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Abstract: As an alternative to the existing software architectures that underpin the development
of smart homes and ambient assisted living (AAL) systems, this work presents a
database-centric architecture that takes advantage of active databases and in-database
processing. Current platforms supporting AAL systems use database management systems
(DBMSs) exclusively for data storage. Active databases employ database triggers to detect
and react to events taking place inside or outside of the database. DBMSs can be extended
with stored procedures and functions that enable in-database processing. This means that the
data processing is integrated and performed within the DBMS. The feasibility and flexibility
of the proposed approach were demonstrated with the implementation of three distinct
AAL services. The active database was used to detect bed-exits and to discover common
room transitions and deviations during the night. In-database machine learning methods
were used to model early night behaviors. Consequently, active in-database processing
avoids transferring sensitive data outside the database, and this improves performance,
security and privacy. Furthermore, centralizing the computation into the DBMS facilitates
code reuse, adaptation and maintenance. These are important system properties that take
into account the evolving heterogeneity of users, their needs and the devices that are
characteristic of smart homes and AAL systems. Therefore, DBMSs can provide capabilities
to address requirements for scalability, security, privacy, dependability and personalization
in applications of smart environments in healthcare.
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1. Introduction

Storage is an important and required functionality in continuous, long-term, home-based monitoring
systems, and the database management system (DBMS) is the most common, but not fully exploited,
component among software architectures underpinning smart environments, such as smart homes, and
ambient assisted living (AAL) systems.

As an extension [1] and an alternative to existing platforms supporting the development of smart
homes and AAL systems, this work proposes a database-centric architecture that explores the capabilities
of DBMSs beyond those of data management.

1.1. Background

Home care has been suggested to be a sustainable alternative to traditional care, because it has the
potential to prevent unnecessary acute or long-term institutionalization and to enable individuals to stay
in their homes and communities for as long as possible [2]. Similar to other countries in Europe,
in Sweden, county councils and municipalities provide medical, social and personal care services for
care beneficiaries in their own homes. Most people receiving home care services are old or disabled
individuals living alone.

Home care visits are normally planned, but when social alarm devices are offered to care beneficiaries,
unplanned emergency response visits also occur. A social alarm is a portable device and includes a
push-button to alert a care unit. Social alarms can include also a movement sensor that automatically
triggers an alarm upon inactivity. The device is commonly worn as a wrist-watch or as a pendant necklace.

Although most home care services are provided during the daytime, some individuals require
assistance during the night. In a nighttime visit, a night patrol team can help with medication, diapering,
toileting and repositioning in bed [3]. However, supervision visits are more common, i.e., the night
patrol team, without waking up the resident, checks if the person is in bed, breathing and doing fine. In
Halmstad, Sweden, about 200 homes are visited and around 780 km are driven each night by caregivers
providing nighttime home care [4].

Even though home care services prevent the institutionalization of many individuals [3], there are
a number of issues that will likely limit their efficiency and effectiveness in the near future. By the
year 2050, about 27% of the European population is expected to be of the age 65 years and above, and
in Sweden, older adults will account for 23% of the Swedish population [5]. While many individuals
will remain healthy and independent into late adulthood, others will be highly dependent on informal or
professional care [6]. Consequently, the demand for home care services will drastically increase, and as
it currently stands, the healthcare system is not prepared to address these demands, mostly due to the
shortage of professionals specializing in geriatric care [7] and nighttime caregiving [3,8].
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When it comes to nighttime home care, not all individuals receiving such services are actually in
need of it, because they are still relatively independent and can use the social alarm device to request
assistance if it is ever needed [4]. Furthermore, some care beneficiaries report being awakened by
the night patrol supervision visit, and these individuals often trigger their alarm within minutes after
a supervision visit [4].

Smart home technologies can enhance or complement home health care and have been shown to
be integral parts of a cost-effective healthcare system [9,10]. A smart home provides a home-based
infrastructure that integrates network-enabled devices with different capabilities to offer advanced
functionalities to the residents. Traditionally, smart homes have included solutions to enhance the
comfort and safety of residents, as well as systems to manage and conserve energy [11,12]. However,
over the past several years, there has been an increased interest in using the pervasive infrastructure of
smart homes to support aging in place and AAL.

Systems targeting aging in place and AAL aim to support older or disabled individuals with services
that: (1) promote healthier lifestyle and enhanced quality of life; (2) enable early disease detection and
treatment compliance; (3) support informal and professional caregiving; and (4) enable individuals to
live independently for a longer time in their own homes [13,14].

The current practice of assessing the nature of chronic diseases is limited to clinic-based assessments
scheduled at discrete points in time, and the management of illnesses is limited to a few medical visits
and to self-reports [15]. The collection and analysis of functional, safety, security and physiological
parameters, as well as cognitive and social support are the most common smart home applications in
healthcare [16].

In-home health monitoring provides accurate and reliable long-term data to support better decision
making, better understanding of aging and illnesses, the prevention and management of chronic diseases,
healthier attitudes and behaviors and the conservation of healthcare resources [15,17]. Moreover, the
long-term storage of health-related information enables the use of data mining methods that can reveal
unknown patterns or relationships that can indicate the onset of a health-related problem [18].

Smart homes and AAL systems are complex to build, use and maintain [19]. One factor contributing
to such complexity is the inherent diversity that is characteristic of smart homes and that leads to
technical issues related to personalization, integration, interoperation, extensibility and dependability.
Individuals have needs, preferences, habits and adverse health conditions that differ and evolve over
time. Home environments also differ, and heterogeneous technologies, such as sensors and actuators,
are employed in these systems. These distinct devices are provided by different manufacturers, and they
operate and communicate with different standards and protocols. Thus, there is no universal arrangement
of devices to fit every home environment.

The acceptance of smart homes and AAL systems is also an issue and is directly linked with the
system’s ability to address an individual’s evolving needs, as well as their concerns for privacy, security
and dependability [20]. Regarding privacy, not all individuals will accept technologies that monitor all
aspects of their lives. Cameras, for example, are perceived as invasive technologies. Moreover, collected
data from such systems are very sensitive. In the same way that data analysis of stored data can predict
the onset of a health-related problem, data analysis could also predict the predisposition of a person to
commit a crime [21]. As a consequence, there are different issues related to data security, such as who is
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going to use or have access to the data and how and where the data is going to be processed, stored and
used. Concerns related to dependability are associated with trust, e.g., can users rely on the system and
what if the system stops working altogether.

1.2. Related Work

A number of smart homes and AAL projects have been developed over the past several
years (reviewed in [22,23]) along with the technical infrastructures that serve as foundations for
AAL applications [24]. Although some architectural aspects are common among existing smart
environments and AAL platforms, there is still no widely adopted method for developing these
systems [25]. Different software architectures have been proposed for the smart environment and
AAL domains, including service-oriented architecture (SOA), service-oriented device architecture
(SODA), peer-to-peer architecture (P2P), event-driven architecture (EDA), component and connector
(C2), multi-agent system (M.A.S) and blackboard. However, as discussed in [26], none of them can
perfectly fit the requirements for AAL systems, specifically the requirement for integration [26].

Sensors and actuators provide the means for perceiving and controlling the environment.
These devices, among others, are provided by different manufacturers and operate and communicate
through different standards and protocols. The open-service gateway initiative (OSGi) framework is
commonly used to abstract and integrate devices, such as sensors and actuators, as well as to create
service-oriented applications.

Several projects have adopted platforms or middlewares based on SOA and built on top of the OSGi
service framework. The Gator Tech Smart House [27], PERSONA (PERceptive Spaces prOmoting
iNdependent Aging) [28], SOPRANO (Service Oriented PRogrammable smArt enviroNments for Older
Europeans) [29] and universAAL (UNIVERsal open platform and reference Specification for Ambient
Assisted Living) [30] are examples of smart homes and AAL projects based on SOA and OSGi.

Current infrastructures supporting smart environments and AAL solutions typically implement the
domain logic along with methods for data analysis, data mining and machine learning, as well as the
mechanisms for security and privacy at the application, service or middleware layers (Figure 1a).

Figure 1. (a) Existing infrastructures supporting smart environments and AAL systems
perform data processing at different layers; (b) in the proposed database-centric architecture,
the reactive behavior and data processing are integrated and performed within the database
management system (DBMS). Notation: ADB, active database; DB, database; In-DB,
in-database processing, HW, hardware; UI, user interface.
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Modern DBMSs—such as PostgreSQL [31]—provide mechanisms that can be utilized to address
important requirements for data processing and analysis, security, privacy, dependability, extensibility
and scalability in smart home and AAL systems. Such mechanisms have not been explored by
current smart environments and AAL infrastructures that employ DBMSs exclusively for data storage
and retrieval.

1.3. Approach and Contribution

In response to the challenges previously described and as an alternative to current approaches, this
work presents a database-centric system architecture that exploits mechanisms provided by DBMSs to
support the development of AAL applications. The aim is to push the reactive behavior and the data
processing, which are commonly implemented at different software layers within existing architectures,
into the DBMS (Figure 1b).

This work exploits active databases to detect and respond to events taking place in the home
environment, such as bed-exits. The extensibility capabilities of DBMSs, which are mostly provided by
user-defined functions, are also explored in this work to perform in-database processing. This means that
the domain logic (e.g., for detecting and responding to emergencies) is integrated into the DBMS itself.
Three distinct AAL services—bed-exit detection, discovery of common room transitions and behavior
modeling—are implemented using the proposed database-centric architecture and are evaluated with a
dataset collected in real homes from older individuals living alone.

Active databases and in-database processing avoid transferring sensitive data outside the database.
Moreover, the domain logic is centralized into the DBMS and managed on the fly.

The remainder of this paper is organized as follows. An overview of the capabilities of DBMSs,
other than data management, is presented in Section 2. Section 3 describes a motivating scenario for
AAL applications. The proposed database-centric architecture and its main components are presented in
Section 4 and are evaluated with the development of three home-based healthcare services in Section 5.
Conclusions are presented in Section 6.

2. Capabilities of Database Management Systems

Traditionally, DBMSs are passive components in architectures supporting smart environments and
AAL solutions and are employed exclusively to store and manage data for later retrieval. The SQL
(Structured Query Language) language is used solely for specifying the database schema and for
accessing or manipulating data. However, DBMSs can do much more than data management.

DBMSs incorporate active rule processing mechanisms in the form of database triggers. These
provide an event-driven architecture that enables the DBMS to monitor and react to events taking place
inside or outside of the database, for example, to enforce referential integrity or to react to sensor data
being inserted into the database, respectively.

Moreover, DBMSs enable developers to implement new procedures, functions and data types that
are stored within the DBMS. DBMSs also promote mechanisms for controlling security and privacy.
DBMSs are very dependable systems, mostly due to high-availability, robustness and reliability, and
they enable changes in the domain logic, reactive behavior and security policies to be managed on the
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fly. This facilitates the system’s scalability, maintainability and personalization, because changes in
software applications connected to the DBMS are not required [32].

Although the aforementioned capabilities are present in the most widely-used commercial (e.g.,
Oracle, Microsoft SQL Server and IBM DB2) and open-source (e.g., PostgreSQL and MySQL) DBMSs,
the database-centric architecture presented in this work focuses only on the capabilities provided by
PostgreSQL [31].

2.1. Active Databases

The SQL language enables the creation of database triggers that provide an in-database event-driven
architecture to detect and respond to events, such as data manipulation operations, such as table insertions
and updates. Database triggers are event-condition-action (ECA) structures—commonly referred to as
active rules—meaning that when an event occurs, the condition is evaluated, and if it holds, an action is
executed. The action can be executed before or after a data manipulation operation, for example, after a
table insertion and/or update.

DBMSs exploiting active rules are called active databases [33]. An active database can monitor and
respond to specific circumstances of relevance to an application in a timely manner [33]. For example,
active rules can react to incoming sensor data to control smart environments [34]. Active databases
can also prevent client applications from periodically querying (polling) the database for data changes.
Periodic polling mechanisms can be inefficient (too many queries due to a short polling interval) and
inaccurate (delayed response due to a long polling interval). To notify client applications about the
occurrence of a certain event, such as a data change, active database systems can make use of external
or built-in inter-process communication mechanisms. Such an approach requires the client application
to be always connected to the DBMS and to subscribe to notifications published by the DBMS.

PostgreSQL, for example, provides a built-in asynchronous publish-subscribe mechanism for
inter-process communication using the NOTIFY (publish), LISTEN (subscribe) and UNLISTEN
(unsubscribe) commands.

2.2. SQL Extensions

DBMSs enable the SQL language to be extended with user-defined types (UDTs), user-defined
aggregates (UDAs), user-defined functions (UDFs) and stored procedures (SPs). UDTs, UDAs, UDFs
and SPs can subsequently be included in SQL statements and queries. Moreover, the actions invoked
by database triggers are commonly implemented as UDFs or SPs. UDFs and SPs enable in-database
processing and analytics—i.e., the semantics of applications, statistical models and machine learning
techniques—to be integrated and performed within the DBMS. SQL extensions, including database
triggers, are implemented in SQL language or using database vendor-specific procedural languages,
such as PL/pgSQL (procedural language for PostgreSQL), Python variants [31] and C language.

PostGIS [35], for example, is a free and open source database extension that adds spatial and
geographic objects for PostgreSQL. Advanced algorithms, such as methods for statistical analysis and
machine learning, can also be integrated into modern DBMSs. For example, MADlib [36] is an
open-source library that adds in-database analytical capabilities for PostgreSQL. The MADlib library
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supports established methods for supervised learning (linear and logistic regression, decision trees
and support vector machines), unsupervised learning (k-means clustering and association rules) and
descriptive statistics, and it comes with support modules that provide array operators and probability
functions among many other methods [36].

Database extensions are stored into the DBMS and are managed on the fly without requiring system
restarts. In-database processing facilitates code reuse and maintainability, avoids data movement and
improves performance and security. Performing data processing inside the DBMS is more efficient
than with external data mining programs [37,38]. The in-database implementation of different statistical
models and machine learning techniques, along with their advantages, can be found and are discussed
in [37–42].

2.3. Security and Privacy

In addition to active databases and in-database processing, which avoid transferring sensitive data
from the database to external applications, DBMSs provide other mechanisms to enforce data security
and privacy, such as authentication and authorization.

DBMSs support authentication mechanisms that are used to check and confirm the identity of a
user, device or software application trying to access database resources. Besides password-based
authentication, DBMSs, such as PostgreSQL, enable authentication methods and protocols, such as
Lightweight Directory Access Protocol (LDAP) authentication, the Kerberos network authentication
protocol, and Secure Sockets Layer (SSL) certificates, among others.

DBMs also support authorization mechanisms that are used to manage and control users’ access
permissions to database resources. PostgreSQL manages database access permissions using the concept
of roles that can be attributed to a DBMS user or to a group of DBMS users [31].

3. Motivating Scenario: The “Trygg om natten” (Safe at Night) Project

The “Trygg om natten” (Safe at night in Swedish) project was conducted in Halmstad, Sweden and
explored how technology could assist care beneficiaries and caregivers during nighttime supervisions [4].
The study also focused on how technology was perceived by the participants in terms of integrity
and acceptance.

The criteria for selecting participants for the project were that individuals had to be beneficiaries of
nighttime supervisions, live alone in their own house or apartment without pets and sustain some level
of independence, such as for showering, dressing, eating, functional mobility and personal and toilet
hygiene. In addition, an approval of the night patrol team was also required. Individuals diagnosed with
some type of dementia or not able to give informed consent were excluded.

In total, 15 out of 30 nighttime supervisions beneficiaries (2 men and 13 women) with an average age
of 82 years participated in the project. Ten participants lived in apartments and five in houses.

The home of each participant was equipped with five types of sensors (Table 1) that were active
from 10 p.m. until 6 a.m. every night for approximately 14 days.
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Table 1. Sensors used in the “Trygg om natten” (Safe at night) project [4].

Type Purpose Quantity Output

Passive infrared (PIR) Capture human motion 3–5 Binary
Quasi-electric film (Emfit) Capture bed exits 1 Binary
Magnetic Capture door openings 1 Binary
Inertial sensor Capture human activity (wearable) 1 Binary
Load cell Reference for the Emfit sensor 1 24-bit value

Two data collections were discontinued during the project, one due to the illness of the participant
and another because the participant no longer had the need for nighttime supervision.

Figure 2 illustrates possible placements of different types of sensors within the home environment.
The Emfit Bed Sensor was used in the project as the main method to detect bed exits. One strain-gauge
load cell was placed at the top-left corner support of the participant’s bed to serve as a reference for
the Emfit Bed Sensor. Bed entrances and exits, as well as presence in bed, were derived from the
measured weight data. Motion sensors in different locations in the home captured human movement in
the bedroom, living room, bathroom and kitchen. A magnet sensor installed in the front door monitored
whether the front door was opened or closed. The intent with the magnet sensor in the front door was
to capture nighttime supervision visits. Except for the load cell, all of the other sensors transmitted the
measured data wirelessly to a low-power, fanless, miniature host computer located under the bed.

Figure 2. Example of a sensor setup for a given home environment. PIR denotes passive
infrared motion sensors; the magnet to capture door openings; the bed sensor to detect bed
exits; the resident wears a social alarm. A load cell to measure weight is placed on the
top-left leg support of the bed.
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The load cell was connected to an analog-to-digital converter that was connected to a USB port of the
host computer. The study was granted ethical approval from the central ethical review board. One of the
outcomes of the study was a set of requirements and specifications for AAL services, particularly those
related to nighttime caregiving. The dataset collected during the “Trygg om natten” project was used in
this work to evaluate the proposed services.

4. Database-Centric Architecture to Support Ambient Assisted Living Systems

This section presents how different DBMSs capabilities fit together in the proposed database-centric
system architecture to support smart homes and AAL systems.

Figure 3 summarizes the framework in which the proposed system operates and its main components,
described in the next subsections.

Figure 3. The proposed system architecture, including resource adapters and the active
database. Notation: UI, user interface; UDFs, user-defined functions; IPC, inter-process
communication.

4.1. Resource Adapters

As there is still no adopted standard for communicating with and integrating devices and applications
inside smart homes [43], resource adapters have been designed to abstract heterogeneous hardware
technologies (sensors and actuators) and software technologies (user interfaces and files) in order
to facilitate their integration and interoperation into the system. Resource adapters resemble context widgets
and context services [44], but with fewer responsibilities (no data aggregation or peer-to-peer
communication). Resource adapters encapsulate the underlying implementation of different communication
protocols and abstract resource-specific data formats. Recovery from faults, such as communication
disconnections, can also be provided. Resource adapters serve as a gateway between the environment
and the DBMS and are implementable in different programming languages, such as C# and Python.
Resource adapters stream data acquired by sensors or entered by the user into the database.



Sensors 2014, 14 14774

They also control actuators and user interfaces in response to commands received from the database.
Resource adapters communicate with the database through the database interface (Figure 3), and the
DBMS employs inter-process communication mechanisms to communicate with resource adapters.
Therefore, resource adapters keep an open connection with the DBMS and subscribe to specific
event channels.

4.2. Active Database

The active database (Figure 3) includes several modules that are used as follows.

4.2.1. Storage

The storage module includes the tables for storing sensor data, processed information and meta-data
(location, capabilities and configuration) of the hardware and software resources that are present in the
environment. Developers implementing resource adapters do not have access to the internal storage
model. They are provided instead with a database interface.

4.2.2. Database Interface

The internal database model is protected from direct access by the database interface module that
exposes data access (selections) and manipulation (insertions, updates and deletions) using views and
UDFs. Listing 1 shows an example of such an approach.

Listing 1. UDF written in PL/pgSQL for inserting converted weight samples into table weight.

1 . CREATE FUNCTION w e i g h t i n s e r t ( a d c o u t i n t e g e r , t s t imes t amp )
2 . RETURNS b o o l e a n AS $$
3 . DECLARE
4 . v o l t a g e w e i g h t r a t i o numer ic := −41943.0;
5 . w e i g h t s a m p l e numer ic ;
6 . BEGIN
7 . w e i g h t s a m p l e := a d c o u t / v o l t a g e w e i g h t r a t i o ;
8 . INSERT INTO w ei gh t VALUES ( we i g h t s am p le , t s ) ;
9 . RETURN t r u e ;
1 0 . END;
1 1 . $$ LANGUAGE PLPGSQL

The UDF named weight insert abstracts the insertion into table weight and is also used to
process the input parameters. The UDF weight insert receives two parameters, the output of the
analog-to-digital converter (adc out) and timestamp (ts). In Listing 1, Line 7, the voltage-to-weight
ratio (voltage weight ratio) variable is used to convert the readout value (adc out) to weight
(weight sample), which is later inserted into table weight. Such an approach facilitates changes in
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the logic, such as in the voltage to weight conversion, because it is performed on the fly and does not
require modifications or recompilations of resource adapters.

To notify resource adapters about data changes or events, the active database makes use of built-in
mechanisms in PostgreSQL for inter-process communication (NOTIFY and LISTEN commands), and
this prevents resource adapters from periodically querying (polling) the database.

4.2.3. Active Rules

The reactive behavior in the system is supported by the active rules module. In conjunction with
sensors and actuators, active rules implemented as database triggers (Listing 2) can monitor and react to
events happening in the environment.

Listing 2. A database trigger monitors when a sequential sample identifier (sample id) of a first in, first
out (FIFO)-type of table (weight fifo) wraps around to execute an action (check presence absence).

1 . CREATE TRIGGER w e i g h t f i f o a f t e r i n s e r t
2 . AFTER INSERT
3 . ON w e i g h t f i f o
4 . FOR EACH ROW
5 . WHEN( NEW. s a m p l e i d == 40 )
6 . EXECUTE PROCEDURE c h e c k p r e s e n c e a b s e n c e ( ) ;

In Listing 2, the ECA rule represented by the trigger weight fifo after insert is associated with
the table weight fifo and fires after table insertion events. If the condition specified by the Boolean
expression in Listing 2 Line 5 is satisfied, the action—check presence absence—is executed. Because
the analog-to-digital samples the load cell at 80 Hz, the trigger fires every half second or every 40th
insertion and is intended to detect bed entrances and exits.

4.2.4. Database Extensions

Active rules invoke actions that can be functions added by database extensions, such as MADlib [36],
or can be user defined. These functions implement both short-term and long-term types of services.
Short-term services are those that respond to simple events, such as generating an alarm indicating a bed
exit. Long-term services are defined as services requiring datasets collected over a longer period of time
and the analysis of patterns in such data, for example, to gain knowledge about preferences or to detect
abnormal behaviors [45]. Because sensitive data are involved in the data processing, implementing the
methods for such analysis into the DBMS itself avoids data movement and leads to better performance
and security.

4.2.5. Security

Table 2 presents possible access privileges according to different roles in the system (similarly
to [46]). The owner can grant or revoke the access privileges of other system users. Software
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developers creating resource adapters are granted execute permission on specific UDFs within the
database interface.

Table 2. Access privileges according to different roles.

Role
Access Level

View Add Modify Administer

Owner X X X X
Family X X X X
Healthcare X X X
Other users
Devices X

5. Experimental Results: In-Database Services Supporting AAL Systems

Three distinct AAL services for home-based health monitoring, inspired by the “Trygg om natten”
project (Section 3), are presented and implemented following the proposed architecture.

To accommodate the proposed architecture, a database server was configured in a computer running
CentOS 6.4 with PostgreSQL (version 9.2.3) and the MADlib [36] library extension. To implement
the proposed services, additional tables were created to store temporary and derived data, such as
descriptive statistics and transition matrices. A separate computer running MS Windows 7 hosted
resource adapters (implemented in C#) that read the measurements from the “Trygg om natten” dataset
files to the corresponding database. The dataset from a single care beneficiary, who was an active man,
living alone in his own apartment and receiving daytime home care services and nighttime supervision,
was selected to present the implementation results.

5.1. Detection of Bed Presence and Absence

A service to detect presence in bed can enable the night patrol team to remotely check if individuals
are in bed, so as not to disturb their sleep. Voluntary and involuntary body movements create disturbances
in the load cell signal that are not present when the bed is unoccupied or is loaded with static weight.
Figure 4 presents the standard deviation of a weight signal measured by a load-cell sensor in the moments
before the person left the bed. By analyzing the measured weight and its standard deviation, a method
to detect the presence or absence of a person in bed can be implemented as an active rule (trigger) that
monitors the table in which the measured weight is stored.

The active rule triggers every half second and invokes a UDF that checks for bed exits and entrances.
The condition (Equation (1)) for the detection consists of checking intervals in which the median (mw)
and the standard deviation (σw) of the weight signal are greater than the respective estimated thresholds
for the mean value (Omw) and standard deviation (Oσw).

Presence = ((σw ≥ Oσw)AND(mw ≥ Omw)) (1)
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Figure 4. A cut-off value can separate the standard deviation of the measured weight signal
into in-bed signals and out-of-bed signals.

The mean value and standard deviation of the weight signal are calculated with a moving window
with the last 40 inserted weight samples (approximately half a second or half of the signal sampling rate,
which was 80 Hz). Smaller window sizes can lead to high granularity that makes it difficult to find the
separating threshold, and larger window sizes can delay the detection of bed entrances and exits.

A method for finding a threshold in a signal (i.e., binarizing) is the Otsu algorithm [47], which
maximizes the between-cluster distance when dividing the distribution of values into two clusters,
for example, the presence and absence clusters. For each individual, corresponding thresholds have
been calculated.

For the selected individual, 27 bed presences and 16 bed absences were detected by the active rule
based on measured weight. To identify true and false positives, the dataset containing load cell signals
was manually labeled and served as a baseline for comparison.

All bed presence and absence detections were validated as true positives. Bed absence detections
outnumbered bed presence detections, because on many occasions, the individual left the bed after the
sensors became inactive at 6 a.m.

The proposed approach to detect bed exits and entrances also detected more bed-exit events than the
bed-exit detection provided by the Emfit Bed Sensor. Figure 5 presents one missed and one nonexistent
bed exit using the Emfit Bed Sensor. For the same individual, the Emfit Bed Sensor missed approximately
60% of all bed exits. Such a mismatch might be caused by the antidecubitus mattress that the individual
was using to prevent and treat pressure sores.
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Figure 5. Bed entrances and exits are accurately detected by the active rule, while the
bed-exit detection provided by the Emfit Bed Sensor misses bed exits or generates
nonexistent bed exits. Because the sensors were active from 10 p.m. until 6 a.m., it was
not possible to detect when the individual went to bed or when he left. TL LC denotes
top-left load cell.

The overall approach avoids raw load cell data, which exposes private and sensitive information,
from being transferred and processed outside of the DBMS. In this system, several resource adapters can
subscribe to the service and are notified when bed entrances and exits are detected.

5.2. Common Event Transitions during the Night

The purpose of this service is to enable the detection of anomalies by discovering simple associations
between presence detections in the bathroom, living room, kitchen, entrance hall and bed. Strong
associations indicate common room transitions and room activity, and deviations from such associations
can enable the detection of anomalies.

A method for finding such expected patterns in sequences of events (i.e., sequential data mining [48])
is by estimating the probability p(ey|ex) of one event ex being followed by another type of event ey
(similar to [49]). By considering only the previous detected event, a transition matrix can be computed
online for each individual using an active rule. Each element in the transition matrix P contains the
probability of event ei being followed by event ej , and this is denoted as Pij(ej|ei), which is also referred
to as the confidence in association rules [50]. The transition matrix can be visualized as a graph by
plotting associations over a certain confidence threshold.

An active rule monitors incoming events from all sensors (Table 1 in Section 3) and updates the
transition matrix table, which describes the transition probability of events happening during the night.
The computation of statistics, such as the mean and standard deviation of the transition time between
two events, is also triggered by the rule. Bed-exit events generated by the previously proposed active rule
were used due to the higher accuracy than bed-exit events detected by the Emfit Bed Sensor (Figure 5 in
Section 5.1).
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Figure 6 presents likely transitions of events in the home environment of the selected subject. An
observation from the figure is that when the observed individual leaves the bed, the most likely event is
a visit to the bathroom. Such a transition takes an average of 7 min with a standard deviation of 7 min.

Figure 6. Transition probabilities (p) of events for a confidence threshold of 0.2. Mean (µt)
and standard deviation (σt) of the transition time (normally distributed).

The knowledge provided by the transition matrix can be used to detect anomalies during future nights.
Anomaly detection mechanisms can also be implemented with active rules. Because health-related
conditions evolve over time and because health changes might not be evident in the short-term, the
amount of stored data to be processed increases by a large amount every day. Therefore, in-database
sequential data mining avoids transferring stored long-term data to external data analysis tools to update
transition probabilities.

5.3. Modeling of Early Night Behavior Using Decision Trees

Another way to model transitions is with a service that models typical sensor triggering transitions
over a certain time span during the night. Such a service could help to discover changing trends in the
level of independence of the individual being monitored.

For this service, a decision tree using the C4.5 implementation in MADlib was trained with data from
a single individual to discriminate between the time period from 10 p.m. to midnight (TPI denotes Time
Period I) and the period from midnight to 6 a.m. (!TPI denotes not Time Period I). The training data
consisted of 15 features that were computed for each observation by processing a sliding window with a
width of 20 min over the 14 days of collected data. No feature selection has been applied due to the rather
low number of features used. This process resulted in training data with approximately 300 observations.

The events in the collected data are denoted as bathroom (Ba), kitchen (K), hallway (H), and living
room (L), and each event represents activity in a certain room. Other events include inactivity registered
from the wearable inertial sensor (I), door openings (D) and bed entrances and exits (Bin and Bout,
respectively), which are computed using the proposed active rule for detecting bed entrances and exits.
The features used in the calculations are the type of sensors that fired in the last four events and are
denoted as event at time t. The transition time between the four last events for the window is computed
as Et(t, t− k), where k is the number of previous events. The number of each type of event and the lack
of events (denoted by N) in a window are also computed.

The generated decision tree for the same individual is shown in Figure 7. Thick edges represent where
the majority of data points were concentrated. The tree hierarchy reflects variable importance. Figure 7
illustrates (by hierarchy and bold edges) that the last occurring event is important. An example of this is
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the lack of events (N) in a window, and the presence or absence in bed were the most informative, while
discriminating between TPI and !TPI.

Figure 7. A decision tree distinguishes different time periods during the night. Notation:
Ba, bathroom; K, kitchen; H, hallway; L, living room; I, inactivity; D, door openings; Bin,
bed entrances; Bout, bed exit; N, lack of events. TPI, Time Period I; !TPI, not Time Period I.

One interpretation of the model is illustrated by the dashed edge from the root node. This link revealed
that the individual was more likely to be active during the modeled time period TPI than the rest of the
night (!TPI). Moreover, the dotted edge shows that the individual was active in the kitchen, hallway
and living room during TPI. In order to validate the decision tree model, a 10-fold cross-validation was
performed, and a mean accuracy of 81% was achieved. The accuracy shows that, despite the complexity
of human behavior, the model is able to explain key features of the early night that could be used when
analyzing deviations in long-term trends.

Similar to updating transition probabilities, in-database retraining of decision trees avoids data
movement, and this promotes privacy. The processing time to create or update a probability matrix and
to train a decision tree can be negligible for a small dataset, but quite significant for a dataset containing
months of stored data.

6. Conclusions

This work has shown how different capabilities of DBMSs (e.g., triggers, user-defined functions
and existing database extensions for in-database analytics) fit together in a database-centric architecture
intended to support the development of home-based healthcare applications. The proposed software
architecture represents an alternative to existing platforms supporting the development of smart homes
and AAL systems.

DBMSs are mature and dependable technologies and provide mechanisms that can address the
processing, security, privacy and personalization requirements of smart homes and AAL systems. These
mechanisms, however, are not fully exploited in current smart home and AAL infrastructures.

In the system design presented here, database triggers are used to detect and respond to events taking
place in the home environment. The event-driven architecture provided by active databases makes it
possible to implement an in-database service to monitor an individual’s presence or absence in bed, as
well as to discover common room transitions and deviations during the night.

User-defined functions are exploited to perform in-database processing, i.e., the domain logic is
integrated into the DBMS itself. A database interface created with user-defined functions and views
protects the internal database model against direct access. Existing DBMS extensions for data mining,
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such as MADlib, enable the development of services to model early night behaviors. Database roles can
promote security by controlling user access to database resources, such as tables that contain private data.

The proposed and implemented AAL services, which have been validated with a dataset collected in
real homes, reside within the database and avoid exporting sensitive data to external data analysis tools.

Therefore, active in-database processing avoids data movement from the DBMS to external
applications. Such an approach can lead to improved performance, security and privacy while still
benefiting from the on the fly management capabilities of DBMSs. Centralizing the domain logic
into the DBMSs reduces code duplication, promotes code reuse and facilitates system maintenance and
adaptability as the environment and individual needs evolve.

Although these are important system properties supported by the presented database-centric platform,
the proposed approach requires developers to have knowledge of relational DBMSs, their features, such
as for security, and procedural programming languages, such as PL/pgSQL and PL/Python [31], that
extend the SQL standard.

Even though resource adapters keep an open connection with the DBMS to subscribe to notifications
from the database, this is not a limitation, because resource adapters, for example running on battery
powered devices, can connect and disconnect to the DBMS when necessary.

Up to now, besides the results reported in this work and in [1], the presented database-centric
architecture has been used to develop a smart bedroom [34] and to integrate an autonomous mobile
robot to such a smart environment [51]. Future work encompasses developing, deploying and
evaluating smart environments that encompass a whole home environment and that provide actuation
services to improve comfort, independence and medical care using the presented database-centric
platform. To facilitate interoperation, semantic description for the environment, devices and user
activities will also be investigated.
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