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Abstract: We report a novel approach to genotyping single nucleotide polymorphisms 

(SNPs) using molecular beacons in conjunction with a suspended core optical fiber (SCF). 

Target DNA sequences corresponding to the wild- or mutant-type have been accurately 

recognized by immobilizing two different molecular beacons on the core of a SCF.  

The two molecular beacons differ by one base in the loop-probe and utilize different 

fluorescent indicators. Single-color fluorescence enhancement was obtained when the 

immobilized SCFs were filled with a solution containing either wild-type or mutant-type 

sequence (homozygous sample), while filling the immobilized SCF with solution 

containing both wild- and mutant-type sequences resulted in dual-color fluorescence 

enhancement, indicating a heterozygous sample. The genotyping was realized 

amplification-free and with ultra low-volume for the required DNA solution (nano-liter). 

This is, to our knowledge, the first genotyping device based on the combination of optical 

fiber and molecular beacons. 
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1. Introduction 

Single-nucleotide substitutions represent the largest source of diversity in the human genome. Although 

the vast majority are neutral, these variations have also been directly linked to human disease [1].  

Even neutral variations are important because they provide markers for the preparation of detailed 

maps of the human genome, serving as essential elements in linkage analyses that identify genes 

responsible for complex disorders [2]. Although sequencing is adequate for the initial discovery of 

single-nucleotide variations, simpler, faster and more automated genotyping methods are needed to 

understand the distribution of genetic variations in populations, as well as for identifying the genes 

responsible for genetic disorders [1]. There have been various protocols and methods proposed for 

genotyping single-nucleotide polymorphisms (SNPs). For example, methods that utilize gel 

electrophoresis to identify single or double-stranded DNA polymorphisms [3,4]). SNPs can also be 

determined using solid-phase chemical cleavage [5] in which commercially available chemicals are 

used to modify cytosine and thymine, respectively. The modification of the mismatch is then followed 

by cleavage with piperidine and the resulting DNA fragments are analyzed by denaturing 

polyacrylamide gel-electrophoresis to identify the mismatch sites [1]. SNPs genotyping can as well be 

carried out through DNA sequencing, in liquid phase [6] or solid-phase [7,8] such as using 

oligonucleotide microarrays [8]. In addition 5'-nuclease reaction [9], or mass spectroscopy [10] have 

all been utilized for SNPs genotyping. A comprehensive list of typical SNP genotyping methods and 

their details can be found in Reference [1]. Despite their sophistication, typically the SNP genotyping 

techniques mentioned above requires either polymerase chain reaction (PCR) or electrophoresis or both. 

Molecular beacons (MBs) are single-stranded oligonucleotide hybridization probes that form a 

stem-and-loop structure [11]. The loop contains a probe sequence that is complementary to a target 

sequence, and the stem is formed by the annealing of complementary arm sequences located on either 

side of the probe sequence. A fluorophore is covalently linked to the end of one arm and a quencher is 

covalently linked to the end of the other arm. In the absence of target DNA, the probe is dark because the 

stem places the fluorophore so close to the quencher that they transiently share electrons and the 

fluorescence is efficiently quenched. When the probe encounters a target molecule it forms a probe-target 

hybrid, which is longer and more stable than the stem hybrid. Consequently, the molecular beacon 

undergoes a spontaneous conformational reorganization that forces the stem hybrid to dissociate and 

the fluorophore and the quencher to move away from each other, restoring fluorescence [11]. MBs are 

well known to be highly specific and capable of real-time monitoring of DNA amplification during a 

polymerase chain reaction [11] and are thus widely used as a probe for DNA detection in various 

applications [12], including SNP genotyping [1]. With its capability to recognize the target sequence in 

a pool of many different sequences and thus eliminating the process of sorting out DNA segments by 

electrophoresis, attaching MBs on an ultra sensitive transduction platform in which a very low 

concentration of target sequence can be detected will lead to a much simpler SNP genotyping device. 
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Over the last two decades, many approaches have been explored for the use of optical fibers in 

biochemical sensing applications, including DNA sensing [13]. Since optical fibers developed for 

telecommunications applications were designed to well isolate the light propagating in the core from 

the ambient environment, many advanced designs of optical fiber or fiber-optic devices have therefore 

emerged to facilitate the interaction of guided light with the target biochemical analytes. Among such 

optical fiber designs for biochemical sensing purposes, the development of a special type of optical 

fiber named “suspended core microstructured optical fiber”, which can provide strong interactions 

between the guided light in the fiber core and samples loaded within the fiber voids in addition to 

simple filling characteristics, while being simple to fabricate has been proposed and developed in our 

group [14]. The SCF has been demonstrated for a variety of biochemical sensing applications based on 

fluorescence measurements such as selective detection of biomolecules [15], chemicals [16], and real-time 

distributed measurements using exposed-core SCF [17] or specific DNA sensing in a dip-sensing 

fashion [18]. SCFs are hollow fibers with a small (micron-scale) solid core supported by a few thin 

struts (3 or more struts depending on the design) reflecting the name “suspended core fiber”.  

By fabricating the fiber such that it has a core that is comparable to or smaller than the wavelength of 

light guided in the fiber, the portion of the light guided by the fiber that is located within the air voids 

can be significantly enhanced. Solutions under examination can be loaded into the air holes of the 

SCFs for direct interaction with this portion of the guided light, leading to the potential for high 

sensitivity [14]. Measurement sensitivity for SCF based detection is typically ranging from nano- to 

pico-molar or even down to the level of single particle sensitivity [19]. Finally, since the dimension of 

the air voids is also of micrometer scale, the amount of the solution required to fill the void can be very 

small, in the order of nano-liters, depending on the length of the SCF used for sensing. 

In this paper we propose and demonstrate the genotyping of SNPs using molecular beacons 

multiplexed within an SCF. Typically in the dip-sensing SCF based detection, the SCF itself serves in 

an all-in-one fashion as the substrate for biological immobilization, fluorescence excitation and 

collection platform, sample handling tip (liquid under test can be “sucked” into the void micro-scaled 

air-holes through capillary force simply by dipping the fiber tip to the sample), thus reducing the 

operation and measurement complexity. In addition since MBs are sophisticated DNA probes, they are 

typically synthesized with relatively low yield compared to their linear DNA probe counterpart and 

thus have a high cost, particularly when a large amount of material is required for detection and/or 

analysis. In this aspect, the low-volume sensing capability of SCF as a genotyping platform is 

advantageous, as it would greatly allow reduction of the material cost in sensor fabrication as well as 

during hybridization. Last but not least, the large surface-to-volume ratio nature of the SCF platform 

leads to rapid heat dissipation. For natural genome DNA it is always necessary to denature the doubled 

stranded DNA as well as amplify selected loci along the entire DNA, typically with PCR, before 

detection takes place. The thermal-efficient characteristic of SCF, in conjunction with its ultra low 

volume sensing, will allow rapid heating/cooling, and thus fast PCR to be realized. 
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2. Experimental Section 

2.1. Immobilization of Dual-Type MBs on the Surface of the SCF Core 

The immobilization of two types of MBs on the surface of the SCF core was carried out following 

the procedure detailed in our previous publication [18] using a combination of the fuzzy 

nanoassembly technique [20] and the biotin-streptavidin binding mechanism [21]. An in-house made 

pump system was used to flow the required solutions through the SCF air-holes for deposition of 

different immobilization layers. Typically one end of SCF was immersed in solution vial placed in a 

sealed chamber and the other end was left free outside of the chamber. A pressure difference 

between the inside and outside of the sealed chamber was created by a pump connecting to the 

chamber, forcing the liquid to move from inside to outside through the SCF air-holes. Since the SCF 

surface is partly negatively changed by OH− groups on the surface, positively charged 

poly(allylamine) hydrochloride (PAH, 2 mg/mL in 1 M NaCl solution, Sigma Aldrich) and 

negatively charged poly(sodium 4-styrene sulfonate) (PSS, 2 mg/mL in 1 M NaCl solution, Sigma 

Aldrich) were deposited alternately onto the fiber core surface using the layer by layer deposition 

technique described in [20], ending with a PAH layer (PAH/PSS/PAH). The PAH provides amino 

groups for immobilization of biotinylated MB through a biotin-streptavidin-biotinylated MB  

link [21]. The flow time for each polyeletrolyte layer was 20 min, followed by extensive rinsing 

using deionized (DI) water. NHS-LC-Biotin (0.5 mg/mL, Thermo Fisher) was prepared freshly and 

flowed through for 1 h, followed by extensive rinsing using phosphate buffer solution (PBS, Sigma 

Aldrich) to remove unbound biotin on the surface. Non-specific blocking solution (Candor) was 

flowed through the fiber for 2 h and rinsed by PBS. Streptavidin (0.5 mg/mL, Thermo Fisher) was 

flowed though for 40 min at room temperature then left inside the air-holes overnight and then rinsed 

thoroughly with PBS. In this case Streptavidin only binds to Biotin rather than non-specifically 

deposition on the SCF surface thanks to the use of non-specific blocker. A biotinylated MB solution 

containing a mixture of two different MBs (2.5 µM for each MB, Midland Certified Reagent 

Company Inc.) was flowed through for another 1 h, rinsed with PBS and DI water and then dried 

with Nitrogen for 15 min. The functionalized fiber was cut into several pieces of 65 mm length each 

for measurement. Figure 1 shows the cross section of the SCF used in this work and a sketch of the 

final state of the SCF core surface after immobilization. The SCF was a silica glass SCF made  

in-house with a core diameter of approximately 13 µm and has four air-holes. We chose to use a 

relatively large core SCF principally to ensure high optical coupling stability during the fluorescence 

measurement. Despite the large core diameter, we found that the dual-type MB immobilized SCF 

presented in this work can detect DNA solution whose concentration of as low as 100 nM. If one 

desires to increase further the sensitivity of the sensor, a smaller core size should be used, however, 

at the expense of coupling instability. In this case, advanced fiber processing techniques such as 

well-optimized fusion splicing are required to ensure good optical coupling stability [22,23]. 
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Figure 1. Schematic diagram of the final stage of the suspended core optical fiber (SCF) 

core functionalized with dual-type molecular beacons. Picture of the SCF cross section 

shown on the right side is a scanning electron microscope (SEM) image of the SCF used in 

this work. 

 

2.2. Measurement Setup 

A schematic diagram of the measurement setup for fluorescence measurement of the dual-MB 

immobilized SCF is shown in Figure 2. Two lasers operating at two excitation wavelengths corresponding 

to HEX and Cy5 dyes have been used. Excitation lights from a 532 nm laser (Crystal Laser) and a 638 nm 

laser (Toptica) were first combined by a RGB fiber beam combiner (Thorlabs), power-adjusted by a 

variable attenuator (a pair of half-wave plate and polarizer), and then directed to the SCF using a beam 

splitter and a 40× microscope objective. The same microscope objective and beam splitter also serves 

as the collecting objective for the backscattered fluorescence from the fiber. Backscattered light was 

directed through a system including mirrors, a filter (either 532 nm or 638 nm filter depending on what 

MB signal is being interrogated) to block the residual pump light, and coupled to a large core 

multimode fiber using a 20× microscope objective. The multimode fiber guides the backscattered light 

to a spectrometer. A shutter that was synchronized with the spectrometer was placed after the output of 

the beam combiner. The consistent mode coupling in each measurement was achieved by means of 

maximizing the power transmitted through the SCF core. It should be noted that Cy5 dye is known to 

have photoswitching characteristic [24], i.e., exposure of Cy5 under continuous wave laser light at  

638 nm turns the dye into a dark state, which then can be switch back to a fluorescent state with 532 nm 

exposure [25]. Therefore when maximizing light coupling to the SCF core, the green laser (532 nm) 

was mainly used, followed by a weak red light (638 nm) beam to check the power coupling to the SCF 

core for the red wavelength. The continuous red light exposure of the immobilized SCF was typically 3 s 

to minimize the potential photoswitching effect on the Cy5. In the measurement of fluorescence 

enhancement upon filling the immobilized SCF with DNA solution, the green laser was always used 

first. In this way the green light was used both to excite the fluorescence from HEX dye as well to 

reactivate the Cy5 dye to a fluorescent state, in case it might have been photoswitched to a dark state, 

even by the weak red beam.  
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Figure 2. Experiment setup for fluorescence measurement of the dual-type molecular 

beacons (MBs) immobilized SCF filled with DNA solutions. SMF and MMF are 

abbreviations for single mode and multimode mode optical fiber, respectively. The green 

laser operating at 532 nm was used to excite HEX dyes (for wild-type sequence) and the red 

laser operating at 638 nm was used to excite Cy5 dyes (for mutant-type sequence). 

 

2.3. Hybridization Experiment 

The hybridization test between the dual-type MB immobilized SCF and the solution containing 

either homozygous single stranded DNA (wild or mutant) or both types (presenting a heterozygous 

mixture) were carried out in a manufacturer-recommended buffer solution containing 20 mM Tris-HCl,  

5 mM MgCl2, and 50 mM KCl, at room temperature (25 °C). The background of each piece of fiber 

under test was recorded first and all the fluorescence spectra were normalized with their own 

backgrounds to extract the fluorescence enhancements. Not all of the fiber pieces showed a proper 

fluorescence background; some of the pieces cut from the same functionalized SCF exhibited a very 

weak background, indicating that the immobilization along a long fiber might not be ideally uniform. 

Therefore those poorly functionalized fiber pieces were dismissed and only the pieces with clear and 

similar fluorescence background at HEX and Cy5 wavelengths were used for measurement. The filling 

time for all the fiber pieces was approximately 30 s. After filling, fluorescence from HEX dye 

(associated with wild-type MB) was collected first, followed by changing the filter and switching the 

laser beam to excite and collect the fluorescence from Cy5 (associated with mutant-type MB).  

The MBs and DNA sequences used in this work are given in Table 1. For the purpose of demonstrating 

the proof-of-concept, in this work the wild and mutant MBs and the corresponding DNA sequences 

were arbitrarily designed by the manufacturer with a quoted discriminating capability, between the 

target and the one-base mismatching sequence by a factor of 10, as measured in solution. However, 

virtually any sequences of practical interest could be detected by immobilizing the correspondingly 

designed MBs on the SFC core. 
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Table 1. Molecular beacons and DNA sequences used for testing the immobilized SCF. 

Samples were synthesized by the Midland Certified Reagent Company Inc. Concentration 

of DNA solution used in the hybridization experiment is 100 nM. 

Molecular Beacon 
Wild-type MB: 
5'-(HEX)AGCGGATGTTAAAGACCTATGCCGC(BHQ1-dT)(spacer 18)(3'-
Biotin)-3'  
Mutant-type MB: 
5'-(HEX)AGCGGATGTTAAAAACCTATGCCGC(BHQ1-dT)(spacer 18)(3'-
Biotin)-3' 
DNA Sequences 
Wild-type sequence: 5'-CATAGGTCTTTAACAT-3'  
Mutant-type sequence: 5'-CATAGGTTTTTAACAT-3' 

Figure 3. Comparison of fluorescence enhancement between dual-type MB immobilized 

SCF and control SCF upon filling with target DNA solution. The control SCF shows 

negligible fluorescence enhancement. 

(a) (b) 

3. Results and Discussion 

3.1. Verification of the Immobilization Process with Control SCF 

Another SCF that serves as the control fiber was put through the same immobilization process as 

described in Section 2, except that the biotin-streptavidin linking step was omitted. The two fibers, 

dual-type MB immobilized fiber and the control fiber, were loaded with solution containing either 

wild-type or mutant-type sequence with a concentration of 100 nM and the fluorescence were 

measured. In this work the functionalized was not optimized for any specific concentration as the 

functionalization involved multiple coating layers which makes optimizing the probe surface 

density difficult. In principle, detection in a biosensor is based on the binding between 

functionalized probe (molecular beacon in our case) and analyte suspended in the solution under 

test and therefore there should be an optimized pair of probe density on the sensor surface and 
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analyte concentration. As can be seen in Figure 3, it is clear that the two MBs are successfully 

immobilized on the surface of the SCF core through the biotin-streptavidin link as the fluorescence 

of the MB immobilized fiber increased significantly upon hybridizing with target DNA while that 

of the control fiber remains approximately unchanged. This indicates that without the intended 

biotin-streptavidin link, biotinylated MBs cannot form a stable chemical attachment to the fiber 

surface and are removed when rinsed. The use of the non-specific blocking layer helps to ensure 

that biotinylated MB binds only to the surface through the biotin-streptavidin link and not directly 

to the surface due to physical adsorption, which would be too close to the surface and thus might be 

associated with high steric hindrance.  

3.2. Genotyping SNP with Dual-Type MB Functionalized SCF 

The results of the hybridization test, in which the dual-MB immobilized SCFs were loaded with 

different DNA solution containing either one type of DNA or both and fluorescence enhancements 

were recorded, is shown in Figure 4. When the fiber was filled with a buffer solution containing one 

type of DNA, either wild-type or mutant type (Figure 4a,b), essentially only one type of MB was 

undergoing conformational change due to target sequence binding to the probe in the MB loop, as 

evidenced by the enhancement of fluorescence at only one wavelength (Figure 4a is for fiber filled 

with wild-type DNA solution and Figure 4c is for fiber filled with mutant-type DNA solution).  

On the other hand, once the fiber is filled with DNA solution containing both the wild and mutant 

sequence (Figure 4c), both MBs experienced conformational changes as the fluorescence 

enhancement were obtained at both wavelengths. Of course, the level of enhancement should be 

lower than the case of single DNA sequence since it is a competing reaction, consistent with the case 

of genotyping SNPs using MBs in solution [1]. Therefore, the proposed dual-type MB immobilized 

SCF clearly functions as a SNP genotyping platform. Figure 4d shows the integrated intensity for the 

HEX (left) and Cy5 (right) fluorescence. Here sample is considered heterozygous if the two 

integrated intensities of the two dyes are close to each other while well-separated values of the 

fluorescence indicate homozygosity. It should be noted that the performance of the MBs 

immobilized on the surface of the SCF was somewhat deteriorated compared with the case of  

in-solution measurement. This is partly due to the steric hindrance of the surface on the MB as well 

as MBs to each other. In general it is not possible to obtain similar performance for in-solution (same 

phase) reaction and immobilized/liquid (different phase) reaction however it might be improved by 

optimizing the buffer condition as well as fine-tuning the design of the MBs. 

It should be noted that all hybridization and measurement procedures were performed at room 

temperature. For the purpose of simplifying this proof-of-concept experiment as well as limit of 

equipment temperature control was not included in this work. While it is important to have strict 

temperature control of the functionalized SCF for highly specific allele discrimination in the case of 

real-world genome DNA samples (in such case the buffer should contain many different DNA 

sequences extracted from the genome DNA), it is known that MB can still achieve good discrimination 

between sequences of only one base difference [11], even at room temperature. With proper 

temperature control and performing the allele discrimination at optimized temperature for a specific 

pair of MB and target, as well as optimizing buffer and MB design, the discrimination should be 
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greatly enhanced. In addition, for genome DNA temperature control is often essential, not only for 

enhancing the allele discrimination but also for performing other tasks such as denaturing the double 

stranded genome DNA as well as amplifying selected loci on the entire sequence before detection. 

Finally, with temperature control on the functionalized SCF, the sensor can in principle be regenerated 

by denaturing the DNA-probe binding using heat and flowing fresh buffer through the air-holes.  

DNA-probe binding in MB is well known to be reversible, as evidence by its usage in real-time PCR [26], 

and therefore as long as the DNA is removed MB should resume its original stem-loop and regenerate 

the sensor. 

Figure 4. Hybridization test of the dual-type MB immobilized SCF filled with solution 

containing either one type of DNA sequence, e.g., wild or mutant sequence (homozygous) or 

both type (heterozygous). Fluorescence enhancement clearly indicates (a,b) the homozygous 

type or (c) heterozygous type; (d) The averaged value over four measurements of spectra as 

shown in (a–c), crossing point of HEX and Cy5 fluorescence indicate heterozygousity and 

well separated values of HEX and Cy5 fluorescence represent homozygousity. 

CATAGGTCTTTAACAT 

CATAGGTCTTTAACAT 

CATAGGTTTTTAACAT 

CATAGGTTTTTAACAT 

(a) (b)

CATAGGTCTTTAACAT 

CATAGGTTTTTAACAT 
 

(c) (d)
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4. Conclusions/Outlook  

We have presented the first demonstration of the use of SCF in conjunction with MBs for 

genotyping SNPs. The proposed device is based on the functionalization of multiple MBs on the core of 

an SCF and is capable of genotyping SNPs in a DNA solution whose concentration is as low as 100 nM. 

The sensing volume is in the nano-liter range and the genotyping protocol can be as simple as dipping 

the free end of the functionalized SCF into the solution under test, leading to potentially highly 

accurate and cost-effective genotyping SNPs protocol. Further work is expected to increase the 

sensitivity of the device by reducing the SCF core size, optimizing the coupling as well as the MB 

designs and buffer conditions. By further driving the sensitivity of the sensor down to the level of a few, 

or even a single, DNA template, the proposed genotyping scheme should be able to perform the 

genotyping of SNPs in a simpler manner, without the need for PCR or electrophoresis.  
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