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Abstract: Recently, positron emission tomography (PET) is playing an increasingly 

important role in the diagnosis and staging of cancer. Combined PET and X-ray computed 

tomography (PET-CT) scanners are now the modality of choice in cancer treatment 

planning. More recently, the combination of PET and magnetic resonance imaging (MRI) 

is being explored in many sites. Combining PET and MRI has presented many challenges 
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since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and 

conventional PET detectors distort MRI images. Solid state light sensors like avalanche 

photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less 

sensitive to magnetic fields thus easing the compatibility issues. This paper presents the 

results of a group of Canadian scientists who are developing a PET detector ring which fits 

inside a high field small animal MRI scanner with the goal of providing simultaneous PET 

and MRI images of small rodents used in pre-clinical medical research. We discuss the 

evolution of both the crystal blocks (which detect annihilation photons from positron 

decay) and the SiPM array performance in the last four years which together combine to 

deliver significant system performance in terms of speed, energy and timing resolution. 

Keywords: positron emission tomography (PET); magnetic resonance imaging (MRI); 

silicon photo-multipliers (SiPMs); block crystal arrays 

 

1. Introduction 

1.1. Positron Emission Tomography (PET) Basics 

Positron Emission Tomography (PET) exploits the fact that many biologically significant molecules can 

be labelled with a positron emitting isotope of carbon or fluorine which can be imaged to show the 

distribution of that molecule or its metabolites in humans and animals. 11C and 18F decay by positron 

emission and the positron, after losing its initial kinetic energy, annihilates with an electron producing two 

511 keV photons which are emitted approximately 180° apart. These annihilation photons travel beyond 

the body and are detected by arrays of dense, optically transparent scintillation crystals which convert some 

of that photon’s energy into visible light. This light is normally converted into an electrical pulse by a 

photo-multiplier tubes (PMT). PET scanners’ detectors normally have an array of crystals optically coupled 

to four PMTs. Signals from pairs of detectors which arrive almost simultaneously identify the line on 

which the positron decay occurred, and many such detections are submitted to a reconstruction algorithm 

which is used to produce a map of the density of positron decays from which quantitative maps of the 

labelled molecules’ distribution can be derived as a function of time. The interested reader is referred to 

three texts dealing with clinical PET [1], brain imaging with PET [2], and reconstruction in modern PET 

scanners [3]. Most PET scanners have their detectors arranged in cylinders with considerable axial extent. 

This allows for a very large number of lines of response since all chords, (including those oblique to the 

scanner axis) which intersect the subject being imaged are used in the image reconstruction. 

During the signal acquisition, several effects will occur that lead to incorrect information about the 

location of the decay: (1) the positron escapes from the parent nucleus with a variable energy which 

must be lost before annihilation with an electron can occur so there is a small difference between 

the location of the nucleus and annihilation (positron range error); (2) the finite size of the crystals 

which detect the annihilation photons adds a further uncertainty to the precise location of the line of 

response for this event( crystal size error); (3) the electron-positron pair will be moving at the time of 

annihilation, so the two annihilation photons will not appear to be quite 180° to the stationary detectors 
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(non-colinearity error); (4) one or more of the photons may undergo Compton scattering within the body 

prior to detection. In clinical PET the errors associated with the first two of these effects are normally 

small compared to the errors associated with subject movement during the scan or mis-registration of 

the PET and computed tomography (CT) images which are acquired at different times. However, when 

imaging small animals the effects of positron range and detector size are much more significant while 

non-colinearity produces much smaller errors due to the smaller scanner size [4]. Compton scattering 

also occurs in the detectors, and this results in a broadening of the spatial resolution, since the detector 

may assign the point of interaction to than of the centroid of all the interactions within the detector. 

1.2. Small Animal PET Requirements 

Compared with whole body PET scanners, small animal PET scanners require a much smaller 

field of view. Due to the smaller organ size, much higher spatial resolution is required. For more 

detailed information, the reader is referred to a basic text on small animal imaging [5]. With a smaller 

scanner diameter, the effect of non-colinearity is much reduced. Since there are fewer detectors, given 

the overall size of the scanner is much smaller, the scintillation crystals can be made smaller while still 

keeping the device cost effective. Since the crystal size is a major contributor to blurring, this is very 

important. The physical size of conventional PMTs makes them unsuitable for coupling to the very 

small crystals used in small animal PET. Therefore most of them use position sensitive PMTs 

(PSPMTs). These use mesh dynodes rather than those in a conventional PMT which are usually arcs of a 

cylinder. They also have two orthogonal sets of parallel wires as anodes, so that the spatial distribution 

of charge can be determined. Since the dynodes are a stack of meshes the distribution of charge 

collected at the anodes reflects quite faithfully the location of the light detected by the photo-cathode.  

An excellent review of multi-modal small animal imaging has been published by de Kemp et al. [6]. 

1.3. University of Sherbrooke PET Scanners 

In 1990, the group at the University of Sherbrooke made the first small animal PET scanner in 

Canada [7,8]. For many years, it was unique in that it used a solid state light sensor, an avalanche  

photo-diode (APD) rather than a PMT. These are much smaller than the smallest practical PMT, require 

a much lower operating bias (~100 V vs. 1000 V for a PMT), and are not adversely affected by magnetic 

fields. This instrument demonstrated many of the advantages of small animal PET imaging compared to 

highly invasive methods like autoradiography, the most significant of which are that an animal can be 

used as its own control, and that dynamic imaging of the radioisotope distribution is possible. Later a 

much more advanced version of their LabPET was commercialized [9] and has been very successful. 

1.4. Scintillators for PET 

The annihilation photons imaged by PET scanners have a much higher energy, 511 keV, than the  

140 keV gamma rays from 99mTc used in conventional nuclear medicine imaging. Since it is very 

important to absorb all the energy from the incident photon (in order to measure its energy and 

distinguish between true and scattered photons), a scintillator with both a high atomic number (to favor 

photo-electric detection) and high density (to improve overall efficiency), PET scanners use high 
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atomic number, high density scintillators. In the 1980s and early 1990s Bismuth Germanate (BGO), 

(first described in 1975 [10]), was the scintillator of choice due to its high effective atomic number, 

and very high density. In fact, the first PET scanner to use BGO was made in Canada in 1978 [11], 

and this scintillator was adopted by nearly all commercial PET manufacturers subsequently. More 

recently, rare earth based scintillators have been shown to be much more efficient in converting the 

incident photon energy into visible light, and also their decay time is much shorter, resulting in lower dead 

time, and allowing higher count rates. The first of these, gadolinium oxy-orthosilicate (GSO) was used in 

some scanners. Lutetium oxy- orthosilicates doped with cerium have been the most promising [12],  

at present, the materials of choice are lutetium oxy-orthosilicate (LSO) or lutetium-yttrium  

oxy-orthosilicate (LYSO), in which a small quantity of yttrium is added to change the decay time constant 

and avoid patent infringement. The properties of some commonly used scintillators are given in Table 1. 

Table 1. Common scintillators use in PET imaging, compiled from various sources. 

Properties GSO BGO LSO 

Density (g/cc) 6.71 7.13 7.35 
Effective Atomic Number 58 73 65 

Index of Refraction 1.87 2.15 1.82 
Attenuation (cm−1 @ 511 keV) 0.67 0.96 0.87 

Decay Constant (ns) 50 300 40 
Light Yield Nal (T1) = 100 (PMT, APD) 20, 40 15, 30 75, 85 

Photoelectric-fraction (% @ 511 keV) 25 40 30 
Energy Resolution (% @ 511 keV) 15 20 12 

Radioactivity None None 176Lu 

1.5. Block Detectors: Encoding of Data 

The early PET scanners had one scintillation crystal coupled to one PMT, but this is very 

expensive and prevents making the detectors sufficiently small to improve the spatial resolution. 

Almost all PET scanners now use some form of “block detector” [13] in which many crystals are 

optically coupled to four PMTs. Small animal PET scanners use position-sensitive PMTs (PS-PMTs) 

rather than individual PMTs which allow them to identify the small crystals in the block more easily. As 

an example, the Siemens Biograph family of PET/CT scanners’ including the Biograph 16 HiRez [14], 

use detector blocks that have 169 crystals (each 4 × 4 × 20 mm3) arranged in a square array coupled to 

four PMTs. In comparison, the Siemens Inveon small animal PET scanner [15] has detectors with  

400 crystals (each 1.5 × 1.5 × 10 mm3) on a single PS-PMT. 

The ability to identify uniquely each of the crystals in the block is critical to the spatial resolution of the 

final instrument. Since LSO has a much higher light output than BGO, the regions associated with each 

crystal in the crystal identification map (CIM) are much smaller due to the higher signal to noise ratio 

(SNR). The map is formed using what is often referred to as “Anger Logic” in the PET literature in honor 

of Hal Anger, inventor of the Gamma Camera [16]. The four outputs from the PMTs or ends of a series of 

resistors connecting the anodes of a PSPMT as shown in Figure 1, can be considered in a pattern like: 

A B 

C D 
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From total light collected, corresponding to the energy, E, and the individual output signals A, B, C, 

and D the coordinates, X, Y of that interaction can be calculated according to: 

E = (A + B + C + D), X = (B + D)/E, Y = (A + B)/E (1)

The above equations were used to make the CIM images in Figures 2 and 3. 

Figure 1. Simplified circuit of the 16:4 resistor network used to reduce the number of 

outputs from a 4 × 4 array of SiPMs to four outputs labeled A, B, C and D. 

 

Figure 2. Crystal identification map from a Siemens HiRez 169 LSO crystal PET detector. 

 

Figure 3. Crystal identification map from an Inveon 400 LSO crystal pre-clinical PET detector. 

 

A

C

B

D
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1.6. SiPMs 

Silicon photomultipliers [17] have become available in recent years and their properties are being 

exploited by many groups for PET imaging [18]. These devices are made from a large number of miniature 

Geiger-mode APDs, (commonly referred to as cells) all connected in parallel. SiPMs are operated by 

biasing them just beyond their breakdown voltage, so that each cell fires in an avalanche (i.e., Geiger) 

discharge in response to incoming light photons. The proportionality of the signal thus arises through 

integrating or counting the number of cells that have fired. Thus, the more cells receiving light, the bigger 

the signal detected. Arrays of SiPMs, in sizes of 4 × 4 or larger, are now available for PET applications 

from at least three manufacturers: Hamamatsu, Japan [19], Philips, Germany [20] and SensL, Ireland [21]. 

1.7. Digital vs. Analog SiPMs 

The SiPMs made by Hamamatsu and SensL are formed from a few thousand light sensitive APDs 

connected via resistors to a common point. These APDs are referred to as “cells”. The concept is 

illustrated in Figure 4a. The sum of all the APD cells’ outputs are connected to a common point whose 

output is sent to a discriminator which produces a trigger. Some of the cells will fire spontaneously,  

and the higher the bias, the more cells will fire in a given time. This constitutes a background noise.  

On the other hand, the digital photon counters (DPCs), from Philips are very versatile. Their simplest 

mode of operation has the cells conceptually coupled to form a trigger through a logic “OR” gate,  

as shown in Figure 4b, and once a trigger has occurred, the state of all the APDs is interrogated a short 

time later, to count the number which fired. In this way, the time of the first cell to trigger is a very precise 

measure of the actual time the scintillator detected an incoming photon. The analog SiPMs are used in 

circuits very similar to those used with conventional PMTs, except that the bias voltage is very much 

lower. DPCs have a very sophisticated integrated circuit attached, but still require additional logic to 

validate and encode events. Application to PET is described in a recent article by our group [22]. 

Figure 4. (a) Analog and (b) digital SiPM cells showing how an event trigger is formed in 

both configurations. Reproduced with the author’s permission from IEEE MIC conference 

record 2012 [23]. 

 

Analog  SiPM pixel

i1 i2 in

I = i1 + i2 + … + in
Discriminator

Simplified Digital SiPM pixel

t1 t2 tn

OR

t = min { t1, t2, … , tn}
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Most of the research to date by our group has been based on the tiled arrays made by SensL Inc. of 

Cork, Ireland. The work described here summarizes the evolution of our detector design for use in a 

prototype small animal MRI compatible PET scanner which is presently under construction. 

1.8. SensL SiPMs: Families 

1.8.1. Single and Tiled Arrays 

Over the past five years, SensL has offered 4 × 4 arrays of SiPMs in a package which can be “tiled” in 

order to make larger arrays. These are referred to by SensL as: SPMArray 4, Array SL-4, Array SM-4, 

and Array SB-4. The first version we used could be tiled (i.e., close packed) on three of the four sides and a 

thin, flat and flexible cable extended from the remaining side. The more recent versions have the read-out 

pins on the back, and can be tiled on all four sides. 

1.8.2. Evolution of Performance 

Each of the elements is 3.05 mm × 3.05 mm with a pitch of 3.16 mm. Their parameters are given in 

Table 2. In general the gain has improved by a factor of three, and is now comparable to a 

conventional PMT. The latest versions need only a bias voltage of about 24 V. 

Table 2. Specifications of SensL 4 × 4 SiPM arrays used in this work. 

Parameter  SPM-Array 2 S-Series M-Series B-Series 

Bias voltage −30 V +28 V +28 V −24 V 
Gain 1 × 106 1 × 106 2.3 × 106 3.0 × 106 
Area 2.85 × 2.85 2.85 × 2.85 3.05 × 3.05 3.0 × 3.0 

Photon Detection  
Efficiency 

10%–20% @ 5200 Å 10%–20% @ 5200 Å 20% @ 5200 Å 31% @ 4200 Å 

Number of cells 3640 3640 4774 4774 
Dark rate or current 8 MHz 8 MHz 3.8 µA 2.8 µA 

2. Materials and Methods 

2.1. Block Detectors Used in Our Evaluation 

As mentioned above, most PET scanners use a “block detector” designed so that a larger number of 

individual crystals can be coupled to a smaller number of light sensors. The design of these has evolved 

over the years and the choice is critical in optimizing the instruments spatial resolution and overall cost 

to the task of human whole-body, human brain, or small animal imaging. Our current PET detector is 

designed for a Bruker 7T MRI with a 21 cm horizontal bore and a Bruker BGA12-S shielded gradient 

system with an inner/outer diameter of 114 mm/198 mm (Bruker BioSpin, Milton, ON, Canada) [24]. 

One of the constraints in our instrument is that the PET detector must fit inside the gradient coils while 

also accommodating a radio frequency coil. Currently, we are using a quadrature volume RF coil with 

inside and outside diameters of 35 and 60 mm (Bruker BioSpin, Milton, ON, Canada), thus limiting the 

inner diameter of the detector ring to approximately 64 mm. Conventional PET detector crystals are 

much longer in the radial direction than in their other dimensions. This results in the PET image 
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becoming blurred in the radial direction due to the uncertainty of the point of interaction of the incoming 

photon. For this project we mitigated this effect using a dual layer crystal block [25]. These blocks have 

two layers with the upper one shorter than the lower layer to make the probability of interaction the same 

in both layers. In order to distinguish the layer of interaction, we make the upper layer with one fewer 

rows and columns and offset it by ½ of the crystal pitch. Our first experiments used arrays made in-house 

by hand with individual crystals in a 4 × 4 and 3 × 3 pattern [26], while later ones were commercially 

manufactured by Proteus, Inc. (Chagrin Falls, OH, USA) [27], allowing the use of much finer crystal 

elements. The use of offset crystal elements was originally developed for the first successful dedicated 

PET scanner for breast cancer detection [28,29]. The crystal blocks fabricated by Proteus for this project 

have properties as shown in Table 3. Figure 5 shows the exposed 10 × 10 lower layer and the outer 

surface of the enclosed 9 × 9 upper layer of the LYSO block whose performance is described here.  

The crystals are 1.2 × 1.2 mm2 and 6 mm deep in the lower layer and 4 mm deep on the upper layer. 

The crystal blocks are designed to fit on the SensL 4 × 4 arrays. The number of crystals one can 

uniquely identify determines the packing density. Using sensors which have less noise makes the blobs 

associated with each crystal smaller, allowing one to encode more crystals. In this regard, position 

sensitive PMTs presently provide the best performance as can be seen comparing the response 

patterns in Figures 2 and 3. Improvements in the photo-detection efficiency and dark current have 

helped SiPMs come very close to matching their performance. The use of 3M “enhanced specular 

reflector” (ESR) [30] in the fabrication of the crystal blocks improves the light output significantly over 

aluminum foil or Toray reflector [31]. 

Table 3. Evolution of dimensions and crystal configurations used. 

Reference Crystal Size Top Layer Bottom Layer Reflector Manufacturer 

26 3 mm × 3 mm 3 × 3 4 × 4 Toray film hand made 
25 1.6 mm × 1.6 mm 6 × 6 7 × 7 ESR Proteus 
25 1.2 mm × 1.2 mm 7 × 7 8 × 8 ESR Proteus 
35 1.2 mm × 1.2 mm 9 × 9 10 × 10 ESR Proteus 

in progress 1.2 mm × 1.2 mm 9 × 21 10 × 22 ESR Proteus 

Figure 5. Two views of block of LYSO crystals used in the study. There are 10 × 10 1.2 mm 

crystals in the lower layer (shown exposed here) and 9 × 9 1.2 mm crystals in the upper 

layer. The layers are offset by ½ of the crystal spacing. 
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2.2. Key Factors in Performance 

2.2.1. Crystal Detectability 

The ability to uniquely identify the crystal of interaction of the incoming photon is critical to the 

ultimate spatial resolution of the PET scanner. This is already compromised by the physics of the 

interaction of gamma rays with matter which favors Compton scattering (where only part of the incoming 

photon’s energy is lost in the material in the first interaction) over photo-electric absorption (where all 

the energy is lost at one point in the material). High atomic number materials favor photo-electric 

absorption, but for scintillation crystals used in PET this is never more than 40%, and is only 30% for 

LSO, and even less for LYSO, depending of the percentage of yttrium used in the crystal. The 

detectability is improved with higher light output, better reflectors between crystals, and lower noise 

light sensors, all of which serve to enhance the SNR. Our use of a ½ crystal offset in both directions [28] 

allows for more crystals to be identified since the light from the top layer appears to come from a point 

in the center of a square formed by the four crystals below the top layer crystal. 

2.2.2. Energy Resolution 

Energy resolution is important in PET imaging as it allows the scanner to distinguish between 

annihilation photons which have been Compton scattered in the subject or intervening material and 

those which are still on their original line of response. The energy resolution is enhanced by higher light 

output, better reflectors between crystals, and lower noise light sensors. 

2.2.3. Timing Resolution 

Timing resolution is important in PET as it allows one to distinguish between the detection of two 

annihilation photons from the same event, and two which arise from two different positron-electron 

annihilations which occur closely separated in time. In some of the newer clinical PET scanners the arrival 

time difference is used to estimate the approximate point along the line of response where the annihilation 

occurred, so called time-of-flight PET. However current PET detectors are not fast enough to make 

this practical in small animal imaging. 

2.3. Readout: Use of Multiplexing and HDMI Cables 

The SensL devices we use have 16 elements arranged in a 4 × 4 matrix. For simplicity these are 

multiplexed to provide only four connections. An array of resistors couples the outputs together so that 

they can be encoded in the same manner as a conventional PET detector shown in Section 1.5. The signals 

are processed on a transmitter board which has a socket to receive the SensL SiPM array at one end and a 

miniature high definition media interface (HDMI) connector at the other. The HDMI cables have four 

twinax 50 ohm cables which normally carry the video signals to a television receiver [32,33]. These 

are re-assigned to carry the four signal outputs, while other conductors provide the + and −3 V power 

for the multiplexer, and ~25 V bias for the SiPMs. A thermometer chip monitors the temperature. 

These cables transmit the signals from the PET detectors very faithfully even in the presence of the 

MRI imaging sequences which generate the highest RF noise due to the differential signals in the 
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shielded twinax cables. No magnetic components are used in the manufacture of the SiPMs or the 

multiplexer, so the introduction of the PET detectors does not influence the MRI acquisition. 

The multiplexer is shown in Figure 6. The two views show the detector fully assembled, and the 

multiplexer circuit board with its miniature HDMI connector at one end and the crystal block mounted 

on the SiPM array at the other end. 

Figure 6. Detector assembly consisting of the multiplexer, SiPM array and crystal block. 

 

2.4. Experiments to Validate the Detector Performance 

2.4.1. Energy and Timing Resolution 

The single detector crystal identification, energy and timing resolution were performed using a 

Scanwell PET timing alignment probe [34] containing a 22Na source as described [35]. Six channels of 

list-mode data were acquired (four detector outputs and two time to amplitude converter (TAC) outputs. 

The list mode file was played back to form a crystal map on which the response of all crystals was 

identified. Then the list file was replayed with the four channels of data from each crystal forming an 

amplitude histogram from which the location of the 511 keV peak was found and the energy resolution 

was measured in terms of the full width at half maximum (FWHM) of a Gaussian fit to the photo-peak. 

Subsequently the list file was replayed and the time between the positron decay being detected in the 

timing probe and the subsequent detection by individual crystals was formed into a timing spectrum and 

the time delay and timing resolution’s FWHM measured. 

2.4.2. Spatial Resolution 

In these studies two identical detectors were attached to large protractors supported on translation 

stages. A stationary 22Na point source was placed centrally between the detectors and data were 

collected with the two detectors operating in coincidence. The detectors were rotated to positions 

corresponding to the locations of the ends of chords which intersect the centers of the detectors as if 

there were 16 detectors in a tightly packed “ring”. The detectors were moved in 0.2 mm increments 
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making 60 measurements of the count-rate in each position. The data from each column of crystals 

were summed to measure the coincidence response function (CRF) as a function of position in the 

block and radial offset of the lines of response joining the crystal columns. The FWHM of the CRF 

was then plotted as a function of the distance from the center of the scanner’s field of view. 

3. Results 

3.1. Crystal Identification Maps 

The crystal identification maps are used to assign one part of the image formed by data processed 

according to Equation 1 to a unique crystal. We present the results of 7 × 7 + 6 × 6 arrays of 1.6 mm 

crystals mounted on the older SensL L-series SiPMs in Figure 7, and 10 × 10 + 9 × 9, arrays of 1.2 mm 

crystals mounted on the newer SensL B-series SiPMs in Figure 8. These figures show the crystal 

arrangement and sizes and profiles through the individual crystals’ responses. There are 84 crystals in the 

older block, and 181 in the newer one. Due to a large extent on the lower noise in the SiPMs all crystals 

appear just as well resolved in the newer version. 

Figure 7. Detector with SensL S-series SiPM and LYSO crystal block with 36 crystals in 

the top layer and 49 in the bottom layer and the response pattern with profiles through rows 

of crystals showing that they are well resolved. 

 

Figure 8. Detector with SensL B-series SiPM and LYSO crystal block with 81 crystals in 

the upper layer and 100 in the lower layer and the response pattern with profiles through 

rows of crystals showing that they are well resolved. 

 



Sensors 2014, 14 14665 

 

3.2. Energy resolution 

The energy resolution and the ability to distinguish between direct and scattered incoming photons 

is important for improving the signal to noise ratio and the contrast in the final PET images. By way of 

example we present 3D histograms from individual crystals of the energy resolution and location of the 

511 photo-peak for 8 × 8 + 7 × 7 1.2 mm crystals mounted on the SensL L-series SiPMs in Figure 9, 

and similar figures for the 10 × 10 + 9 × 9 1.2 mm crystals on the newer SensL B-series SiPMs in 

Figure 10. The energy resolution improves from 16.4% to 11.3% FWHM in the lower layer and from 

16.3% to 10.8% in the upper layer of crystals even though there are 23% more crystals in the array. 

Figure 9. Energy resolution expressed at the FWHM % for the 511 keV photo-peak for the 

lower and upper layer of the 8 × 8 lower, 7 × 7 upper layer block on a SensL M-series SiPM. 

Figure 10. Energy resolution expressed at the FWHM % for the 511 keV photo-peak for the 

lower and upper layer of the 10 × 10 lower, 9 × 9 upper layer block on a SensL B-series SiPM. 
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3.3. Timing Resolution 

Improved timing resolution reduces the statistical noise in the final PET. The timing resolution of 

the 10 × 10 + 9 × 9 1.2 mm crystal blocks on the SensL SB-series SiPMs is shown in Figure 11 for the 

lower layer: as 2.52 ± 0.22 ns FWHM and upper layer as 2.55 ± 0.22 ns FWHM. The crystal to crystal 

variation in timing resolution appears quite random. However, the arrival time delays (which are 

normalized to 5 ns) show a trend with the events detected near the center of the block appearing to 

arrive later. This is due to the nature of the multiplexer used in which the 16 individual SiPMs are 

connected with a resistor matrix to provide only four channels to read out. The inter-element resistors 

and the intrinsic capacitance of the SiPMs themselves delays the arrival of the signals: the further away 

the element is from the corner, the longer it takes for the signal to arrive. These delays can easily be 

accounted for in the final instrument at the time the system is calibrated. 

Figure 11. The timing resolution and arrival time delays for the dual layer block plotted as 

a function of crystal location in the block. 
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3.4. Spatial Resolution 

The spatial resolution of the final PET scanner depends on the coincidence response function of the 

detector pairs to a point source as a function of the location in the imaging field and the reconstruction 

algorithm. We present the results of the coincidence response function for two different crystal blocks: 

dual layer 7 × 7 + 6 × 6 1.6 mm crystals and 8 × 8 + 7 × 7 1.2 mm crystals in Figure 12. Figure 13 

shows the detector ring geometry in one plane to illustrate where those measurements of spatial 

resolution are made as chords which are at different radii. 

Figure 12. The coincidence response function as it changes with radial distance for  

(A): a block with 49 lower, and 36 upper layer crystals 1.6 × 1.6 mm2; (B): 64 lower and  

49 upper layer crystals 1.2 × 1.2 mm2. 

 

Figure 13. Trans-axial view of the detectors and a disk covering the imaging field of view. 

The colored chords show lines of response which intersect the crystals more obliquely as 

they are further from diameter. 
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4. Conclusions/Outlook 

The funding for the construction of a dual-ring demonstration prototype has been secured, and 

construction of the instrument is presently underway. Extensive analytical and Monte Carlo 

simulations [36,37] were performed prior to the final design, and these agree well with the spatial 

resolution results reported here. The instrument will have two rings of 16 SiPMs on which we will 

mount LYSO blocks of 22 × 10 1.2 mm crystals on the lower layer, and 21 × 9 1.2 mm crystals on the 

upper layer: (409 crystals altogether). The detectors will have individual thin copper shielded boxes to 

minimize the RF pickup during MRI acquisitions. Each block will be readout with a single HDMI 

cable. A controller [38] will monitor the temperature of each crystal and adjust its bias slightly as the 

temperature changes which will occur when MRI pulse sequences requiring rapidly changing 

gradients are being used. The readout of the detectors will use the OpenPET data acquisition system 

which has been developed for groups constructing small PET systems by the Lawrence Berkeley 

National Laboratory group [39]. Many other are actively working in this field at present for example 

Maramraju et al. [40] used a higher field (9.4 T) magnet and unshielded PET detectors. They experienced 

some interference between modalities, which so far, with our shielded PET detectors and HDMI cables 

has not been observed in our prototype. Already there is a commercial MRI/PET scanner using a low 

field (1 T) permanent magnet offered for sale by Mediso USA [41]. Dual modality MRI and PET 

present some interesting design challenges, but our preliminary results presented here and the MRI 

compatibility results to be published shortly suggest that we have a solution which should provide 

excellent bi-modal imaging at a reasonable cost. 
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