “Oven”; 

“Interrogator Data Acquisition”. Seven buttons on the main window enable the operator to enter 

commands: (a) “Start cool down”—overwrites any previous command and starts the air flow over the 

sensors matrix; (b) “Stop cool down”—overwrites any previous command, moves the shutter into the 

off position and stops the cooler; (c) “STOP Shutter”—stops the shutter at the current location;  

(d) “Start/Reset Motor Control & Temperature Measurement”—initiates all instrument functions 

(temperature recording over time, the cooling-exposure cycle, recording of detected peak values, etc.), 

and does not affect final displayed data; (e) “Start Acquisition”—initiates the display of the acquired 

data, in graphical form; (f) “Stop Acquisition”—stops data acquisition from the interrogator;  

(g) “STOP”—stops the program running and save all data under a name selected by the operator. 

At the end of the exposure period the beam profile instrument displays on the screen the final results 

corresponding to the energy (associated with the total dose) received at each sensing location during the 

data acquisition process. These data represent only the change of the temperature recorded by each FBG 

sensor (as a wavelength shift), measured between the low temperature limit and the final temperature.  

At this moment, the operator has the choice either to allow the software to continue running the  

irradiation-cooling cycles or to interrupt the process and display additional frames from those acquired 

during the irradiation. As the frames are time series coded, the operator has the possibility to visualize 

the evolution of the beam energy transverse distribution at different moments in time. 

Figure 5 illustrates the reconstructed results during the tests, in the case of commercially available 

FBGs arranged in four rows at a distance of 4 mm from one another. The temperature was monitored 

with the thermocouple placed in the same position, and various total doses were used to expose the 

sensor array. By using this detection geometry, a mapping of a large field can be reconstructed. In our 

present implementation, up to 120 frames are stored and can be recalled. The number of frames 

depends on the dose rate and exposure time. Data presented in Figure 5 corresponds to the final 

wavelength shift values reached after exposure to 2 kGy, 4 kGy and 8 kGy. From the acquired data, a 

3D animation of the beam transverse energy profile can be generated, illustrating the spatio-temporal 

variation of the signal generated by the sensor array, as it is subjected to subsequent total irradiation 

doses. The supplementary file “Animation_3frames.gif” is an example of the electron beam profile 

temporal change reconstructed for the three doses. For visualization the file has to be open with 

Internet Explorer. 
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Figure 5. Illustration of the three dimensional (3D) reconstruction of the deployed energy 

on the FBG array at: (a) 2 kGy; (b) 4 kGy; (c) 8 kGy. 

(a) (b) 

(c) 

To evaluate the resolution of the instrument, we have to mention that for the tested irradiation 

geometry, the maximum wavelength change achieved (180 pm) is associated with 8 kGy. Considering 

the wavelength accuracy of the interrogator to be 1 pm, for our setup the best detection resolution is 

about 44 Gy. As proved by the calibration curve in Figure 3, the instrument response is liner up to  

65 °C for the FBGs we used. In the presented example, the temperature increases up to 28 °C, which is 

in the linear range of operation of the instrument. 

The irradiation tests were run at the Linear Accelerator facility of the National Institute for Lasers, 

Plasma and Radiation Physics. The electron accelerator, of the traveling wave type, has the following 

characteristics: pulsed operation; macropulse length—4 µs; mean electron energy—6 MeV; electron 

beam current—1 μA, pulse repetition rate—100 Hz; pulse duration—3.5 μs, dose rate—2 kGy/min. 

The beam diameter in the irradiation plane was about 100 mm × 100 mm. 

Examples of the results of the irradiation tests carried out on a commercially available FBG and on 

one FBG inscribed into a radiation-hardened optical fiber are provided in Figure 6. They are used here 
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to derive some conclusions on the radiation resistance of the optical fibers used in the implementation 

of the electron beam profile instrument. In both cases, the irradiation was done by switching on and off 

the electron beam.  

In the first situation, after the irradiation stops, the cooling of the grating was achieved by natural 

convection, and no force cooling was employed. For this reason, the wavelength recovery post 

irradiation is not complete. On the other hand, as the tests were done without any insulation against 

ambient temperature changes, because the electron beam was propagating in the air, the final 

temperature reached by the grating was dependent on the ambient temperature variation in the testing 

facility. This ambient temperature changed as the subsystems composing the LINAC warmed up. In 

the meantime, the operation of the machine by switching it on and off involved some instabilities 

related to the transient regime of the accelerator during the start up. For this reason, we adopted a 

solution with shutter blocking the beam and force cooling. A higher stability and reproducibility of the 

results can be achieved with this solution. Even operating under natural convection, the detecting 

system proves a good reproducibility as indicated by the graph in Figure 6a, where points 1, 2 and 3 

correspond to a 2.5 kGy total dose, point 4 to 3.5 kGy and point 5 to 6.7 kGy. Nevertheless, according 

to the proposed implementation, useful information is derived from the difference between the 

wavelength values at the end and at the beginning of the exposure in every single sensor’s location. By 

their nature, our measurements are relative and not absolute. The proposed method is used for beam 

profile monitoring, not for radiation dosimetry. This method makes possible the evaluation of the 

spatial distribution of the beam energy, which can be associated with the total dose involved. The 

temporal variation of this energy provides information, which can be related to the dose rate. 

The thermocouple was used: (i) to monitor the chamber temperature during the calibration process; 

and (ii) to evaluate the behavior of different types of FBGs during the irradiation tests. Any differences 

between the FBG and the thermocouple output signals during the exposure to the electron beam 

signalize a possible degradation of the FGB, as it was irradiated. 

The results from Figure 6b indicate a very reproducible recovery of the wavelength inscribed in 

radiation-hardened optical fibers (RAD HARD) FBG. The wavelength changes strictly follow the 

temperature variation as indicated by the thermocouple (TC). In this case, points 1, 2, and 3 correspond 

to a total dose of about 2 kGy, while points 4, 5, and 6 are associated with a total dose of about 4 kGy. 

The differences between the two cases are explained by the fact that they were not measured during the 

same irradiation session; however the sensors were placed in the same location. This fact is visible in 

Figure 5, which clearly indicates the spatio-temporal variation of the incident energy (associated with 

the dose rate). For the same sensor, the subsequent irradiation and cooling cycles were performed by 

keeping the sensor in the same position with respect to the incident electron beam. Some differences 

present in the wavelength shift for approximately the same exposure duration can be explained by the 

fluctuation of the dose rate of the electron beam. A higher dynamic range is possible if the sensors are 

cooled down to 15 °C, while the maximum allowed temperature is 65 °C. A higher upper limit of 

temperature can be associated with longer exposure times, which correspond to higher total doses or 

dose rates to be monitored.  
  



Sensors 2014, 14 15797 
 

 

Figure 6. Results of the exposure to the electron beam of: (a) a commercially available 

FBG; (b) a FBG (black curve) inscribed into a radiation-hardened optical fiber (RAD 

HARD FBG). The temperature in the detection plane was monitored by a thermocouple 

(TC, red curve). 

 
(a) 

 
(b) 

The problems solved by the proposed equipment are related to the availability of information on the 

temporal variation of the deposited energy in different locations of the irradiation plane and on the 

spatial non-uniformity of the energy in the beam cross section. An advantage of our solution is the 

continuous, multipoint acquisition of data over the beam cross section. By the end of an exposure 

period, a value proportional to the total energy associated with the total dose received in each sensor 

location is available (information on beam spatial uniformity is obtained). By recalling intermediary 

data saved for each location, the operator can assess information associated with the temporal stability 

of the beam energy.  
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During the irradiation sessions, the shutter is closed and the samples to be irradiated are placed on 

the top of the shutter plate. With this setup, when the beam quality has to be checked, the irradiation is 

stopped for a short time and the beam is sampled by the FBGs array. 

4. Conclusions and Future Work 

The beam diagnostics method and equipment we present here has several advantages over classical 

approaches: it is a non-invasive method; it can be operated remotely and under high electromagnetic 

fields; vacuum operation is easily achieved; daisy-chained and wavelength multiplexing setups make 

the extension of the number of sampling locations possible; and no moving parts are placed in the 

detection plane. As our tests have proven, no significant damage was noticed in the FBGs exposed to 

electron beams. In any case, even if such effects are present, the method accommodates some 

corrections as only relative temperature changes or wavelength variations, respectively, are recorded 

for data processing. Besides that, periodical recalibrations are done using the temperature tests run in 

the temperature-controlled chamber. Being based on an intrinsic optical fiber sensor, the instrument 

requires no alignment. As compared to some classical methods, the newly proposed one is a real time 

measurement device. It has the advantage that it almost continuously records the energy distribution in 

the transversal cross section of the charged particle beam. The intermediary energy distributions can be 

recalled and compared and associated with the changed operating conditions of the accelerator. The 

setup by its principle is fire- and explosion-safe to operate. The demonstrated production of FBGs in 

radiation-hardened optical fibers extends the possibility to operate this beam profile instrument under 

ionizing radiation conditions. 

As these investigations and the associated implementation have acted as a proof-of-concept, we will 

focus our efforts in the near future to refine the equipment design in order to achieve a better spatial 

resolution (shorter and closely located FGBs inscribed in the same optical fiber) and to further 

investigate other types of FBGs, which can be embedded into the detecting system. The use of optical 

fibers designed for high temperature operation can assure an extended lifetime and a higher dynamic 

range. In addition, more tests on custom designed FBGs inscribed in a standard optical fiber and 

radiation-hardened optical fibers have to be performed.  
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