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Abstract: Emergency navigation systems for buildings and other built environments, such
as sport arenas or shopping centres, typically rely on simple sensor networks to detect
emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks
of such static wireless sensor network (WSN)-based emergency navigation systems are the
very limited computing capacity, which makes adaptivity very difficult, and the restricted
battery power, due to the low cost of sensor nodes for unattended operation. If static wireless
sensor networks and cloud-computing can be integrated, then intensive computations that
are needed to determine optimal evacuation routes in the presence of time-varying hazards
can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client
side, as well as the high likelihood of system malfunction during an emergency still remain.
By making use of the powerful sensing ability of smart phones, which are increasingly
ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to
direct evacuees in a coordinated fashion and to improve the reliability and resilience for
both communication and localization. By combining social potential fields (SPF) and a
cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic
loose clusters. Rather than relying on a conventional telecommunications infrastructure, we
suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search
optimal communication routes between portable devices and the network egress nodes that
provide access to cloud servers, in a manner that spares the remaining battery power of smart
phones and minimizes the time latency. Experimental results through detailed simulations
indicate that smart human motion and smart network management can increase the survival
rate of evacuees and reduce the number of drained smart phones in an evacuation process.
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1. Introduction

The large amount of multi-domain sensory information generated by increasingly advanced sensor
networks can aggravate the burden of emergency navigation systems, which demand a time-critical
response with respect to data collection, interpretation and transmission. Traditional WSN-based
emergency management systems, which consist of functionality-identical sensors, have difficulty in
offering optimal evacuations in a timely manner in the presence of time-varying hazards, due to
the limitation in processing capability, battery power and communication speed [1]. Although the
evolution from homogeneous architectures to heterogeneous architectures with functionally-separated
nodes makes WSN-based systems more energy-efficient and fault-tolerant, this structure still suffers
from resource restriction problems due to cost and unattended operation during lifetime.

Owing to the high processing power, large storage, low risk level and high interoperability, cloud
computing has become a dominating technology and has the potential to revolutionise the emergency
management landscape. Accompanying this tendency, a new interest has been aroused to consider
smart phones as simple clients for the back-end cloud due to their large-scale adoption and sensing
abilities [2,3]. Compared with WSN-based counterparts, smart phone-aided, cloud-based emergency
response systems are more flexible due to the elimination of both the extensive time to setup a permanent
WSN and the routine maintenance, such as battery changes. Furthermore, owing to the enormous
processing power, cloud computing can be beneficial in providing better quality of information (QoI) [4]
and making more sophisticated decisions. Additionally, cloud-based emergency navigation systems can
decrease the likelihood of being affected by the ongoing hazard and reduce energy consumption of thin
clients by offloading computations to the remote cloud.

However, state-of-the-art cloud-based emergency navigation systems, which are based on the
client-server model, still face many challenges. For instance, most systems adopt optimal path-finding
algorithms that demand time-consuming full graph searches and information synchronization processes,
especially when a large-scale environment is involved. Meanwhile, the gathering and disseminating of
a large volume and a wide variety of sensory information, such as multi-media geographical data, can
deplete client devices quickly. Moreover, clients in existing systems are presumed to be trusted and
cooperative. Hence, misbehaving clients or incorrect reading of sensors can have a significant impact on
the system performance.

Thus, in this paper, we propose a novel cloud-based emergency navigation system that borrows the
concept of a cognitive packet network (CPN) [5] and social potential fields [6] to evacuate civilians in
built environments. As a software-defined network, CPN can be completely implemented in software
and, therefore, is easy to deploy on cloud servers as virtual “CPN nodes” in a distributed manner. In
addition, CPN can achieve fast adjustments, because each CPN node operates as a sub-system to detect
the environment, and no synchronization procedure is required. In this framework, smart phones are used
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as clients to connect to the access point(s) of cloud servers that carry out the intensive computations.
Evacuees are directed to exits with a cooperative strategy to improve the elasticity in communication
and localization, as well as to increase the possibility for a civilian to obtain assistance when at risk.
A power-aware QoS metric [7], which is based on the ad hoc cognitive packet network (AHCPN)
protocol [8] that uses an energy-aware sensible routing technique [9], is also presented to prolong
the lifetime of smart handsets. One advantage of the AHCPN protocol is that it can locate malicious
users readily, as detailed path information is contained in the route-search packets. When an emergency
happens, we assume that a few cloud access points can be rapidly deployed between the emergency
locations and the cloud and that the evacuees themselves are only equipped with smart phones that
constitute an energy-efficient ad hoc network between each other, so as to reach the access points for
two-way communication.

Since mathematical models [10] cannot handle the full complexity that is encountered during
an emergency and evacuation drills are high-priced and time-consuming, agent-based simulation
methods [11–13] are indeed the tools of choice to study such systems. Hence, in this work, the proposed
algorithms are evaluated in a simulated built environment where a fast-spreading fire breaks out.

The remainder of the paper is organized as follows: Section 2 presents the related studies
of cloud-enabled emergency navigation systems and coordinated behaviour-involved algorithms in
emergency evacuation. In Section 3, we recall the concept of the cognitive packet network and
then describe the system architecture and related algorithms in Section 4. The simulation model and
assumptions are introduced in Section 5, and results are presented in Section 6. Finally, we draw
conclusions and present future work in Section 7.

2. Related Work

2.1. Cloud-Based Emergency Management Systems

Cloud computing provides a service-oriented architecture that harnesses the computing capability
of massive inter-networked computers. Since the concept was explored in the 1960s, the scope of
cloud computing has grown tremendously over the last few decades and has motivated considerable
research in the field of emergency management. For example, [14] proposes a community-based
cloud-enabled emergency management system that leverages existing social network sites (SNS) to
collect and disseminate emergent information. This platform consists of a information repository layer
and a social networking layer, and a semantics-based query is used to overcome heterogeneous data
from diverse organizations. In [15], an intelligent transportation system (ITS) is presented with the aid
of vehicular ad hoc networks (VANETs) and cloud computing. Different computational models are
available in the cloud to generate the optimum strategy for diverse situations. Simulations are performed
in the transportation network of a city where the Lighthill–Whitham–Richards (LWR) model is used to
mimic the traffic. Results indicate that this large-scale emergency response system, which can collect
and propagate information through different communication modes, overcomes the traditional analogues
using media. Because of the handicaps, such as limited battery power and computing speed in the hybrid
fire evacuation system (HBFES) [16], which uses mobile phones and radio frequency identification
(RFID) to locate evacuees and calculate evacuation routes, in [17], this system is extended by employing
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an external cloud server to perform computations. Due to the limitations of common indoor positioning
technologies and the unavailability of GPS, in [18], a smart phone-assisted system to locate evacuees
with pedometry-based localization and image-based positioning is suggested. The cloud-based server
can obtain the position of individuals by matching the image snapshots uploaded by evacuees and then
provide uncrowded routes for users. However, current cloud-enabled emergency response systems with
the aid of portable devices do not consider the impact of significant energy utilisation in the client
side during the communication process. On the other hand, smart phones using the Universal Mobile
Telecommunications System (UMTS) protocol require base stations and a substantial infrastructure,
which may be destroyed or overloaded during an emergency. Furthermore, UMTS systems themselves
can easily come under attack [19,20], including by various forms of denial of service attacks [21].

2.2. Coordination Algorithms for Evacuation

Much research has demonstrated that cooperative strategies have a significant positive influence
on multi-agent systems, and related studies have emerged for decades as organizational paradigms in
agent-based structures [22] and autonomous search by large-scale robotic systems [6,23]. However,
most related research on emergency evacuation focuses on developing diverse models [24] to simulate
the crowd or coordinated behaviours, such as kin behaviour [25] in emergencies.

“Social potential fields”, which were initially used for coordinating robots in a very large-scale robotic
system [6], have been employed for emergency navigation in [26]. A self-organizing sensor network
is established with “artificial potential fields” where artificial forces exist. Exits and dangerous zones
generate attractive forces and repulsive forces, respectively, and evacuees move under the actuation of the
resultant force. However, the original SPF considers the interactions between robots to avoid congestion,
while the artificial potential fields in [26] does not take influences among evacuees into account.

Emergency evacuation often accompanies the malfunction of communication infrastructures or
sensors, which can be caused by an on-going hazard or malicious attacks. The failure of the
communication infrastructure can render a centralized system invalid, while the malfunction of sensors
will affect the QoI and accuracy of localization. To solve the above problems, some coordinated
behaviour-involved algorithms, such as opportunistic communications and delay tolerant networks,
have been investigated to increase the resilience of emergency management systems [27–29]. For
instance, [30–32] have proposed a resilient emergency support system (ESS) with the aid of opportunistic
communications [33]. This system consists of sensor nodes (SNs) and communication nodes (CNs). SNs
can detect the hazard in its vicinity and inform the evacuees passing by of the location, while CNs are
portable devices that are taken by occupants. The civilians initially wander in the environment and can
only inform the civilians about the hazard within its communication range. Each civilian calculates
the shortest path to the exits with Dijkstra’s algorithm. However, this work concentrates on studying the
impact of “passive” cooperation among evacuees, who exchange emergent messages with other civilians,
and no active mechanism is used to improve the information dissemination efficiency.
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3. Cognitive Packet Network

Searching physical routes for evacuees or communication routes for emergent messages can be
modelled as nonlinear combinatorial optimisation problems to search optimal paths, while minimizing
desired cost functions [34]. Due to the fact that classical optimization algorithms can be easily trapped
in local minima [35] and exact solutions can be computationally expensive and time consuming for
NP-hard problems [36], in this paper, we use the concept of the cognitive packet network, which is a
meta-heuristic inspired by natural intelligence, to emergency planning problems.

The cognitive packet network (CPN) introduced in [37–39] was originally proposed for large-scale
and fast-changing packet networks and can provide QoS-driven routing to satisfy diverse end users in
multimedia networks. By employing smart packets (SPs), CPN can discover optimal routes rapidly and
heuristically and realise continuous self-improvement. Contrary to conventional routing protocols, in the
CPN, intelligence is realised by using random neural networks (RNNs) [40–43], which is a mathematical
model of natural mammalian neuronal networks and is constructed into SP search. Hence, SPs can
discover optimised routes with their predefined goals and improve QoS by learning from their own
investigations and experience from other packets.

CPN has been applied to many domains, including emergency navigation [44,45] and emergency
resource allocation [35,46–48]. As the world’s first software-defined network (SDN), it can be installed
on computers seamlessly [49]. In the proposed system, the CPN-based algorithm is deployed in the
back-end cloud, and each node in the CPN represents a realistic location where evacuees can identify
their locations by uploading visual snapshots and querying the cloud. Each node is composed of a
recurrent RNN to determine the direction of SPs and a mailbox (MB). Each neuron in the RNN represents
a neighbour node, and the neighbour node associated with the highest excitation probability indicates
the most beneficial forwarding direction of SPs. The notation in Table 1 is the same as that used in the
original RNN model [40]. The mailbox maintains a routing list to store the paths discovered by SPs and
sensory data uploaded by smartphones. Consequently, the original WSN-based CPN algorithm in [44]
is virtualised in the cloud. CPN contains three types of packets: smart packets (SPs), acknowledgements
(ACKs) and dumb packets (DPs). SPs gather information from the traversed nodes and search paths to
destinations with respect to predefined QoS goals. They can either choose the neighbour node decided
by random neural networks as the next hop or drift randomly to explore and update routes. When an SP
reaches the destination, an ACK, which reserves the discovered path, and collected data will be generated
and sent back to the source node through the reverse path. When an ACK reaches a node, it will update
the MB and train the random neural network by performing reinforcement learning (RL), as shown in
Pseudocode 1. DPs are the packets that actually carry the payloads. they always choose the top-ranked
path in the routing list as the next hop. In the context of emergency evacuation, evacuees are considered
as DPs.

AHCPN [8] is a variant of the original CPN and is used in the high dynamic mobile ad hoc networks
(MANETs) in which the position of users varies continuously. Since CPN can allocate resources in
proportion to the probability of finding an optimal route there, it can significantly replace broadcast
transmissions in traditional routing protocols with unicasts. Because each smart phone can communicate
with the cloud via 3G directly, hence each smart phone can be considered as a local “exit”, and SPs need
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to decide when to stop searching among mobile phones and transmit to the access node that connects to
the remote cloud. Benefiting from their inherent intelligence, SPs can self-determine to transmit to the
cloud when any of the two following conditions is fulfilled:

• If all of the neighbour portable devices of the current smart handset in the near-field
communication range have already been visited by checking the cognitive map of SPs.

• If the predicted path availability (calculated by Formula 3) of conveying a payload from the current
discovered path is larger than the estimated path availability of transmitting directly from the
source smart phone.

Furthermore, emergencies caused by terrorist attacks can also be accompanied with network attacks,
such as node capture or denial of sleep in the client side and denial of service in the server side [50].
CPN can naturally benefit the process of defending malicious acts, because SPs and ACKs store all of
the intermediate nodes from the source to the destination. Therefore, the potential malicious nodes can
be located easily. All of the nodes between a malicious origin and the target node can drop attacking
traffic to avoid useless occupancy of bandwidth. Meanwhile, as CPN is a QoS-driven protocol, packets
can determine the validity by QoS, and smart phones can allocate different bandwidth for flows of
different QoS.

Table 1. List of symbols used in Pseudocode 1. RNN, random neural network.

Notation Definition
a A constant between 0 and 1, typically close to 1
n The number of neurons in a RNN

j
The neuron which is associated with the neighbour node that

corresponds to the returned ACK
k The other neurons in the RNN except the neuron j

w+(i, j) Rate at which neuron i emits excitation spikes to neuron j when i is excited
w−(i, j) Rate at which neuron i emits inhibition spikes to neuron j when i is excited

Λi Rate at which external excitation spikes arrive at neuron i
λi Rate at which external inhibition spikes arrive at neuron i

λ+(i) Rate at which neuron i receives excitatory spikes
λ−(i) Rate at which neuron i receives inhibitory spikes
qi The excitation probability of neuron i
Rl l-th reward determined by a goal function
Tl l-th decision threshold that keeps track of the historical value of rewards
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Pseudocode 1 The training process of RNN.

Input: Path information brought back by an ACK
Output: The excitation probability of neurons in the RNN

1: When an ACK reaches a node, extract gathered path information from the ACK
2: Calculate the path cost G based on the collected information and the associated goal function
3: Compute the reward Rl = 1

G

4: Calculate the decision threshold Tl = aTl−1 + (1− a)Rl

5: for each neuron i in the RNN do
6: /* Compute the current total firing rate coming out of neuron i */
7: r(i) =

∑n
m=1[w

+(i,m) + w−(i,m)] (m 6= i)

8: end for
9: for each neuron i in the RNN, except neuron j do

10: /* Compare the Rl with the previous threshold Tl−1 and update weights of neurons */
11: if Rl > Tl−1 then
12: w+(i, j)← w+(i, j) + |Rl − Tl−1|
13: w−(i, k)← w−(i, k) + |Rl−Tl−1|

n−2
14: else
15: w−(i, k)← w−(i, k) + |Rl − Tl−1|
16: w+(i, j)← w+(i, j) + |Rl−Tl−1|

n−2
17: end if
18: end for
19: for each neuron i in the RNN do
20: /* Compute the updated total firing rate of neuron i */
21: r(i)∗ =

∑n
m=1[w

+(i,m) + w−(i,m)] (m 6= i)

22: end for
23: for each neuron i in the RNN do
24: /* Normalize the weights of the neurons */
25: for each linked neuron m of neuron i in the RNN do
26: w+(i,m)← w+(i,m) ∗ r(i)

r(i)∗

27: w−(i,m)← w−(i,m) ∗ r(i)
r(i)∗

28: end for
29: end for
30: for each neuron i in the RNN do
31: /* Calculate the excitation probability qi of the neuron i */
32: λ+(i) =

∑n
m=1 qmw

+(m, i) + Λi (m 6= i)

33: λ−(i) =
∑n

m=1 qmw
−(m, i) + λi (m 6= i)

34: qi = λ+(i)
r(i)+λ−(i)

35: end for
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4. The Cloud-Enabled Emergency Navigation System

Figure 1 shows the architecture of the cloud-enabled system. The system is composed of four layers.
The cloud infrastructure layer is a hardware layer that provides the platform for the deployment of the
system. The intelligence layer comprises a data interpretation module and a navigation module. The
data interpretation module aims to provide better QoI for decision making, while the navigation module
is used to guide evacuees to exits in a cooperative manner. The system interface layer is responsible
for information exchanges from diverse gateways, such as the Universal Mobile Telecommunications
System (UMTS) or Internet. Civilians with smart phones form the user layer to collect sensory data and
convey it to the cloud. An AHCPN-based energy management module is installed among the handsets
to search routes to realise energy-sensitive communication between the cloud and handhold devices.

Figure 1. The architecture of the cloud-enabled system.
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The main objectives of the system are to provide appropriate routes for evacuees in a real-time manner
and to balance the energy dissipation of portable devices. When an evacuation process starts, hazard
information will be gathered by individuals and then uploaded to the cloud. On the cloud side, the
CPN algorithm with a time metric will be performed to search paths with the shortest “time” to exits.
Furthermore, a smart group motion will be generated by the SPN algorithm, which employs attractive
forces and repulsive forces to maintain adjacent evacuees as a loose group. The suggested directions will
be brought back by ACKs and visualised on the screens of portable devices. The simplified workflow
of the system is shown in Pseudocode 2, and a list of symbols used is summarised in Table 2. In
the following subsections, details of the coordinated emergency navigation algorithm in the navigation
module and the power-aware protocol in the energy management module are introduced.

Table 2. List of symbols used in the Pseudocode 2. SP, smart packet.

Notation Definition
RNNnew A Boolean value to indicate if a RNN is newly constructed or reset
R A random generated value between 0 and 1
Nm The total number of SPs that can be emitted before sending a photo
Nc The number of SPs that has been emitted in a cycle
Hm The maximum number of hops a SP can traverse before being dropped
Hc Current traversed number of hops

VDrift
Probability to choose the neighbour associated with

the most excited neuron as the next hop
VSPN Probability to choose the SPN-based algorithm

P i
Bluetooth+3G

Path availability (calculated by Formula 3)
of transmitting a snapshot via the current route

P i
3G Path availability of conveying a snapshot via 3G mode

4.1. Coordinated Emergency Navigation

As emergency navigation systems always perform in harsh physical environments, the likelihood of
the malfunction of components is relatively high, and the coordinated behaviour of evacuees can facilitate
building a fault-tolerant framework. For example, the battery power of a smart phone can be depleted
during an evacuation process. In this case, a single evacuee can be trapped owing to being unaware of the
physical location. Coalition in evacuation can avoid this by increasing the likelihood of following other
evacuees in proximity to exits. Furthermore, emergency navigation systems involve many data flows for
information acquirement and dissemination. Therefore, evacuating in a cooperative manner can realise
energy efficiency by relaying data or providing alternatives, such as opportunistic communication, when
the main communication mode fails. Another advantage of evacuating in teams is to provide better QoI
by merging the overlapping information. Hence, in this section, we leverage the SPF to cluster evacuees
into groups during an evacuation.
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Pseudocode 2 The workflow of the system.
1: while an evacuee reaches a landmark do
2: Collect in situ hazard information with smart phone’s built-in camera
3: Sense other smart phones in the near-field communication range
4: if the neighbouring smart phones has changed then
5: Reset the RNN structure in the AHCPN-based energy management module
6: Set RNNnew ← true

7: end if
8: /* Emit Nm SPs to search energy-efficient communication routes */
9: while Nc < Nm do

10: while Hc < Hm do
11: Generate a random value R between 0 and 1
12: if R > VDrift & ¬RNNnew then
13: Choose the neighbour associated with the most excited neuron as the next hop
14: else
15: Choose a random neighbour as the next hop
16: end if
17: /* When a SP reaches a new smart phone */
18: if P i

Bluetooth+3G > P i
3G then

19: Stop searching and transmit the SP to the cloud access point via 3G
20: else
21: Check the current discovered route in the cognitive map of the SP
22: if all of the neighbours of the current smart phone have been visited then
23: Stop searching and convey the SP to the cloud access point via 3G
24: else
25: Add the current smart phone to the cognitive map of the SP
26: end if
27: end if
28: end while
29: Generate an ACK to bring back gathered delay and energy information
30: end while
31: Choose the top ranked path P in the routing list to send the snapshot
32: Cloud severs employ image processing algorithms to identify the location of the evacuee and the

hazard intensity
33: Update the related hazard situation in the building graph
34: Generate a random value R between 0 and 1
35: if R > VSPN then
36: Choose the decision made by the CPN-based algorithm
37: else
38: Choose the decision made by the SPN-based algorithm
39: end if
40: Send the decision back to the evacuee through the reverse of path P
41: end while
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The initial SPF algorithm [51] consists of global control forces and local control forces. The global
control forces coordinate the individuals and determine the distribution of the individuals, while the local
control forces dominate the personal behaviours. In our treatment, we replace the local control forces
with the CPN-based algorithm to control the individual behaviour of evacuees and use the global forces
to regulate the intra-group behaviours. Details of the CPN-based emergency evacuation algorithm can
be seen in [44] and [45]. The force between two evacuees can be calculated from the following equation:

f(r) = − c1
rσ1

+
c2
rσ2

(1)

where c1, c2, σ1 and σ2 are dynamic parameters and r represents the physical distance between two
civilians. Term − c1

rσ1
represents the repulsive force, while c2

rσ2
depicts the attractive force. We assume

that each civilian can only be affected by other civilians within 20 meters. If the distance between two
civilians is smaller than seven meters, a repulsive force will be generated; otherwise, an attractive force
will be produced. To achieve this, we set c1 to 20, c2 to 15, σ1 to 0.9478 and σ2 to 0.8, respectively. This
ensures that the civilians will evacuate in loose groups without increasing the level of congestion.

To combine SPF and the CPN-based algorithm, various schemes can be employed. For instance, the
resultant direction can be calculated by the weighted sum model in which the two elements are assigned
with different weights. Another simple scheme is to randomly choose either the decision of SPF or
CPN as the next decision at a time. The latter scheme is employed in this system: when an SPF-related
decision is chosen, we adopt the associated neighbour node that has the most matched direction with the
resultant force as the next hop.

4.2. Power-Aware Protocol

As the front-end component of the framework, smart phones, which can offer diverse services,
high data rate connectivity and sensing capabilities, play a vital role in the cloud-enabled system.
However, due to the limitation on battery size and the efficiency of chemical reactions of the widely-used
lithium-ion batteries [52], the capacity of batteries becomes a bottleneck in the operational time of
the cloud-based system. In fact, the development of battery capacity does not keep pace with the
computational complexity: the computational complexity is roughly doubled every two year with respect
to Moore’s law, while the battery capacity is doubled every decade [53].

Emergency evacuation is an energy-hungry process due to the large amount of information exchange
involved. Experiments in [54] show that the energy consumption of air interfaces, such as Wi-Fi and
GPRS, far exceed the power utilization of the RAM and CPU. Furthermore, the energy consumption
for different communication modes varies. For instance, Bluetooth consumes much less energy than 3G
mode during data sending and receiving [53]. Because the remaining battery power of portable devices
is different when an emergency event occurs and the power utilisation rate of different handsets varies,
it is not an optimal strategy for each smart phone to exchange information with the cloud through 3G
directly. In this section, we make use of the cluster behaviours proposed in the aforementioned section to
employ short-range communications to relay sensory information and, ultimately, upload the data from
a certain number of mobile devices through 3G. Similarly, decisions from the cloud are not conveyed
to each evacuee directly, but are transmitted to a certain evacuee and then distributed within the group
using short-range communication technologies.
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To realise energy efficiency and to maximise the overall average battery lifetime of smart phones, we
employ an AHCPN-based algorithm to optimise the routes for the information flows. The AHCPN-based
algorithm is deployed on the smart phones to search power-saving paths for conveying sensory data to
the cloud. The QoS criterion we used is inspired by the energy-aware metric in [8]. It is a compound
metric, which involves battery power and latency. Here, we also employ the “path availability” notion
and construct a similar metric.

Ged = α

n−1∏
i=0

Pa(π(i), π(i+ 1))

{
n−1∑
i=0

D(π(i), π(i+ 1))

}
(2)

where π represents a particular path, n is the number of nodes on the path π and π(i) is the i-th node on
the path π. Hence, π(0) is the source node, while π(n) is the destination node (the cloud access point).
Term Pa(π(i), π(i + 1)) is the availability of the edge between π(i) and π(i + 1). D(π(i), π(i + 1))

is the delay cost for a packet to transmit from π(i) to π(i + 1). Term α is a constant that coordinates
the relation between the path availability and delay. Because the average latency for uploading a photo
is less than 0.1 s and the path availability is normally slightly larger than one (due to the fact that the
remaining battery power is usually much larger than the energy consumption of uploading a snapshot),
term α is set to 100 to amplify the result of the goal function and to ensure the effective training process
of random neural networks.

The path availability is affected by the remaining battery power of a smart phone and the estimated
power consumption of transmitting a piece of information:

Pa(π(i), π(i+ 1)) =
BC
i

BC
i −BU

i

(3)

where BC
i represents the current remaining battery power of a node (smart phone) π(i) and BU

i depicts
the power utilisation at node π(i) to convey a certain piece of information. It is estimated by the number
of packets that will be transmitted. If the potential power utilisation is larger than the remaining battery,
then this node is excluded. The path availability of a whole route is the product of the availability of
edges on it.

5. Simulation Model and Assumptions

We use an agent-based discrete-event simulator, namely the Distributed Building Evacuation
Simulator (DBES), to evaluate the effectiveness of the novel navigation algorithm, as well as the
AHCPN-based energy-efficient protocol in a fire-related emergency evacuation. The physical area is
hypothesised as a graph: vertices are positions with landmarks by which evacuees can easily identify
their locations by uploading snapshots and querying the server; edges are physical links by which
evacuees can move inside the building. The graph can be downloaded from the cloud when a hazard
occurs. The building model we employed is a large canary wharf shopping mall with relatively wide
paths for evacuees to move in clusters. The shopping mall is a three-story building with two exits on the
ground floor, as shown in Figure 2. Initially, evacuees are randomly scattered in the building, and they
are assumed to be equipped with smart phones with random remaining battery power. When the battery
power of smart phone is depleted, the evacuee will wander or follow other evacuees in the line of sight
to the exits.
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Figure 2. Graph representation of the building model. The two black stars on the ground
floor mark the position of the building’s exits.

We assume that no related sensors are pre-installed in the built environment. Hence, hazards can only
be discovered by residents in the building. When an evacuee discovers a hazard, he/she will inform the
server by using the smart phone, and then, the server will alarm all of the related civilians. Civilians can
locate themselves by taking image snapshots and matching them with pre-known landmarks, which are
stored in cloud severs. The photos are taken by built-in cameras on the mobile phones and then uploaded
to the cloud. The image-based localization algorithms [18] are performed in cloud severs. The spreading
of the hazard is reported by evacuees and predicted by hazard models in the cloud.

In the simulation, the indoor Wi-Fi access points are presumed to have malfunctioned due to hazards
or the outage of the power supply. Hence, the portable devices can only communicate with the cloud
severs through UMTS. To maintain the 3G communication between the cloud and smart handsets,
we hypothesise that during an emergency, a few cloud access points can be quickly deployed in the
vicinity of the building. We also assume that smart phones provide the Bluetooth communication mode
to conduct short-range communications. The size of the image taken by smart phones is set to 100
kilobytes, and the header of the AHCPN packets is 12 bytes [8]. The smart phone identification uses a IP
address space which is four bytes. The initial battery power of smart phones yields a normal distribution,
and the battery capacity of smart phones is set to 16,000 joules.

The energy consumption model of smart phones is based on the previous literature [54–57]. We
assume that smart phones have three states: suspended state, idle states and high-power state. When in
a suspended state, the application processor of smart handsets is idle and the communications processor
performs a low level of activity [54]. When in an idle case, the smart phone is fully awake, but no
application is active. Finally, the high-power case is the state when the portable device interacts with the
cloud. The power utilisation of different states with regard to the elapsed time can be seen in Table 3,
which is based on the average system power of specific smart phones for a selection of benchmarks
in [55].



Sensors 2014, 14 15155

Table 3. The energy consumption of different states in joules with respect to the elapsed
time in seconds. Term x represents the elapsed time, and y depicts the energy utilization on
the smart phone side when performing the emergency navigation system.

States Energy Model
Suspended 0.3394x

Idle 0.1049x

High power 0.1049x+ y

The energy utilization of different communication modes with respect to the amount of transferred
data, as well as the associated transmission rate are shown in Table 4. This model is based on the energy
consumption ratios presented in [57] and the measurement study of energy consumption over 3G and
Wi-Fi in [56].

Table 4. The energy consumption of smart phones in joules with regard to the transferred
data x in byte and the related signal rate.

Communication Mode Download Upload Signal Rate
3G 0.001224x 0.0003375x 2 Mb/s

Bluetooth 0.0001377x 0.00012012x 1 Mb/s
Wi-Fi 0.0003057x 0.0001586x 54 Mb/s

ZigBee 0.0002861x 0.0003164x 250 Kb/s

6. Results and Discussion

To evaluate the navigation algorithm that combines CPN and SPF (CPN&SPF) as well as the
AHCPN-based energy-efficient protocol, we design an experiment that involves four scenarios with 30,
60, 90, 120 evacuees, respectively. Dijkstra’s shortest path algorithm and CPN-based algorithm with
a time metric (CPNST) [45] are performed for comparison purpose. Evacuees can communicate with
the cloud through UMTS directly or use Bluetooth to relay data to other smart phones with a higher
percentage of remaining energy and then transmitting to cloud severs through 3G.

The percentage of survivors of five randomised experiments is shown in Figure 3. Owing to the
benefit of wide paths in the shopping mall, all civilians are able to evacuate at a low occupancy rate
(30 evacuees). However, in relatively high population densities, both CPNST and CPN&SPF result in
more survivors than Dijkstra’s shortest path algorithm. This is due to the congestion-ease mechanism
in CPNST. Meanwhile, SPF can also ease congestion, because it can generate large repulsive forces
for the evacuees in proximity. In comparison with CPNST, CPN&SPF performs slightly better in
densely-populated scenarios (90 and 120 evacuees). This is because CPN&SPF organises evacuees
as loose clusters and, therefore, increases the likelihood for an evacuee to upload data through other
smart phones with more remaining battery power. As a result, the probability of being trapped due to
the depletion of the smart phone is decreased. Furthermore, the coordinated behaviour increases the
probability of an evacuee with a depleted smart phone to follow other evacuees rather than wandering in
the building. This can be confirmed by the fact that the outcome of experiments using the AHCPN
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energy-efficient protocol is better than for the counterparts that use UMTS directly. The AHCPN
protocol can reduce the likelihood of depleting a smart phone and, therefore, decreases the possibility of
an evacuee being trapped in the built environment. The results we present are numerical in nature, while
it would be interesting also to discuss detailed simulations in a virtual reality environment [58].

Figure 3. The percentage of survivors for each scenario. The results are the average of
five randomized simulation runs, and error bars show the min/max result in any of the five
simulation runs.
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Figure 4 presents the average number of drained smart phones in the experiments. When using 3G
mode to communicate with the cloud, Dijkstra’s algorithm achieves the least number of drained smart
phones, especially at a high occupancy rate. This is because both the CPNST and CPN&SPF and do not
follow the shortest path. Hence, evacuees will traverse more landmarks and upload more photos to the
cloud. However, by employing the AHCPN protocol, the number of depleted smart phones decreases
significantly for all three algorithms. Moreover, there is no drained smart phone when combining the
CPN&SPF algorithm with the AHCPN protocol. This confirms that routing evacuees in loose groups
can contribute to the power-balancing of smart phones.

Figure 5 shows the standard deviation of the remaining percentage of battery power for smart
handsets. The remaining percentage of battery power Pr in a smart handset is defined as follows:

Pr =
Br

Bi

(4)

where Br is the remaining battery power of a handset and Bi is the initial battery power of the smart
phone. The result indicates that no matter which emergency navigation algorithm (Dijkstra’s shortest
path algorithm, CPNST or CPN&SPF) is used, the AHCPN-based protocol has a lower standard
deviation of the remaining percentage of battery power in comparison with its counterpart, which
transmits data to the cloud with 3G directly. Hence, although AHCPN may consume extra energy,
because of sending smart packets periodically, it can balance the remaining battery power in portable
devices and, therefore, prolong the lifetime of smart phones.
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Figure 4. The number of drained smart phones for five iterations. The error bars represent
the min/max values found in the five simulations. Please note that the bar for “CPN with
Time Metric and SPF + 3G and Bluetooth” is not displayed, because there is no drained
smart phone in this case.
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Figure 5. The average standard deviation of the percentage of remaining battery power of
smart phones in five simulation runs. The error bars represent the min/max value of the
standard deviation found in the five simulations.
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7. Conclusions and Future Work

In this paper, we propose an infrastructure-less, indoor emergency response system to evacuate
civilians with the aid of smart handsets and cloud servers. A coordinated emergency navigation algorithm
is proposed to guide evacuees in loose groups. The experimental results prove that the algorithm can
increase the survival rate by reducing the number of drained smart phones in an evacuation process
and raising the likelihood for an evacuee with a depleted mobile device to encounter other evacuees in
the line of sight and follow them to egresses. Due to the considerable energy consumption between
the cloud and smart phones during the communication processes, an AHCPN-based energy-efficient
protocol is also presented to prolong the lifetime of smart handsets. Simulations indicate that the
protocol can significantly decrease the number of drained smart phones in an evacuation process and
balance the remaining battery power among portable devices. Future research will be directed to improve
the flexibility of the system by leveraging the mobile agent technology, because current cloud-based
emergency response systems that are based on the client-sever paradigm demand pre-installed services
in participating devices [59]. Moreover, since mobile agents can migrate seamlessly through multiple
clouds and different portable devices, a mobile agent-based emergency response system has the potential
to reduce communication costs and ease network congestion in large-scale emergency evacuations by
dynamically optimising the locations of mobile agents. We also think that cloud-based techniques can
benefit systematic and repetitive issues, such as the clearance of improvised explosive devices (IOD) and
land mines [60].
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