
Sensors 2014, 14, 14070-14105; doi:10.3390/s140814070

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Cloud-Based Internet of Things Platform for Ambient
Assisted Living

Javier Cubo *, Adrián Nieto and Ernesto Pimentel

Universidad de Málaga, Departamento de Lenguajes y Ciencias de la Computación,

Campus de Teatinos, 29071 Málaga, Spain; E-Mails: adrian@lcc.uma.es (A.N.);

ernesto@lcc.uma.es (E.P.)

* Author to whom correspondence should be addressed; E-Mail: cubo@lcc.uma.es;

Tel.: +34-951-952-949; Fax: +34-952-131-397.

Received: 13 April 2014; in revised form: 12 July 2014 / Accepted: 25 July 2014 /

Published: 4 August 2014

Abstract: A common feature of ambient intelligence is that many objects are

inter-connected and act in unison, which is also a challenge in the Internet of Things. There

has been a shift in research towards integrating both concepts, considering the Internet of

Things as representing the future of computing and communications. However, the

efficient combination and management of heterogeneous things or devices in the ambient

intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to

appropriately manage the inter-connection of diverse devices in these systems requires:

(1) specifying and efficiently implementing the devices (e.g., as services); (2) handling and

verifying their heterogeneity and composition; and (3) standardizing and managing their

data, so as to tackle large numbers of systems together, avoiding standalone applications on

local servers. To overcome these challenges, this paper proposes a platform to manage the

integration and behavior-aware orchestration of heterogeneous devices as services, stored

and accessed via the cloud, with the following contributions: (i) we describe a lightweight

model to specify the behavior of devices, to determine the order of the sequence of

exchanged messages during the composition of devices; (ii) we define a common

architecture using a service-oriented standard environment, to integrate heterogeneous

devices by means of their interfaces, via a gateway, and to orchestrate them according to

their behavior; (iii) we design a framework based on cloud computing technology,

connecting the gateway in charge of acquiring the data from the devices with a cloud

platform, to remotely access and monitor the data at run-time and react to emergency

situations; and (iv) we implement and generate a novel cloud-based IoT platform of

OPEN ACCESS

Sensors 2014, 14 14071

behavior-aware devices as services for ambient intelligence systems, validating the whole

approach in real scenarios related to a specific ambient assisted living application.

Keywords: ambient intelligence; ambient assisted living; Internet of Things; service-oriented;

cloud computing; devices; sensors; services; gateway

1. Introduction

Ambient intelligence (AmI) constitutes a generation of intelligence computing where a large variety

of sensors and devices are present everywhere and for everyone at all times [1]. In the AmI domain,

one of the main challenges is to produce software embedded in everyday objects and devices, in order

to support different types of users and applications. An important aspect in AmI is the use of

context-aware technologies, such as wireless sensor networks (WSNs) [2,3] to perceive stimuli from

both the users and the environment. Nowadays, there are a wide variety of AmI systems [4], such as

ambient assisted living ((AAL), http://www.aal-europe.eu), providing an ecosystem of medical

sensors, computers, wireless networks and software applications for healthcare monitoring. Thus, AAL

applications support the provision of user-dependent services for elderly and disabled people, such as

monitoring the vital signs or controlling the movement tracking of a person, through the analysis of

sensed heterogeneous information and detecting and reacting to problematic situations. Therefore, AmI

systems have to deal with a wide variety of devices, ranging from smartphones and tablets, with

medium capacity, to sensors, actuators, consumer electronics and wearable devices, with critical

resource limitations. All of these devices may act in heterogeneous environments with regards to the

network access types. Moreover, other factors more closely related to software can be identified, such

as the high diversity of operating systems, as well as the different application programming interfaces

(APIs) available for each operating system delivered for specific devices. Therefore, some of the main

characteristics of these environments are the large number of heterogeneous devices, the diversity of

communication technologies and the variety of application requirements and software.

The Internet of Things ((IoT), http://ec.europa.eu/digital-agenda/en/internet-things) is a technology

and a market development based on the inter-connection of everyday life objects with each other,

applications and database data. These devices, objects or things (such as laptops, smartphones, onboard

computers, video systems, household appliances, intelligent buildings, wireless sensor networks,

ambient devices, RFID tagged objects and commodities) are identifiable, readable, recognizable,

addressable and even controllable via the Internet. This new Internet has led the evolution of the

Ubiquitous Web 2.0, in integrating physical world entities into virtual world things, as some initiatives

are already addressing (e.g., Xively (https://xively.com)). As pointed out by the European Research

Cluster on the Internet of Things ((IERC), http://www.internet-of-things-research.eu/), things are

expected to become active participants in business, information and social processes. The things may

interconnect and communicate both between themselves and with the environment, by performing

exchanges of data and information obtained from the sensing. Furthermore, they can react

autonomously to real or physical world events and create services with or without direct human

intervention. As the report considers, services could interact with these smart objects with standard

Sensors 2014, 14 14072

interfaces, via the Internet, with the capacity of querying and retrieving information associated with the

objects, considering issues, such as behavior, semantics or security. In this way, IoT will enable an

ecosystem of smart applications and services, which will improve and simplify citizens’ lives. The

Future Internet has emerged as a new initiative to pave the way to a novel and dynamic global network

infrastructure, with self-configuring capabilities, to meet the changing global needs of business

and society. Therefore, future service-oriented Internet devices will offer their functionality via

service-enabled interfaces adopting the vision of the Web of Things (WoT) (inspired by the IoT), e.g.,

via Simple Object Access Protocol (SOAP) based web services or RESTful APIs [5,6].

A common feature of Ambient Intelligence is that many objects are interconnected and act in

unison, which is also a challenge in the Internet of Things. Although AmI is not part of the original

concept of IoT, since it does not necessarily require Internet structures, there has been a shift in

research towards integrating both concepts, IoT and AmI [7], considering IoT as representing the

future of computing and communications, which brings us closer to Weiser’s vision [1] of ubiquitous

computing and ambient intelligence [8]. In fact, AmI’s acceptability will come about through a

balanced combination of operational technologies and embedded intelligence (EI) [9]. EI presents an

artificial intelligence-oriented perspective of IoT, by revealing the individual behaviors, spatial

contexts and also social patterns and urban dynamics with the capability of mining digital traces

related to people during the interaction with smart objects [8].

However, the efficient combination and management of heterogeneous devices in the AmI domain

is still a tedious task, and it presents crucial challenges. Therefore, there is a need to model and

develop future Internet applications, such as AAL systems connected to the new Internet, supporting

the interoperability between diverse stakeholders by governing the convergence between both the

physical and the virtual worlds and by handling dynamic and continuous changes.

On the one hand, the IoT, including the mass of resource-constrained devices, could benefit from

the web service architecture as today’s web does. Recent work [10,11] has focused on applying the

paradigm of service-oriented architecture (SOA) [12], in particular web services standards (SOAP,

Web Services Description Language (WSDL), etc.) directly to devices. In general, applying SOA to

networked systems is a crucial solution to achieve the reusability and interoperability of heterogeneous

and distributed things. This would enable the direct orchestration of services running on devices with

high-level services. For instance, sensors physically attached to an elderly person can offer, via web

services, their context information or vital signs. Furthermore, these sensors could be easily integrated

in a process that updates a feature (e.g., temperature) and location of the person, directly in the systems

involved. Hence, the goal is to provide the functionality of each thing as a web service in an

interoperable way that can be used by other entities, such as AAL applications in the ambient

intelligence domain or other devices. However, adapting a given device to SOA is not a trivial problem.

On the other hand, in AmI systems, seamless mobile and fixed communication infrastructures,

together with dynamic and massively distributed device networks, combined with natural-feeling

human interfaces, offer independence for both device and user [13]. Similarly, cloud computing [14]

promotes the seamless integration of digital and physical devices in the users’ lives through device and

location autonomy [15]. Therefore, combining both paradigms facilitates greater innovation and a new

proactive computing approach, following the perspective of IoT, and new types of applications can be

delivered more effectively and quickly [16–19].

Sensors 2014, 14 14073

In summary, in order to appropriately manage the inter-connection of diverse devices in AmI

systems, we have to tackle different challenges: (1) to specify and efficiently implement the devices

(e.g., as services); (2) to handle and verify the composition and interaction of devices coming from

diverse sources; and (3) to standardize and manage their data for handling large numbers of systems

together, avoiding standalone applications on local servers. In order to overcome the above challenges,

in the work presented here, we propose a platform to manage the integration and behavior-aware

orchestration of heterogeneous devices as services stored and accessed via the cloud. Three main

aspects to generate the platform are completely introduced as new in this work: a common architecture

using a service-oriented standard environment; a framework based on cloud computing technology;

and the implementation of the cloud-based IoT platform. Furthermore, we have extended a previous

model, as will be detailed in Section 3.2. Therefore, specifically, the main contributions of this work

are as follows:

• We extend the description of a lightweight model for specifying the behavior of devices, to

determine in a unified way (interface) the order of the sequence of exchanged messages (or

operations) during the composition of devices, based on the concept of things or devices as

a service.

• We define a common architecture using a service-oriented standard environment, to integrate

heterogeneous devices by means of their interfaces via a gateway (in particular, devices based on

the technologies of TinyOS, JavaME, IEEE 802.14.5 standard or Android) and orchestrate them

according to their behaviors.

• We design a framework based on the cloud computing technology, connecting the gateway in

charge of acquiring the data from the devices with a cloud platform (Google App Engine), to

remotely access and monitor the data at run-time and react to emergency situations, which is a

crucial issue for AmI systems in general, but especially for AAL applications.

• We implement and generate a novel cloud-based IoT platform of behavior-aware devices as

services for AmI systems, validating the whole approach in real scenarios related to a concrete

AAL application.

This paper is organized as follows. In Section 2, we motivate our proposal presenting the main

problems to be solved and how they are addressed by our approach. Section 3 presents our proposal for

the management and monitoring of devices as services showing the devices as cloud resources or

services by means of a cloud platform, as well as the implementation of our platform. In Section 4,

we describe the evaluation of the implemented platform. Section 5 analyzes some related work

and compares it to our proposal. Finally, Section 6 outlines the conclusions and some future lines

of research.

2. Overview of the Approach

In this section, we explain the motivation behind our proposal and the need for it, principally

focusing on managing complex scenarios in AmI systems, such as AAL applications, in which

heterogeneous devices are considered. We take advantage of the Internet of Things, service-oriented

and cloud computing paradigms.

Sensors 2014, 14 14074

2.1. Problem Statement

According to the analysis of the European Commission [7], the demographic trends for Europe

show an aging society with more people dependent on assistance. AmI and IoT may open up new

possibilities for elderly and disabled people to live longer and safer at home and reduce the risks of

errors in the dosage of drugs. Intelligent objects in the house could monitor and call for assistance if,

for example, a person is still for an unreasonably long time in an unexpected location or situation or in

the event that a fall is detected. Moreover, for health monitoring systems in hospitals, new platforms

could be provided for the medical professionals to help monitor patients in emergency situations. In

this sense, AAL has gained significance in recent years, combining aspects of intelligent platform

design, assisted living solutions and ambient intelligence technologies in a coherent system comprising

embedded sensors. Therefore, AAL applications will become a necessity due to demographic trends, a

safe and robust design of smart systems being necessary, so as to control and ensure that the smart

things really do serve both the patient by improving his/her quality of life and health professionals by

helping them to quickly and automatically manage emergency situations.

2.1.1. Challenges (1) and (2): Efficient Specification of Devices and Handling of the Composition of

Heterogeneous Devices

An embedded WSN [20] in the healthcare domain consists of heterogeneous components and is

used to monitor temperature, humidity, pressure, oxygen, carbon dioxide, heart rate, breathing rate, etc.

Sensors and actuators-sensors are used to observe changing situations in the environment. Smart

sensors or devices capable of sensing various dimensions in a smart environment are combined to

develop a smart hospital, a smart home or any other environment to improve human life. In addition, a

heterogeneous system, like an AAL system, may integrate diverse sensors or devices produced to

different specifications, as shown in Figure 1. Therefore, it is necessary to design a common

architecture to tackle the integration and communication problems, which could be addressed by

considering a service-oriented device architecture (SODA) [21].

Figure 1. A heterogeneous system made up of sensors and devices.

Sensors 2014, 14 14075

SOA standards were originally designed primarily to connect enterprise services. Therefore, the

introduction of SOA to specify objects of the future Internet, such as sensor devices, brings with it new

opportunities, but also new challenges. Real-world things are deployed on resource-constrained

devices, e.g., with limited computing, energy and storage capabilities. Therefore, we need to study the

simplification, optimization and adaptation of SOA standards to specify data and information received

from these kinds of devices. Nevertheless, as even small, resource-constrained, networked devices get

more and more powerful in peer-to-peer and pervasive computing applications, it is simply common

sense to try to adopt the SOA paradigms in embedded device networks. Hence, several SOA

initiatives, such as OSGi (http://www.osgi.org), UPnP (http://www.upnp.org) or Jini

(http://java.sun.com/developer/technicalArticles/jini/JiniVision/jiniology.html), have evolved to

interconnect heterogeneous devices and services. However, not all of them can equally adapt to others

using the same hood. Furthermore, the lack of standardization makes programming for devices an

arduous task. For this reason, a standard way for device manufacturers to develop devices for software

developers and consumers is needed, while still providing developers with a standardized API.

In order to address this issue, the emergent OASIS (Open Standards for the Information Society)

standard Devices Profile for Web Services (DPWS) [22] has been designed as a set of guidelines based

on WS-* specifications to provide interoperability between different devices and services in a

networked environment, e.g., a printer, a smartphone, a sensor or other new devices can detect

DPWS-enabled devices in a network. Some convincing points in favor of DPWS are that it is an

OASIS standard, it employs a web service mode built onto the standard W3C Web Service architecture

and it has been natively integrated into the Microsoft Windows© operating system since Windows

Vista (WSDAPI, http://msdn.microsoft.com/en-us/library/windows/desktop/aa826001(v=vs.85).aspx).

In DPWS, each device is abstracted as a service where features of the device are exhibited as hosted

services. The comparison between the important properties of reuse and research challenges of web

services shows a gap in the use of DPWS in the future, centered on reusability [23]. DPWS shows that,

for example topics, such as business processes, context dependencies or quality factors, have to receive

more attention to increase the reuse of DPWS devices and to use this standard more easily in the field

of software engineering. Therefore, for the development of future Internet service-oriented applications

and the correct exploitation of the composition between things, it is crucial to define rigorous

methodologies. These methodologies should not only consider features, such as signature, eventing

mechanisms, security and discovery, which are currently considered in DPWS, but also complex

real-world integration, such as those involving complicated business processes.

In order to fulfill this goal, in our previous work [24], the need to explicitly represent the (implicit)

behaviors of things in order to develop applications in a more rigorous way was established.

Specifically, that work promotes the use of WS-* technologies to specify service interfaces of things

by extending the standard DPWS with behavioral descriptions. WS-* architectures are mainly used to

take advantage of their capability to handle the interoperability among services considering complex

business processes. As pointed out in [6], by default, although there is no notion of state in SOAP and

the WS-* stack, the WS-Resource Framework (https://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wsrf) may be used to cover the interaction with stateful web services, by managing

the stateful resources of web service interfaces. The main purpose of this is to aid developers in the

implementation of DPWS-compliant things (or devices) that host services by considering their

Sensors 2014, 14 14076

behavior in terms of the order in which the actions, visible at the interface level, are performed. We

consider that this challenge is vital to control the behavior of heterogeneous things during their

compositions in the highly dynamic environments of the future Internet, as may be the case for AAL

applications. These compositions will allow the creation of new applications generated as mashups of

things where some concerns have to be handled, like, for example, the composition may violate the

behavior of the devices (provoking lock situations) and some of their features may change at run-time.

In addition, there is a need to address the integration of heterogeneous devices coming from diverse

sources, which could be tackled by means of an intermediate piece and an appropriate language, so

that all of the devices can connect in a unified way.

2.1.2. Challenge (3): Seamless Management of Data in AmI Systems

In the AmI domain, a typical AAL application will generally consist of a target user, smart sensors,

actuators, wireless networks, ubiquitous devices and underlying software services [16]. The data are

initially processed and transmitted in a local point, and then, all of the sensors and devices of the

system compose the collection of data and sensed information. The range of data to be monitored in

these systems is highly variable in accordance with the diversity of these kinds of resource-constrained

devices. Thus, in future AAL applications, a new sort of personal medical equipment will offer the

possibility to place temporary sensors on/in the patient, providing located measurements of vital

parameters. Taking advantage of this, the patient could stay at home with the necessary equipment,

being able to connect to the hospital in the event some emergency situation occurs. This may replace

costly trips to the hospital and reduce patient stress. Therefore, in order to maintain quality healthcare

services, it is essential to have an intelligent, highly-resourced AAL system that is efficient, responsive

and, most importantly, adequately ensures patient health. Therefore, in AAL applications, it is

necessary to keep devices intercommunicated through a platform or framework (e.g., controlling

emergency situations in such scenarios as home automation, remote healthcare monitoring systems or

hospitals in situ). This could be performed via a cloud-based platform, which provides a seamless

integration between the physical and virtual world devices and services.

A cloud-enabled platform eases the management of these systems, allowing simplified user access

and effectively handling demand elasticity. The need for a large computing space and the ready

availability of cloud services has led us to envision and design a real-time cloud-based framework.

Therefore, the integration of cloud computing will allow the diversity of services for AAL systems to

be expanded, since it enables all users (patients, caregivers and healthcare professionals) to acquire,

gather, visualize and handle large amounts of data from diverse kinds of service providers and AAL

systems. The immense processing power of cloud computing facilitates the highly quick processing of

data and provides fast responses to the user environment.

2.2. Motivating Our Proposal

In this section, we use a real-world example, an emergency monitoring system (EMS) (see

Figure 2), to motivate and illustrate our approach, by demonstrating the need for a platform

that integrates heterogeneous devices, as well as storing and managing the sensed and

monitored information.

Sensors 2014, 14 14077

The main goal of this system is both to assist the patients and to help medical professionals in the

seamless health monitoring of a large number of patients and data at run-time. The system is composed

of sensors and devices connected to the patient, in order to detect and prevent any emergency situation,

both in the hospital and at home.

Therefore, the end-users of our system are:

• The patients, who may be located in the hospital or at home. The different rooms of the

hospital and also the monitored patient’s home may hold a set of devices available as

services and connected to the emergency monitoring system (via a local network or the

Internet, respectively).

• The health professionals or specialists (typically a doctor or a nurse), who are usually found

in their offices or the emergency rooms. Each specialist may access a set of devices

available as services sending information related to the patients.

• The remote care centers, which are in charge of remotely helping the health professionals

assist the patients being monitored, with intermediate processing of the information. The

care centers may be managed from the hospital or externally, and they do not always need to

be part of the system.

The system being considered is made up of the following components:

• Sensor nodes to measure basic vital signs of the patients, such as oxygen saturation

or temperature.

• Devices with more complex behavior than a single sensor, used for sensing (e.g., a

sphygmomanometer or existing mobile applications to measure the two values of the blood

pressure, high and low) or for controlling some other actions of the patient (e.g., a video

camera with a complex behavior or a user badge to control the movements and some vital

signs at the same time). They may comprise several sensors integrated and interacting with

each other (e.g., the user badge or a patient’s bed, where several sensor nodes are connected,

working together).

• A discovery application to find the existing sensors and devices in the environment to be

connected and associated with the patients. Different profiles are considered to deal with the

potential privacy issues (e.g., a patient can only view the devices sensing information related

to himself, and a specific specialist can monitor all his/her patients).

• A dashboard application, used by the medical professionals or the care centers, to access all

of the sensors and devices connected, as well as to manage the monitored information;

which may be developed either as a mobile or desktop application for local monitoring (in

the hospital, using a device connected to the local network) or as a cloud application with

the capability of remote monitoring (at home or also in the hospital connecting to the cloud).

• A data repository hosted on a cloud platform to register the users and to store and manage

the sensed and monitoring information from the system at any given moment; which

contains the register of the user profile (patients, specialists and also the people working at

the remote care centers), context, sensors/devices and services (inactive and active, i.e.,

connected to a patient being monitored), is used as the central processing point for the

Sensors 2014, 14 14078

requests and historical triggers of all data and events and is also responsible for maintaining

a patient’s schedule.

Figure 2. Emergency monitoring system: remote (home) and local monitoring (hospital).

In our EMS system, two scenarios can be distinguished. First, a common scenario is when a new

patient arrives at the hospital (right-hand side of Figure 2). Using the patient registration system

(included in the data repository), the receptionist checks whether the patient is already registered in the

system, in order to assign him/her a unique identifier by using a Near Field Communication (NFC)

wristband. The patient is then transferred to the emergency room, and with the bracelet on, depending

on the patient’s urgent symptoms, a specialist decides which kind of sensors or devices he/she needs to

be connected to. The emergency room is prepared with a gateway or an appropriate device to group all

of the sensors, connected to the Internet or the hospital’s intranet. The sensors are associated with the

patient by means of the application’s dashboard, using the NFC Universally Unique Identifier (UUID)

and the patient’s identifier number (ID_Number). In this way, the specialist may access the specific

sensors associated with a specific patient and check his/her vital signs, as well as establish priorities of

execution for the devices currently sensing.

Different options are possible to access the sensors. The first option, using a cloud dashboard

application, allows monitoring of the data stored in the data cloud repository. This remote monitoring

can, directly via the system or the care center, warn the doctor of emergency situations (e.g., oxygen

saturation or temperature are not within normal values) or potential incompatibilities between drugs

based on time restrictions (e.g., a specific pill every eight hours, incompatible with another specific

drug) and help to provide the correct medication by avoiding possible human error. The second option,

similar to the first, but using a mobile dashboard application, a tracking of the patient values may be

performed locally from different places of the hospital or even with the possibility that the expert

doctor may be in a different hospital (or building) from where the patient is, considering the sensors

are running in a hospital intranet. Furthermore, as the third and worst case (managing the integration of

devices, but not presenting advantages with respect to the current systems), the specialist could directly

Sensors 2014, 14 14079

check the vital signs of the patient through the built-in screen in the sensors, as is done in most of the

current health monitoring systems. Figure 3 depicts a possible situation in an emergency room.

Figure 3. A sequence of actions performed by the EMS system in an emergency

room (hospital).

An alarm is triggered A drug is injected into the
patient Temperature is regularizedThe system suggests a threat to

be supervised by the specialist

P1

vital
signs

vital
signs

In a second scenario, the previous situation may be also considered for tracking the patient’s health,

while he/she is at home (left-hand side of Figure 2). For example, a lot of oncology or cardiac patients,

who require continuous monitoring, prefer to stay at home with their relatives more than staying in a

hospital room. Their quality of life could be improved by providing them a home health gateway

communicated with the hospital and care centers, gathering the sensed data via the cloud platform.

This home gateway, in essence, provides the same functionality as the gateway installed at the

hospital, but without enabling modifications of the sensor status or assignments, since in this modality,

the sensors are usually used as read-only devices (they will not be able to be linked or unlinked to

different devices, as occurs in the hospital). Therefore, in this scenario, when the patient leaves the

hospital, the specialist sets up the sensors connected to his/her own home gateway. Once the patient

arrives home, he/she connects the home gateway to the Internet, and forthwith, the specialist can

perform practically the same as when in the hospital, since in this variety of the system, the

cloud-based interface is used for remote monitoring.

Broadly, with the description of both scenarios, we demonstrate the need for specifying and

handling the integration and composition of heterogeneous devices, as well as the seamless

management of the sensed and monitored data in these kinds of real-time scenarios. Next, we illustrate

our proposal with a more specific running example in the AAL area.

Running Example

Let us consider a concrete use case for the second scenario, remote monitoring at home, in which

several vital signs of Alice, a cardiac patient, are periodically being monitored. In addition, due to

Alice’s heart problems, an accidental fall report mechanism in her smart home should be implemented.

The goal in such a use case is to monitor Alice and, through the analysis of sensed information, detect

situations that may be interpreted as a fall or abnormal values in the vital signs. Thus, if a fall is

detected, actions are automatically triggered, such as issuing an alert to the care center or the

monitoring of some of her vital signs (by means of sensors always connected to her). Some useful

information needed to detect a fall is Alice’s location, time spent in the same position, unexpected

movements and body position. Therefore, the environment must be fitted with sensing units capable of

capturing this information together with actuators able to contact the remote care center whenever a

fall or strange movement is detected. Moreover, processing units are needed for analyzing the sensed

Sensors 2014, 14 14080

data, including rule-based logic and image analyzer algorithms. There are several proposals for the

applications of accidental fall reporting [25,26] with different degrees of complexity that provide

results with different levels of accuracy to detect if the fast movement could be due to an accidental

fall or a different action, such as sitting down (but this analysis is beyond the scope of this work) [27].

Therefore, in this specific use case, the system puts into action the following devices: sensors

measuring vital signs (oxygen saturation, temperature, heart rate and breath rate); a

sphygmomanometer measuring the blood pressure; a complex device to detect falls, named a user

badge node (equipped with two three-axis accelerometers, circuitry for voice transmission over the

radio and a sensor sensing the heart rate); and several video cameras and location sensors installed in

different rooms of Alice’s home; everything connected with the home gateway (even some

microphones and speakers could be connected); all of these together with the corresponding devices at

the care center, such as a media player device for video streaming, and at the hospital, to check on

the patient.

Figure 4 depicts a possible sequence of actions for this situation:

(1) When a fast movement is detected through the accelerometers of the user badge (the two

accelerometers have to be executed at the same time), immediately the heart rate is checked

(it must be checked periodically anyway) and a timer is triggered;

(2) The camera turns on and starts to send the video streaming to the system;

(3) In the case that it determines (by means of the corresponding analysis) that a fall may have

happened and the patient does not cancel the alert procedure before the timer expires, then

the voice transmission incorporated in the user badge is activated (just at this moment, as it

makes no sense to activate it before this moment), and an automatic call is made to the

care center;

(4) The person at the care center can talk to Alice and, at the same time, image processing of the

streaming received is reproduced by the media player device (the operations on the cameras

can be executed from the care center, such as moving the camera or zooming in), analyzing

Alice’s position to determine her status (in the case of accidents, it is important, for instance,

to detect the position of the head);

(5) In the case that Alice is unconsciousness or unable to speak, receiving the automatic call is

enough to alert the person at the care center to send help, otherwise, for example, Alice may

explain that her situation is stable; then, the care center may simply alert the specialist about

the situation to be managed remotely; and finally,

(6) In the control procedure, the specialist could ask Alice if she is able to connect all of the

sensors to check the vital signs, and in this way detect what has caused the emergency

situation. For instance, observing the heart rate and the blood pressure, it could be

determined if chest pain (due to Alice’s heart problems) provoked the fall, and in this case,

an actuator would proceed to inject a dose of nitroglycerine every five minutes, with a

maximum of four doses in case the heart rate does not decrease and the blood flow does

not increase.

This particular situation necessitates many devices to be interconnected correctly, by means of an

appropriate platform, with the corresponding mechanisms. Thus, all of the devices in Alice’s home are

Sensors 2014, 14 14081

connected either to the home gateway (the sensor nodes) or directly as services to the Internet (also the

gateway is connected to the network), which communicates with a cloud platform managed from the

care center and/or the hospital.

Figure 4. A sequence of actions performed by the EMS system in remote

monitoring (home).

A fast movement is
detected

If the system determines a fall
happened, it calls to care center

The call center operator checks
the status of the user

The camera starts to send the
video streaming to the system

-
P1

H

T

If an emergency situation is
determined it warns an

ambulance, otherwise the
specialist monitoring the situation

-
P1

H

T

Therefore, this use case requires the handling of the behavior of the heterogeneous devices in

action, not only to achieve a correct working of the interactions, but also to obtain the appropriate

specifications of each behavior-aware device as a service and to store the monitored data.

Therefore, firstly, we model the devices as services by using the DPWS standard and specify the

behavior of the devices, to determine the sequence of exchanged messages during their composition.

To solve the heterogeneity, we use a service-oriented environment and a DPWS-compliant gateway,

which will be used to orchestrate the devices according to their behavior.

Then, we design and implement a cloud-based IoT platform to remotely access and monitor the data

at run-time, to react to emergency situations. The cloud platform makes the emergency monitoring

faster, cheaper and a more reliable method of processing the information, since large, heterogeneous

and complex data processing and visualization can be computationally intensive, especially for

complex case studies. In the next section, we describe our proposal in more detail.

3. Cloud-Based IoT Platform for the Integration of Devices

This section presents our platform to manage the integration and behavior-aware orchestration of

devices as services stored and accessed via the cloud.

Firstly, we introduce the service-oriented platform architecture to provide a better understanding of

how it works. Secondly, we present how to specify devices as services, considering their behavior

while they are being composed or orchestrated. Thirdly, the modeling of the Cloud of Things approach

adopted by our proposal is described. Lastly, we give some details of the implementation of the

platform, focusing on the domain of AmI systems, specifically in an AAL application. All of these

points have been tackled with the intention of solving the problem of the integration of devices, not

only thinking about a set of things connected, but also considering a general solution by analyzing,

designing and implementing our final platform.

Sensors 2014, 14 14082

3.1. Platform Architecture to Manage the Heterogeneity of Devices

In Figure 5, we depict the architecture of our platform, named DEEP (DPWS-enabled devices

platform), whose main goal is to efficiently and seamlessly integrate and manage multiple and variable

devices in diverse domains of human life, such as AAL systems.

Figure 5. Architecture of DEEP (Devices Profile for Web Services (DPWS)-enabled

devices platform).

We consider the following sensors, devices and applications to be integrated in the DEEP platform:

• Sensor nodes: TinyOS devices (TelosB and MicaZ sensors), JavaME devices (SunSpot

sensors) and devices based on the IEEE 802.14.5 standard (such as Waspmote or

Arduino + Xbee).

• Complex devices: Android devices, DPWS-enabled devices with a more complex behavior

(such as a bed with many sensors connected acting as a complex device, a video camera or a

printer) and Raspberry Pi used as the gateway related to the sensor nodes.

• Discovery and control applications: Discovery applications (Computer-based DPWS

Explorer tool (http://ws4d.e-technik.uni-rostock.de/dpws-explorer/) and Android-driven tool

(http://ws4d.e-technik.uni-rostock.de/tool-ws4d-droid-commander/)) and an Android-based

control application (Dashboard), used to discover and manage all of the sensors and devices

connected. This component is also used to orchestrate the interaction between the devices

according to the scenario desired.

The platform principally consists of three components:

• The (sensor) gateway (at the level of sensors): it is used to transform the messages received

from the diverse sensors (by means of the IEEE standard 802.14.5) to DPWS-compliant

services (built over a TCP/IP stack), in order to provide a generic way (the concept of

devices as services) to retrieve sensor data inside a local network. At this level, the sensor

Sensors 2014, 14 14083

data have already been acquired and may be checked directly in the sensors themselves or in

the local network. In addition, although, in principle, the DPWS standard requires that the

devices are connected to the same network, the concept of the DPWS proxy enables devices

hosted in other networks to be connected.

• The network communication (at the level of devices and applications connected directly to

the Internet): it is in charge of communicating all of the heterogeneous devices (via TCP/IP),

such as the sensors grouped through the (sensor) gateway, the more complex

DPWS-enabled devices and the Android devices, as well as connecting (also using TCP/IP)

the discovery and control applications (DPWS Explorer tools and Android dashboard).

• The cloud platform (at the level of data): it collects pushed information (data repository)

from the network communication using a REST-based API, and its main function is to ease

the remote management (storing, accessing and monitoring) of the sensed data at run-time,

allowing simplified user access and effectively handling demand elasticity, reacting to

certain situations according to the monitoring results.

In short, all sensors communicate via radio technology, more specifically by means of

IEEE 802.15; all of them are concentrated in a (sensor) gateway, and the rest of the devices and also

the gateway are connected via TCP/IP to the network communication. The network communication

connects with the cloud platform, via HTTP REST, by taking the raw sensor values and gathering

them, for instance, into the Google Cloud Platform, i.e., Google App Engine. Thus, our system allows

remote monitoring, by means of the push messages of the Google Cloud Messages or even thanks to

BigQuery (Google large-scale data analytics) to suggest plausible diagnoses to the specialist. The next

section presents the model proposed to specify the behavior of complex devices, which is considered

while composing heterogeneous devices, illustrated in our running example.

3.2. Behavior-Aware Orchestrations of Devices as Services

As mentioned, we propose using the standard DPWS to describe devices as services. Thus, in

DPWS, each device is abstracted as a service where features of the device are exhibited as web

services (a device may be composed of several hosted services). DPWS uses the primitives of the web

services architecture to create a framework for interoperable and standardized communication between

embedded devices, as depicted in Figure 6. The key differentiator is that DPWS is

language-independent. This means that all kinds of device services can be written using any

programming language. The web services specification languages, on which DPWS is based, are the

following: (i) WSDL for describing the messages each hosted service is capable of sending and

receiving; (ii) SOAP for transporting all of the messages; (iii) WS-Addressing for advanced endpoint

and message addressing; (iv) WS-Policy for policy exchange; (v) WS-Security for managing security;

(vi) WS-Discovery and SOAP-over-UDP (User Datagram Protocol) for device discovery;

(vii) WS-Transfer/WS-MetadataExchange for device and service description; and (viii) WS-Eventing

for managing subscriptions for event channels. Although some aspects, such as the management of

security issues, are not tackled in this work (out of scope), they could also be handled considering the

DPWS protocol stack.

Sensors 2014, 14 14084

Figure 6. DPWS protocol stack.

In [24], the necessity of extending DPWS was demonstrated to facilitate the implementation of a

device (or thing) as a full service considering that its WSDL description should specify not only the

signature, but also the behavior together with the order in which input and output actions are

performed while the networked system interacts with its environment. Input actions model methods

that can be called or the end of receiving messages from communication channels, as well as the return

values from such calls. Output actions model method calls, message transmission via communication

channels or exceptions that may occur during the method’s execution. In order to include this

extension in the DPWS profile, rigorous and lightweight methodologies are defined to develop things

by promoting WS-* technologies, to specify service interfaces of things and to add the (implicit)

behavior of things to the DPWS profile. This extended DPWS specification helps developers to

implement DPWS-compliant things (or devices) that host services by taking into account their

behavior (using constraints or finite state machines) in terms of the order in which actions, visible at

the interface level, are performed while things are composed. The model for specifying behavior-aware

devices as services is as follows:

• Constraints: When only a partial order of the behavior of things is required, we propose using

four types of behavioral constraints (in [7], only three constraints were proposed; here, we

incorporate the executeAll) to be added to the guideline (statements) described by DPWS:

{bi}afterAll{ai}

{bi}afterSome{ai}

onlyOneOf{ai}

executeAll{ai}

where {bi} and {ai} are the actions of a service hosted in a device. The afterAll constraint is

used to specify that any action {bi} can be executed only after all of the actions {ai} have been

previously executed. The afterSome constraint is less restrictive than afterAll, since any action

{bi} can be executed when some other action {ai} has been executed. The onlyOneOf

constraint means that only one of the set of actions {ai} can be executed in an interaction

session. Finally, we extend the constraint model with the executeAll constraints that indicate

that all of the actions {ai} have to be executed at the same time.

• Finite state machines: In those cases where it is necessary to specify not only the partial order,

but also the ordered full-sequence in operations with the corresponding states’ changes

according to the execution of the messages, we propose using finite state machines (FSMs) [28]

Sensors 2014, 14 14085

as a simple and user-friendly graphic solution to represent the complex relationships

between messages.

Running Example

Coming back to our scenario, we illustrate the model for specifying and handling the behavior of

these complex services hosted in the heterogeneous and distributed devices that compose the system.

Note, basic sensor nodes only sensing a single value (such as those measuring vital signs), will also be

described as a service, although it is not necessary to specify their simple behavior.

• Constraints: For instance, the behavior of the user badge considers the communication between

the two accelerometers, voice transmission and heart rate sensors, with operations, such as

acc1, acc2, voice_on, voice_off or heart_rate. It can be specified as follows:

C1_b: executeAll {acc1, acc2}

C2_b: {voice_on} afterAll {acc1, acc2}

C3_b: {voice_off} afterAll {voice_on, acc1, acc2}

C4_b: onlyOneOf {voice_off}

where constraint C1_b indicates both accelerometers in the user badge have to be executed at

the same time to determine the movement of the user; constraint C2_b indicates that the voice

transmission will only be turned on once the accelerometers have been executed (also a

condition or interaction could be required to activate the voice, but at least, in the internal

behavior of the user badge, the order is established like that); constraint C3_b means the

operation to turn off the voice can only be executed after the operations to turn on the voice and

to measure acceleration with both accelerometers; and constraint C4_b indicates that the

deactivation of the voice, once it has been activated, will only be allowed once per iteration by

ensuring, during the checking, that the voice will not be turned off. No constraint has been

defined for the heart rate, since it is measured periodically without any restriction inside the

device. As regards the behavior of a given camera (all of the cameras located in the home have

the same behavior), the actions, such as move, record, zoom or halt, can be specified by means

of the following constraints:

C1_c: {zoom} afterAll {record}

C2_c: {halt} afterSome {move, record}

where constraint C1_c means the user has to authenticate before performing some of the

actions related to moving, recording or zooming of the video camera; and constraint C2_c

indicates that the operation halt to interrupt the recording can only be executed after some of

the two operations, move or record.

• Finite state machines: The behavior of the service hosted in the media player (in the care

center) requires a considerable number of exchanged messages (on, play, pause, stop, rewind,

fast-forward and off) in a specific order, so its handling may require a more complicated model,

such as the one provided by the FSMs. Figure 7 depicts the control of the full message

sequence of this service using FSM representation.

Sensors 2014, 14 14086

Figure 7. Finite state machine (FSM) for a media player device with a complex behavior.

The explicit specification of the behavior of things by means of constraints or full sequences with

FSMs is the basis for developing behavior-aware compositions of things. These compositions will

create applications generated in the form of mashups with new functionalities to be remotely accessed

(e.g., as Software-as-a-Service—SaaS or Mashups-as-a-Service). For example, in our example, several

devices are connected during the composition: oxygen saturation, temperature, heart rate, breath rate,

location detectors, video cameras and media player; and some of them will trigger actuators or other

devices (e.g., when the temperature is high, then the specialist is warned; or when a non-expected

movement occurs, the heart rate is checked, a timer is triggered and the camera is turned on).

The compositions by performing an orchestration of devices is specified by the dashboard control

application of the platform presented in Figure 5. To do this, a process model of a mashup of things is

proposed. This model is represented as a graph whose nodes represent single (only one action) or

complex (more than one action executed at the same invocation) invocations (to actions of the devices)

and whose edges represent a precedence relationship among these invocations (an edge from A to B

states that Invocation B can be performed only after performing Invocation A). According to the

example, different sequences of invocations can be executed in our scenario. Figure 8 presents a

possible orchestration defined by the user (in our case, the orchestration could be defined by the

healthcare professionals), where nodes represent the actions of each service hosted in the devices.

Figure 8. Specific orchestration (with violations) of the device composition for our

EMS system.

Although the verification of the behavioral composition is not a contribution of this paper, it is

worth mentioning that it is required for checking whether or not a composition of things fulfills or

violates the behavior, as proposed in previous approaches [24].

First, a simple and efficient verification technique at design-time is proposed. Therefore, in [24], a

static verification technique was also defined, to check whether or not a mashup of things respects the

behavior of the composed things specified at design-time, analyzing traces and actions executed from

the orchestration specified by the user, according to a set of constraints and/or finite state machines,

both determining the behavior of the things. Thus, a possible sequence of invocations of this

Sensors 2014, 14 14087

composition could be acc1-heart_rate-play-voice_on-stop-move-play-rewind-stop-off, in which case:

(1) acc1 is executed without acc2 at the same time, which violates the constraint C1_b specified for the

user badge; (2) play will be executed with executing on, which violates the behavior defined in the

automaton of the media player device (Figure 7); and (3) rewind could be executed without receiving

immediately before one of the ordered sequences, play-stop or play-pause, which also violates the

behavior of that service, since the first occurrence of play-stop is not considered, as play is executed

again. Therefore, the static verification mechanism checks whether the composition respects the

behavior of all devices (specified with constraints or FSMs) that are composed. Figure 9 shows the

specific orchestration for solving the three violations detected by the algorithm.

Figure 9. Correct specific orchestration of the device composition for our EMS system.

Furthermore, a thing may change its behavior at run-time. Therefore, a change in the behavior of a

thing may cause various compositions to no longer fulfill the behavior. Although compositions could

be redesigned to comply with the new behavior, it would be appropriate to design run-time verification

techniques to react when this situation occurs. Moreover, given that a thing can receive, at run-time,

requests from instances of different mashups, these requests could violate the behavior of that thing,

even though each mashup fulfills this behavior, because of the state’s change of the thing. These kinds

of situations cannot be detected at design-time, so run-time mechanisms are required to be aware of it

and act accordingly. Therefore, it is a requirement to dynamically check and detect possible invalid

invocations provoked by the behavior’s changes. In [29], the static verification was extended with an

approach based on mediation techniques and complex event processing (CEP) [30] to detect and

inhibit invalid invocations, checking that things only receive requests compatible with their behavior.

The proposal consists in processing invocations of services hosted in devices through a mediation

platform, in order to detect and block the invalid ones using CEP techniques. The solution

automatically generates the required elements for performing the run-time validation of invocations,

and it may be easily extended to validate other issues, such as quality of service (QoS) and

temporal restrictions.

3.3. Modeling the Cloud of Things in the AAL

Due to the need for a large computing space and the availability of services in AAL systems, we use

a cloud platform offering a high-level abstraction, where services can be accessed easily via web

service protocols. Therefore, this section describes the modeling of the Cloud of Things, the vision on

which our approach is based. Specifically, we propose our solution as a cloud-based IoT platform for

the fast integration and deployment of services over diverse kinds of sensors and devices. The platform

centers on supporting applications based on the AmI paradigm, such as AAL applications, which are

conscious of the location of the users and the environment state, as well as allowing them to be

Sensors 2014, 14 14088

intercommunicated through the platform (emergency situations in scenarios of healthcare monitoring

systems or hospitals). We, therefore use a cloud solution because it is centered on the user and offers

an efficient, secure and elastically scalable way of providing and acquiring devices described as

services. We take advantage of the processing power of cloud computing to easily process huge

amounts of data coming from diverse devices, providing a fast response to the corresponding user.

Furthermore, since traditional context management systems are incapable of handling large numbers of

AAL applications together, our solution places the emphasis on handling a large number of users

simultaneously. In this way, the context derived from one AAL system will become context

knowledge for another AAL system inside the cloud repository. This is how the cloud solution will be

an extendable knowledge source of context for AAL and will be able to deliver assistive actions

quickly. In addition, the applications generated in the form of mashups with new functionalities will be

displayed in the cloud. Mashups have surpassed the notions of integration and convergence and have

become an important new trend that permeates all of society. Service mashups indicate a way to design

and develop novel and modern web applications by combining existing resources utilizing content

from diverse sources or devices and web APIs.

Figure 10. The Cloud of Things concept adopted for our platform.

Figure 10 shows how we model the Cloud of Things, which has been adopted for our platform,

relating it to the AAL application described in our example. We use this concept of the Cloud of

Things as a system to support decisions related to the processing of the connections among diverse

things, managing the data and sensed information stored in the cloud and accessed as cloud services.

Using both the storage resources and the capacity of the computation of cloud computing, large

amounts of data and service information may be stored, analyzed and processed. Furthermore, the

cloud computing solution enables different users and applications to share and reuse information by

DPWS Patient
bed

DPWS Patient
bed

DPWS Patient
bed

DPWS Patient
bed

Personal information

Sensor historic

Medical data

Disease prediction processor

Critical response processor

Schedule planer

API data storage

API server

Sensors 2014, 14 14089

reducing the extra cost. The main computation is performed in the cloud architecture, so sensors and

devices can handle other specialized processing tasks. Cloud services are easily deliverable to a system

with an Internet connection. Therefore, our proposed solution actually simplifies the work of each

component. It reduces the computing load of the sensors, helps disabled people and minimizes the

work of healthcare professionals.

Running Example

With the purpose of obtaining a global vision of the DEEP platform in our AAL example, Figure 10

illustrates the connection between devices and sensors at the TCP/IP level, abstracting the details at a

low level. Three parts are considered:

• Platform access: this part represents the repository of active patients, which distinguishes

between patients being connected to a sensor (non-associated patients) and patients already

connected to some kind of sensor (associated patients). Irrespective of the patient’s location

(in the hospital or at home), the associated patients interact with the platform in a similar

way. A specialist connected to the intranet of the hospital and using DPWS-compliant

software may update the state of the sensors as regards the patients, by changing the patients

from active to non-active and vice versa, as well as monitoring the values provided by the

sensors. Since DPWS uses an interface based on the WS-* standard, the information related

to the devices is exposed in the internal network communication (the DPWS standard allows

new devices to be known), by helping the healthcare professionals with the management of

the system (monitoring, alerts, etc.). This selected organization increases the stability and

security of the platform, since the basic operations are not performed by a remote server.

• Cloud provider: this infrastructure is used to store and process the data, as well as to

guarantee remote access to the information. The cloud platform allows handling the

monitoring information in a fast, simple and secure way. The security of the platform lies in

the security of the service provider, itself, which enables us to focus on the development of

the external API. Moreover, since the information is gathered in different datacenters, the

security against the loss of data, replication and integrity is guaranteed. Taking advantage of

the intrinsic power of the cloud, three dedicated components may be included in our

platform: (1) a prediction processor to process the stored information by predicting some

problems; (2) a critical response processor to generate responses alerting the doctor to

emergency situations; and (3) a schedule planner to obtain quick conclusions. The API

BigQuery (https://developers.google.com/bigquery/) of the Google Cloud Platform

facilitates the processing of large amounts of data.

• Web-based platform access: this third component uses the external API published by the

cloud platform to develop applications as a web interface for the management of personal

data or remote monitoring of patients and even mobile clients to perform any operation

available in the API (e.g., retrieving the information of a specific patient).

Sensors 2014, 14 14090

3.4. Implementation of the DEEP Platform

This section provides some details of the implementation of the DEEP platform, examining a

prototype that has been developed (http://com-gisum-deep.appspot.com/). Figure 11 shows the

technologies used for the DEEP platform.

Due to the heterogeneity present among the components of our platform and regarding the

architecture previously depicted in Figure 5, three different abstraction levels can be distinguished: the

(sensor) gateway, the network communication and the cloud platform.

Figure 11. Technologies used for DEEP.

• The gateway: the lowest level is represented by the gateway (Serial-USB) 802.14.5 for

DPWS. This is executed on a low consumption board, Raspberry Pi. From the point of view

of the implementation, the main functions of this level are as follows:

o Translate the data packets received from the sensors and devices externally

connected by means of the IEEE 802.14.5 standard, with accessible information

from a network TCP/IP. This information is displayed in the network with the

DPWS standard, by establishing a generic way to access the information from any

device connected to the network or even from devices connected to other networks

by means of a discovery proxy (a functionality of the DPWS standard). The source

code of the gateway is completely programmed in Java, except the communication

libraries with the sensor motes, which are compiled with Java native interface (JNI)

from the source code of TinyOS (open operating system for low-resources devices).

These libraries can be compiled for the most common operating systems (Linux,

Windows, OS X), which enables the deployment of the gateway in other, more

powerful architecture, such as Intel MinnowBoard Max.

o Use the connection TCP/IP to connect to Google App Engine in order to provide the

sensor data (e.g., values or associated patient), by means of an API REST, defined in

the backend of the platform. The gateway tries to keep the information with the

Sensors 2014, 14 14091

cloud provider for enabling the access to diverse queries externally to the intranet,

safeguarding the security and privacy issues that could arise.

• DPWS environment: this second level is provided by the DPWS standard. It is presented as

the alternative offline to control and monitor the sensors and is based on the DPWS

standard, which provides an abstraction of the devices as services using the WS-* stack.

With these standards, the devices have the capability to exchange the messages to be

discovered and connected/disconnected to the system (hello, probe, metadata, subscribe,

notification, etc.) by means of a search in the network according to the required and

provided operations. A DPWS service proxy may be used as an aggregator of devices by

extending the connection range to all of the networks to which the aggregator is connected.

Thus, with an appropriate network configuration, whatever device connected to the intranet

where the aggregated devices are deployed can be discovered and operated remotely.

• Cloud provider: this is the higher abstraction level. Google as the cloud provider has

numerous functionalities for the backend with public APIs. Once the API has been created

(the calls used, data types, etc.), it is possible to develop multi-platform applications

accessing the data quickly and securely. Google provides tools for performing calls in a way

that is transparent to the programmer for languages, such as Java, Python or PHP, which

provides great flexibility for developing software. Focusing on our solution, we have

developed a frontend to manage the patients’ medical data, as well as monitoring in real

time the record of the sensed values of the patients, saving infrastructure costs, as executing

a browser would be possible with a limited computer, allowing access to the platform from a

controlled environment.

Running Example

Figure 12. Screenshot of DEEP deployed on the App Engine cloud platform measuring the

vital signs.

Sensors 2014, 14 14092

Coming back to our example, here we show the part of the cloud provider of our platform.

Specifically, Figure 12 depicts a screenshot of DEEP deployed on the Google App Engine cloud

platform, where the sensed and monitored information corresponding to the vital signs of the patient,

Alice, in real time, can be seen (in the platform, this kind of information can be accessed, although

sensors and devices need to be connected at the right moment to obtain the values in real time;

otherwise the values already stored, not the real time values, are shown (http://com-gisum-deep.

appspot.com/sensor_popup.html?patientID=0002211A&nfcID=e9957675-62e4-487b-bd88-1a077346450a)).

4. Evaluation of the Platform

In this section, we evaluate our implemented platform; concentrating on the usability and the

advantages of the cloud platform used.

4.1. Usability

We have built our platform to provide an easy user interaction experience. We use a simple GUI,

without unnecessary component and animations that may disturb the user. From the end-users of our

platform (patients, health professionals or specialists and remote care centers), patients are really

connected to the system; and, they do not need to manage the platform, but only to connect or

disconnect some device, and the two latter ones will be the main users of the platform. To measure the

time that it takes to use the platform, we have conducted a usability test measuring the time users need

to perform two concrete use cases:

• Registering a new patient and linking to an NFC ID and, then, reverting the changes.

• Checking the vital signs of five patients.

We have conducted the usability tests with a group of 40 persons with different computer skills

(working with computers, power user and web surfing and gaming) emulating the real end-users. We

have requested users to start both tests using a computer without loading the website of the platform.

In order to check the experience and learning, we have measured the time needed to accomplish both

use case tests twice.

Figure 13. The time to perform two usability tests according to the user experience.

0
20
40
60
80

100
120
140
160

Test 1 (first try) Test 1 (second try) Test 2 (first try) Test 2 (second try)

Se
co

nd
s

Working with computers Power user Web surfing and Gaming

Sensors 2014, 14 14093

In Figure 13 is shown the time to perform each usability test according to the user experience. We

observe that in all of the cases, the user (independent of her/his computer skills) learns to interact with

the platform with a single try, decreasing the time for the second execution by 30% overall.

4.2. Scalability, Elasticity, Latency and Cost

Two main computing models have been dominating information technology for a while now: on the

one hand, the centralized computing model, typical in mainframe systems with multiple terminals

connected to them; on the other hand, the distributed computing model, with the client-server model, is

the most widespread example. Recently, a new model, cloud computing, has emerged with the aim of

providing support to the explosive growth of the number of devices connected to the Internet and

complementing the increasing presence of technology in people’s daily lives. Cloud computing

provides economic, scalable and robust services over the Internet. Therefore, our platform benefits

from these advantages of the cloud, which is evaluated as regards scalability, elasticity, latency

and cost.

4.2.1. Scalability

The scalability of the platform relies on the amount of data to be processed by the gateway. The

most common interaction with the gateway is to receive new data from the sensors. We consider that a

packet contains all of the relevant information about the sensors, whose overall size is around 16 bytes.

The amount of sensors that a gateway can handle depends on how often we want to update the data and

the technology used for the communication with such a sensor. In our scenario, we are using

TinyOS-based motes (MicaZ and Telos B) connected with the Raspberry Pi through a serial interface.

This kind of devices has a limitation as regards the communication with the computer. Considering an

update rate of one packet per second, the receiver interface could handle theoretically up to 900

sensors (Maximum number of sensors (in theory) = 115,200 (bps) /8 (bytes) /16 (bytes/sensor) × 1

packet/s = 900 sensors) in the case of using TelosB transferring to 115,200 bps (MicaZ has a transfer

rate of 57,600 bps). In order to connect more devices to our platform DEEP, we could upgrade the

receiver hardware or simply add more gateways to the network.

However, the range of point-to-point communication inside IEEE 802.15.4 is between 10 and

100 m (depending on the throughput), which is clearly not enough to cover scenarios considering big

buildings (like an emergency center) with a single gateway. Although in a real scenario, we could have

around 50–100 sensors, in order to check the scalability of our gateway, we have performed a

benchmark with a range from 30 to 3000 sensors, by simulating different sizes of emergency rooms.

The test consists of retrieving as much patients as it is needed to reach the desired amount of

sensors. To avoid the IEEE 802.15.4 bottleneck, sensors have been generated in a simulated way. After

adding the simulated sensors to the gateway, they immediately start to generate new data and notify the

gateway about the generation. During the next 30 seconds, the gateway processes the new information

and uploads it to the cloud platform. For all of the test cases we have executed, we have to wait until

the cloud platform cools-down (to avoid active instances), in order to check how it adapts to

the workload.

Sensors 2014, 14 14094

Figure 14 depicts two relevant issues. The first one is how the cloud platform handles the load, in

such a way if the load is big enough (more than 300 sensors per second updating), the cloud will begin

an adaptation process until the response to be stabilized is as low as the smallest test (30 sensors). In

our use case, it took around 30 s to be stabilized. The second issue is how a single gateway can handle

more than 3000 sensors, since after the adaptation of the cloud platform, the average response time

decreases until almost the response time of the smallest test size. Therefore, if in the future, we find a

way to improve the hardware resources (more bandwidth, more range, etc.) to connect sensors to the

gateway, then Raspberry Pi could deal with an enormous amount of sensors (overcoming the limitation

of the IEEE 802.15.4 standard of 900 sensors).

Figure 14. Platform average response with a single gateway.

4.2.2. Elasticity

Elasticity is not exclusive to cloud computing, but it is easier to get elastic architectures via the

tools provided by the cloud, especially through the virtualization and pay-per-use. In order to develop

an “elastic” gateway solution, we should start and shutdown gateways on-demand (similar to the

virtual machine solutions), depending on the workload. However, although this solution is not possible

for the gateway, we could directly increase the hardware technology of the gateway used, i.e., we can

scale up and out the gateway infrastructure, allowing us to adapt our solution according to the size of

the scenario.

Inside the cloud platform, there exists a degree of elasticity inside the architecture of servers for the

hosting of web applications. Most typical is that the first layer (web servers) is elastic, while the

database layer is simply scalable. However, in the Google App Engine, there is a highly replicated

architecture, named high replication datastore (HRD) (https://developers.google.com/appengine/docs/

java/datastore/)/(https://developers.google.com/appengine/docs/python/datastore/), which uses the

Paxos algorithm (http://en.wikipedia.org/wiki/Paxos_(computer_science)) for the replication of data

around the world, obtaining a solution that is totally elastic, both frontend and backend, that adapt

themselves to the load, which is completely transparent to the user (see Figure 14).

0

1,500

3,000

4,500

6,000

7,500

1 21 41 61 81 101 121 141 161 181

M
ili

se
co

nd
s

Number of calls

30 sensors

300 sensors

3,000 sensors

Sensors 2014, 14 14095

4.2.3. Latency

The latency of our solution depends on two main factors, the gateway and the cloud platform status.

The gateway latency, as we explained previously in Figure 14, depends on how many sensors the

gateway has to handle. However, in the running example in this paper, the computing capabilities of a

Raspberry Pi seems to be enough to deal with three-times more sensors than the hardware involved in

the communication can provide.

On the other hand, the latency of the cloud platform is practically independent of the size of the

managed data, since the automatic scaling provided by the Google App Engine allows the capacity of

computation to be increased, in moments when the traffic is intense, by activating instances

(https://developers.google.com/appengine/docs/adminconsole/performancesettings#minimum) (as they

are known in the Google Cloud) and also allows reducing the economic cost in case too much power is

not necessary when there is not too much traffic in the platform (it is even possible to deactivate

the machines).

It is worth noting that if it is searched, the scaling process is transparent to the user; another concept

of instance is considered, inactive or idle instance, where Google reserves the instances to be paid in

such a way that, if the application needs to be scaled, the code is already loaded and ready to serve

traffic. Otherwise, some delays (of up to two seconds in our case) can be observed, which may become

critical depending on the environment to which the platform is dedicated. In addition, the maximum

latency for a response may be configured using the application’s dashboard, ranging from 10 ms to 15 s.

4.2.4. Cost

In order to estimate the cost, we use the table of prices per operations from the Google App Engine,

where the cost of the manipulation of each entity is estimated (https://developers.google.com/

appengine/pricing) (considering the fails to cache; otherwise, it could be considered as cost zero;

otherwise, only the traffic cost would be considered, which is not being studied, due to the large

volume of data being handled (https://developers.google.com/appengine/docs/adminconsole/memcache)).

Table 1 presents a relation of cost estimation for a set of operations to be executed in DEEP, as regards

our running example.

Furthermore, to these costs we should add the technical support, if it is needed, for the deployment

and additional maintenance, such as phone support, which is quantified in a different way

(https://cloud.google.com/support/).

To estimate the costs in a monthly average of operations, we assume that the registers have already

been created, both for sensors and patients. Therefore, we only compute the costs of the active patients

and the updating of the sensors. This is because the register/unregister processes are not very frequent

compared to the data traffic generated by the query and the modification of the sensors.

Sensors 2014, 14 14096

Table 1. Cost estimation of operations to be performed in DEEP.

Operation
Read
Count

Write Count SM Count
Cost per

Operation ($)
Cost per Each

100k ($)

Register patient 1 2 1 2.50000E-06 0.25
Remove patient 0 2 0 1.80000E-06 0.18

Link patient with NFC 1 4 3 3.60000E-06 0.36
Unlink patient from NFC 1 4 1 3.60000E-06 0.36

Register sensor 1 2 1 2.50000E-06 0.25
Remove sensor 1 2 0 2.40000E-06 0.24

Update value of sensor 0 1 1 1.90000E-06 0.19
List patients 1 0 0 1.20000E-06 0.12
List sensors 1 0 0 6.00000E-07 0.06

Recovery patient data 1 0 1 7.00000E-07 0.07
Query of the last value of

a sensor
1 0 0 6.00000E-07 0.06

Recovery all values of a
sensor

2 0 0 1.20000E-06 0.12

Tables 2 and 3 give the results of this estimation for active patients and updated sensors,

respectively. The traffic cost for a regular user depends on the operations performed on the platform

(we consider that the cache is active; otherwise, the costs are very high).

Table 2. Cost estimation of active patients.

Operation per User
Average Monthly

Operations

List patients 9000
List sensors 45,000

Recovery all values of a sensor
(10% fails to cache)

225,000

Query of the last value of a sensor
(8 hours/day, 5% fails to cache)

864,000

Recovery patient data 900,000

Table 3. Cost estimation of updating sensors.

Operation per Sensor per Second
Average Monthly

Operations

Update value of sensor 864,000

In order to calculate the costs of the platform, we consider a user of the platform, e.g., a medical

specialist with a common behavior pattern on his/her computer for one month, being able to perform

the following actions:

Sensors 2014, 14 14097

• To visualize 300 lists of patients per day in one month (300 patients × 30 days = 9000

operations as a result of listing patients during one month).

• From the 300 listed patients, only the patients with sensors connected are monitored, let us

say 100 patients being monitored for 15 s per day (100 patients × 15 seconds × 1 data

refresh per second × 30 days = 45,000 operations of listing sensors).

• The rest of the values in the table do not follow a fixed rule; they depend on parameters,

such as the number of sensors connected, times of accessing sections of the platform or

even the interest the doctor has in a specific patient. These values have been obtained

experimentally, and rounded up, to analyze the platform in a realistic scenario.

In order to determine an approximate cost according to three different kinds of hospitals managing

data (depending on the number of supported patients), small hospital, regional hospital and network of

hospitals, the previous data are cross matched to obtain the values presented in Table 4.

Table 4. Operations and monthly cost for different kinds of hospitals managing data

with DEEP.

Operations
Small

Hospital
Regional
Hospital

Network of
Hospitals

Active patients 100 10,000 100,000
Average of sensors each one 10 6 4

Average time between updates 2 4 5
Number of users 5 20 100

List patients 45,000 180,000 900,000
List sensors 225,000 900,000 4,500,000

Recovery patient data 4,500,000 18,000,000 90,000,000
Recovery all values of a sensor

(10% fails to cache)
1,125,000 4,500,000 22,500,000

Query of the last value of a sensor
(8 hours/day, 5% fails to cache)

4,320,000 17,280,000 86,400,000

Update value of sensor 432,000,000 12,960,000,000 69,120,000,000

Monthly cost $828.08 $24,653.12 $131,473.62

Figure 15 corresponds to the values in Table 4 represented graphically. On the one hand, it shows

how the costs increase proportionally with the size of the hospital, which demonstrates that our

platform is a good alternative for the use of the ad hoc infrastructure developed by each hospital. On

the other hand, it does not consider the cost of the effort of migrating to this new technology nor the

risk of the well-known vendor lock-in problem in the cloud paradigm, although some initiatives are

already trying to address this problem.

Sensors 2014, 14 14098

Figure 15. Monthly cost for different kinds of hospitals managing data with DEEP.

5. Related Work

In this section, we analyze different approaches, focusing on the three main challenges addressed in

this approach: specification and implementation of devices as services, handling of the composition of

heterogeneous devices and seamless management of data in ambient intelligence, specifically in

ambient assisted living.

With respect to the two first lines of research, recent approaches have made progress in displaying

devices as services and handling their composition. In [31], both the state-of-the-art and the key

research directions are identified, related to service-oriented middleware for the future Internet: service

description, discovery, access and composition. Until recently, these aspects were only considered as

services, but the future Internet is already a reality, so the necessity of considering contents, devices,

sensors and things has to be included in any new challenge. As regards the choice of the most

appropriate technology for specifying devices, some [5,6] have compared REST vs. WS-*

technologies. They claim that RESTful web services are easy to learn and suitable for programming

IoT applications, and their main advantages are their universality and the uniform service interface.

However, they also argue that REST addresses only basic distributed interaction and coordination,

leaving many open complex issues that have been tackled by WS-* technologies, such as dealing with

service behavior, semantics or quality of service. In addition, WS-* specifications benefit from having

a clearer standardization process than REST.

The SIRENA (http://www.sirena-itea.org/) European project has played a pioneering role, by

applying the SOA paradigm to communications and interworking between components at the device

level, with the main objective being to develop a Service Infrastructure for Real-time Embedded

Networked Applications. The SIRENA results [32] were used as the foundation for both, the SODA

(https://itea3.org/project/SODA.html) and SOCRADES (http://www.socrades.eu/) projects, with

selecting DPWS as the best choice for achieving device integration in heterogeneous domains.

Additionally, stemming from the SIRENA project, the initiative “Web Services for Devices” (WS4D)

(http://ws4d.e-technik.uni-rostock.de/about/) also complies with the DPWS. WS4D brings SOA and

web services technology to diverse application domains, such as home or industrial automation,

$828.08

$24,653.12

$131,473.62

$0.00
$20,000.00
$40,000.00
$60,000.00
$80,000.00

$100,000.00
$120,000.00
$140,000.00
$160,000.00
$180,000.00
$200,000.00

Small Hospital Regional Hospital Network of Hospitals

Monthly cost Monthly cost

Sensors 2014, 14 14099

automotive systems and telecommunication technology, by facilitating the setup and management of

network connected devices in distributed embedded systems.

The ongoing FET (Future and Emerging Technologies) European project, CONNECT

(https://www.connect-forever.eu/), drops interoperability barriers by synthesizing on the fly the

connectors via which networked systems communicate [33]. It assumes that a networked system

comes together with a labeled transition system (LTS)-based specification of its interaction protocol by

specifying its behavior. Furthermore, in [34,35], the authors working on CONNECT propose deriving

from the WSDL of a web service a partial ordering relationship between the invocations of the

different WSDL operations, which they represent as an automaton, which models the interaction

protocol that a client has to follow in order to correctly interact with the web service. The behavior

protocol is obtained through synthesis (driven by data type analysis, obtaining a preliminary

dependencies automaton and optimized by means of heuristics) and testing stages (to verify

conformance). Compared to our approach, the CONNECT project first assumes that the behavior

protocol has already been specified by LTSs, while we are proposing to specify service interfaces of

things by adding a set of single constraints to the DPWS guidelines in order to determine the links in

the interactions. However, even later, when they propose deriving a partial order of the message

sequence of a service, their approach is too complex, and it does not easily maintain the compromise

between the expressiveness and the scalability issues in a world composed of billions of

resource-constrained devices, since both synthesis and testing processes are required. However, our

approach is to apply rigorous and lightweight methodologies to develop things, by aiding developers in

the implementation of DPWS-compliant devices.

Other efforts principally focus on the WoT vision, by both: (i) specifying, discovering and

integrating things by means of a semantic web-based architecture [16,36,37]; and (ii) generating

mashups of heterogeneous things [38,39]. However, the main gap in these proposals is that devices

with a more complex behavior cannot be connected by using their mechanisms, since the implicit

behaviors of things are not considered. Therefore, violations of the (implicit) behavior of things might

happen, and the system could get locked out during its execution, for instance due to a deadlock

situation. Our approach proposes designing the foundation on an extension of the DPWS profile by

allowing the incorporation of behavior-aware things in the mashups generated without human

intervention as regards the interaction protocol at run time, ensuring the composition works correctly.

ThingML [40] is a domain-specific modeling language for efficiently providing communicating

services on resource-constrained devices. The proposed language allows interaction protocols to be

specified via state machines, and it would be worth investigating whether and how those state

machines can be mapped into our FSMs, so as to allow their inclusion in WSDL interfaces as

considered by DPWS.

There are other initiatives, such as the Open Services Gateway initiative (OSGi)

(http://www.osgi.org/) and the Sensor Model Language (SensorML) (http://www.opengeospatial.org/

standards/sensorml). Specifically, the objective of OSGi is to create intermediate software for

intelligent devices by facilitating their heterogeneity. Some approaches have used OSGi specifications

to define a standardized, component-oriented, computing environment for networked services, for

example, in systems for dependent people [41], although no effort has been made as to the efficient

management of the large amounts of motorized data. The main objective of SensorML is to enable

Sensors 2014, 14 14100

interoperability, first at the syntactic level and later at the semantic level. To do this, SensorML uses

ontologies and semantic mediation; thus, sensors and processes may be easily shared among the

intelligent sensor web nodes, used automatically in complex workflows and understood by machines.

This standard is the result of an implementation standard of the OGC’s Sensor Web Enablement

(SWE) activity, which allows the integration and analysis of streams of sensor data coming from

heterogeneous sensors and devices based on standards and managing the interoperability. Although

here, in our first attempt, we opt for DPWS, because of the simplicity of this standard, as well as the

advantage of the service-oriented architecture model for specifying more complex behaviors, we are

also studying these other commonly used initiatives.

Regarding the seamlessness of the large amount of data being sensed in some real scenarios, such as

in AAL applications, several proposals are currently addressing it and proposing solutions.

CloudIO [17] focuses on addressing the interoperability, accessibility and usability of systems

based on WSNs through a platform based on cloud computing services. The developed platform is

modular, flexible and scalable and integrates telemonitoring, personal communication and interactive

services managed from a cloud infrastructure.

IAServ [18] (Intelligent Aging-in-place Home-care Web Services Platform) provides a personalized

healthcare service ubiquitously in a cloud computing setting to support a desirable and cost-effective

method of caring for the aged/aging in their homes.

CoCaMAAL [19] (Cloud Oriented Context-Aware Middleware in Ambient Assisted Living)

presents a generic architecture to support AAL environments integrated in body sensor networks with

context-aware service management systems using cloud infrastructure. These proposals exploit and

benefit from the cloud in a similar way to our proposal; however, two main aspects addressed in our

work are not supported in these approaches: the possibility of specifying the behavior of the devices,

generating complex orchestrations and workflows of things, verified to check whether some violations

may occur in the composition; and the integration of new devices in our DPWS environment, directly

connected to the cloud platform used for storing the data received from DPW-enabled devices.

Therefore, our behavior-aware model enables the healthcare professionals to specify diverse and

complex orchestrations, depending on the scenarios that have to be controlled and monitored.

In [42], the authors propose a new AAL cloud computing approach based on ROS’s messaging

system, a cloud enabled robot operating system. One disadvantage of ROS is that publish and

subscribe are anonymous, meaning that it has to be the overall system that guarantees data safety and

confidentiality. To the contrary, our proposal integrates many heterogeneous devices, using the DPWS

standard, which increases the stability and security of the platform. In addition, thanks to the cloud

infrastructure, the responsibility for security lies with the service provider itself. This enables us to

concentrate on the development of the external API.

Moreover, [43] presents a review of a variety of AAL applications, which are gaining in prominence

and dominance in smart homes, the world over. Some approaches have proposed service-oriented

solutions related to home automation systems, i.e., for a home network system [44] and for a smart

home [45]. The former presents a sensor mashup platform, which allows the dynamic composition of

the existing sensor services. They mainly focus on helping non-expert developers to create context-aware

services within the home network system, but their framework does not offer any guidance for

controlling the behavior of the system, only messages that are exchanged by using WSDL and

Sensors 2014, 14 14101

REST/SOAP. The latter is closer to our proposal. The authors propose an application logic distribution

where devices in a smart home incorporate a set of rules that can govern their behavior, following

ECA (event-condition-action) rules: they listen to external messages (notifications received from other

services), and according to some conditions defined in these rules, they decide to perform their own

actions. In comparison to our approach, this mechanism is not lightweight, and it can introduce too

much complexity when dealing with resource-constraint devices, making it necessary to have a rule

engine to analyze the rules. In addition, a rule is not enough to determine the correct order of

operations of a service, since a full rule requires events coming from other services to be triggered.

Therefore, the protocol detailing the partial order or the full sequence among operations (of a single

device) cannot be generated in a simple way by means of ECA rules.

6. Conclusions

In this paper, we have presented a platform to manage the integration and behavior-aware

orchestration of devices as services stored and accessed via the cloud in AAL applications. We have

described our proposal of modeling the heterogeneous devices as services by using the DPWS standard

(which has already been extended with the behavior specification of devices, with the purpose of

determining the order of the sequence of exchanged messages during their composition). To solve the

variability of the devices, we used a service-oriented environment and a DPWS-compliant gateway

used to orchestrate the devices according their behavior. We have detailed the design and

implementation of our cloud-based IoT platform for remotely accessing and monitoring the data at

run-time, reacting to emergency situations, which is such a crucial issue in AmI systems.

We have validated the whole approach in real scenarios related to a specific AAL application, an

emergency monitoring system, to help medical professionals with the seamless health monitoring of a

large number of patients and data at run-time, by means of sensors and devices connected to the

patient, so as to detect and prevent any emergency situation, both in the hospital (local) and at home

(remote). We have demonstrated that the cloud solution eases the management of these systems,

allowing simplified user access and effectively handling demand elasticity.

Currently, we are working on developing the historical triggers and the patient schedule. We are

also refining the connection of the system with the appropriate actuators, in order to automatize as

many parts of our solution as possible. As regards future work, we plan to evaluate and validate the

whole solution from the very beginning of abstracting the devices as services through to the analysis of

the monitored information by using the cloud.

Acknowledgments

The work partially supported by projects TIN2012-35669, funded by Spanish Ministry of Economy

and Competitiveness (MINECO) and FEDER; P11-TIC-7659 funded by the Andalusian Government;

FP7-610531 SeaClouds funded by the European Union; and Universidad de Málaga, Campus de

Excelencia Internacional Andalucía Tech.

Sensors 2014, 14 14102

Author Contributions

The three authors of the paper have extensively participated in all the paper writing. Cubo and

Pimentel mainly worked on the common architecture proposed in DEEP, and the extended model

which served as basis, and also on the design of the framework. The implementation was mainly made

by Nieto as part of his MsC work, and he was supervised by Cubo and Pimentel. The evaluation design

was made by Cubo and Nieto, with the collaboration of Pimentel, and the results were interpreted by

all the three authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Weiser, M. The computer for the 21st Century. Sci. Am. 1991, 265, 66–75.

2. Wang, M.M.; Cao, J.N.; Li, J.; Dasi, S.K. Middleware for Wireless Sensor Networks: A survey.

J. Comput. Sci. Technol. 2008, 23, 305–326.

3. Gamez, N.; Cubo, J.; Fuentes, L.; Pimentel, E. Configuring a Context-Aware Middleware for

Wireless Sensor Networks. Sensors 2012, 12, 8544–8570.

4. Bravo, J.; Hervás, R.; Sánchez, I.; Chavira, G.; Nava, S. Visualization Services in a Conference

Context: An Approach by RFID Technology. J. Univers. Comput. Sci. 2006, 12, 270–283.

5. Guinard, D.; Ion, I.; Mayer, S. In Search of an Internet of Things Service Architecture: REST or

WS-*? A Developers’ Perspective. Lect. Notes Inst. Comput. Sci. 2012, 104, 326–337.

6. Pautasso, C.; Zimmermann, O.; Leymann, F. RESTful Web Services vs. “big” Web Services:

Making the Right Architectural Decision. In Proceedings of the International World Wide Web

Conferences, Beijing, China, 21–25 April 2008; pp. 805–814.

7. Internet of Things 2020. A Roadmap for the Future. Available online: http://www.smart-systems-

integration.org/public/documents/publications/Internet-of-Things_in_2020_EC-EPoSS_Workshop_

Report_2008_v3.pdf (accessed on 1 Febraury 2014).

8. Guo, B.; Zhang, D.; Zhu, W. Living with Internet of Things: The Emergence of Embedded

Intelligence, In Proceedings of the IEEE International Conference on Internet of Things, Dalian,

China,19–22 October 2011; pp. 297–304.

9. Ramos, C.; Augusto, J.S.; Saphiro, D. Ambient Intelligence—the Next Step for Artificial

Intelligence. IEEE Intell. Syst. 2008, 23, 15–18.

10. de Souza, L.M.S.; Spiess, P.; Guinard, D.; Koehler, M.; Karnouskos, S.; Savio, D. Socrades:

A Web Service Based Shop Floor Integration Infrastructure. Lect. Notes Comput. Sci. 2008, 4952,

50–67.

11. Jammes, F.; Smit, H. Service-Oriented Paradigms in Industrial Automation. IEEE Trans. Ind.

Inform. 2005, 1, 62–70.

12. Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design; Prentice Hall: Upper

Saddle River, NJ, USA, 2005.

Sensors 2014, 14 14103

13. Kartsakli, E.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. A Cloud-Assisted Random Linear

Network Coding Medium Access Control Protocol for Healthcare Applications. Sensors 2014, 14,

4806–4830.

14. Leavitt, N. Is Cloud Computing Really Ready for Prime Time? Computer 2009, 42, 15–20.

15. Emiliani, P.; Stephanidis, C. Universal access to ambient intelligence environments:

Opportunities and challenges for people with disabilities. IBM Syst. J. 2005, 44, 605–619.

16. Rodríguez-Molina, J.; Martínez, J.M.; Castillejo, P.; López, L. Combining Wireless Sensor

Networks and Semantic Middleware for an Internet of Things-Based Sportsman/Woman

Monitoring Application. Sensors 2013, 13, 1787–1835.

17. Tapia, D.; Alonso, R.S.; García, O.; de la Prieta, F.; Pérez-Lancho, B. Cloud-IO: Cloud

Computing Platform for the Fast Deployment of Services over Wireless Sensor Networks.

Adv. Intell. Syst. Comput. 2013, 172, 493–504.

18. Su, C-J.; Chiangemail, C-Y. IAServ: An Intelligent Home Care Web Services Platform in a Cloud

for Aging-in-Place. Int. J. Environ. Res. Public Health 2013, 10, 6106–6130.

19. Forkana, A.; Khalila, I.; Tari, Z. CoCaMAAL: A cloud-oriented context-aware middleware in

ambient assisted living. Future Gener. Comput. Syst. 2014, 35, 114–127.

20. Alemdar, H.; Ersoy, C. Wireless sensor networks for healthcare: A survey. Comput. Netw. 2010,

54, 2688–2710.

21. De Deugd, S.; Carroll, R.; Kelly, K.E.; Millett, B.; Ricker, J. SODA: Service Oriented Device

Architecture. IEEE Pervasive Computing 2006, 5, 94–96.

22. Device Profile for Web Services. Available online: http://docs.oasis-open.org/ws-dd/ns/dpws/

2009/01 (accessed on 1 February 2014).

23. Zinn, M.; Bepperling, A.; Schoop, R.; Phippen, A.D.; Fischer, K.P. Device Services as Reusable

Units of Modelling in a Service-Oriented Environment—An Analysis Case Study. In Proceedings

of International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010; pp. 1728–1735.

24. Cubo, J.; Brogi, A.; Pimentel, E. Behaviour-Aware Compositions of Things. In Proceedings of the

IEEE International Conference on Internet of Things, Besançon, France, 20–23 November 2012;

pp. 1–8.

25. Keshavarz, A.; Tabar, A.M.; Aghajan, H. Distributed Vision-Based Reasoning for Smart Home

Care. In Proceedings of the SenSys Workshop on Distributed Smart Cameras, Colorado, CO,

USA, 31 October–3 November 2006.

26. Tabar, A.M.; Keshavarz, A.; Aghajan, H. Smart home care network using sensor fusion and

distributed vision-based reasoning. In Proceedings of International Workshop on Video

surveillance and Sensor Networks, California, CA, USA, 27 October 2006; pp. 145–154.

27. Gámez, N.; Fuentes, L. FamiWare: A family of event-based middleware for ambient intelligence.

Pers. Ubiquitous Comput. 2011, 15, 329–339.

28. Brand, D.; Zafiropulo, P. On Communicating Finite-State Machines. J. ACM 1983, 30, 323–342.

29. González, L.; Cubo, J.; Brogi, A. Pimentel, E., Ruggia, R. Run-Time Verification of

Behaviour-Aware Mashups in the Internet of Things. Commun. Comput. Inf. Sci. 2013, 393,

318–330.

30. Luckham, D. The Power of Events: An Introduction to Complex Event Processing in Distributed

Enterprise Systems; Addison-Wesley: Boston, MA, USA 2002.

Sensors 2014, 14 14104

31. Issarny, V.; Georgantas, N.; Hachem, S.; Zarras, A.; Vassiliadist, P.; Autili, M.; Gerosa, M.A.;

Hamida, A.B. Service-Oriented Middleware for the Future Internet: State of the Art and Research

Directions. J. Inter. Serv. Appl. 2011, 2, 23–45.

32. Bohn, H.; Bobek, A.; Golatowski, F. SIRENA—Service Infrastructure for Real-time Embedded

Networked Devices: A Service Oriented Framework for Different Domains. In Proccedings of the

International Conference on Systems and International Conference on Mobile Communication

and Learning Technologies, Morne, Mauritius, 23–29 April 2006; pp. 43–48.

33. Inverardi, P.; Spalazzese, R.; Tivoli, M. Application-Layer Connector Synthesis. Lect. Notes

Comput. Sci. 2011, 6659, 148–190.

34. Bertolino, A.; Inverardi, P.; Pelliccione, P.; Tivoli, M. Automatic Synthesis of Behavior Protocols

for Composable Web-Services. In Proccedings of the European Software Engineering Conference

and the ACM Special Interest Group on Software Engineering on the Foundations of Software

Engineering, Amsterdam, The Netherlands, 22–24 August 2009; pp. 141–150.

35. Cavallaro, L.; Di Nitto, E.; Pelliccione, P.; Pradella, M.; Tivoli M. Synthesizing Adapters for

Conversational Web-Services from their WSDL Interface. In Proccedings of the International

Conference on Software Engineering Workshop on Software Engineering for Adaptive and

Self-Managing Systems, Cape Town, South Africa, 3–4 May 2010; pp. 104–113.

36. Mathew, S.S.; Atif, Y.; Sheng, Q.Z.; Maamar, Z. Web of Things: Description, Discovery and

Integration. In Proceedings of the IEEE International Conference on Internet of Things, Dalian,

China, 19–22 October 2011; pp. 9–15.

37. Yang, S.; Xu, Y.; He, Q. Ontology Based Service Discovery Method for Internet of Things. In

Proceedings of the IEEE International Conference on Internet of Things, Dalian, China, 19–22

October 2011; 43–47.

38. Guinard, D.; Trifa, V. Towards the Web of Things: Web Mashups for Embedded Devices.

In Proccedings of the International World Wide Web Conferences, Workshop on Mashups,

Enterprise Mashups and Lightweight Composition on the Web, Madrid, Spain, 20–24

April 2009.

39. Pintus, A.; Carboni, D.; Piras, A. Paraimpu: A Platform for a Social Web of Things. In

Proccedings of the International World Wide Web Conferences, Lyon, France, 16–20 April 2012;

pp. 401–404.

40. Fleurey, F.; Morin, B.; Solberg, A.; Barais, O. MDE to Manage Communications with and

between Resource-Constrained Systems. Lect. Notes Comput. Sci. 2011, 6981, 349–363.

41. Martín, J.; Seepold, R.; Martínez, N.; Álvarez, J.A.; Fernández-Montes, A.; Ortega, J.A. A Home

E-Health System for Dependent People Based on OSGI. Intell. Technol. Syst. Lect. Notes Elect.

Eng. 2009, 38, 117–130.

42. Teixeira, C.; Sousa, J.; Ferreira, F.; Oliveira, A.; Teixeira, A.; Pereira, C. Cloud Computing

Enhanced Service Development Architecture for the Living Usability Lab. Commun. Comput.

Inf. Sci. 2011, 221, 289–296.

43. Venkatesh, V.; Vaithayanathan, V.; Raj, P.; Amirtharajan, R. An Ambient Assisted Living for

Smart Home to Wealthy Life: A Short Review. Res. J. Inform. Technol. 2013, 5, 1–11.

Sensors 2014, 14 14105

44. Nakamura, M.; Matsuo, S.; Matsumoto, S.; Sakamoto, H.; Igaki, H. Application Framework for

Efficient Development of Sensor as a Service for Home Network System. In Proccedings of 2011

IEEE International Conference on Services Computing, Washington, DC, USA, 4–9 July 2011;

pp. 576–583.

45. Parra, J.; Hossain, M.A.; Uribarren, A.; Jacob, E.; El Saddik, A. Flexible Smart Home

Architecture using Device Profile for Web Services: A Peer-to-Peer Approach. Int. J. Smart Home

2009, 3, 39–55.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

