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Abstract: Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce 

leaves. In this study, for the first time, the complete genome of E. asburiae L1 was 

sequenced using the single molecule real time sequencer (PacBio RSII) and the whole 

genome sequence was verified by using optical genome mapping (OpGen) technology. In 

our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the 

possibility of virulence factor regulation which is quorum sensing dependent. This evoked 

our interest to study the genome of this bacterium and here we present the complete 

genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl 

homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl 

homoserine lactone synthase gene which we firstly named easI. The availability of the 

whole genome sequence of E. asburiae L1 will pave the way for the study of the  

QS-mediated gene expression in this bacterium. Hence, the importance and functions of 

these signaling molecules can be further studied in the hope of elucidating the mechanisms 

of QS-regulation in E. asburiae. To the best of our knowledge, this is the first 

documentation of both a complete genome sequence and the establishment of the 

molecular basis of QS properties of E. asburiae. 
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1. Introduction 

Enterobacter asburiae is a Gram-negative, facultative anaerobic, oxidase negative, non-motile and 

non-pigmented rod-shaped species of the Enterobacteriaceae family that has been isolated from soil, 

water and food products [1–3]. It is also known as the epiphytic bacterium [4], which either has a 

parasitism or commensalism relationship with the plant host [5]. It has been reported as a quorum sensing 

(QS) bacterium [3] that is able to communicate via secretion of signaling molecules called 

autoinducers. QS regulates the expression of certain genes in response to the bacterial population 

density, i.e., when a threshold amount of the autoinducers is detected [6,7], cooperative activities 

involved in survival and successful colonization such as the exoenzyme secretion, symbiosis, biofilm 

formation, sporulation, virulence, antibiotic production, bioluminescence and conjugation are  

activated [8,9]. Signaling via N-acyl homoserine lactones (AHLs) is the paradigm for QS in 

Proteobacteria [8]. These molecules, which consist of 4- to 18-carbon side chain linked to a lactone  

ring [10] are synthesized by AHL synthase (LuxI homologs) using S-adenosylmethionine (SAM) and 

acylated acyl carrier protein (Acyl-ACP) as the substrates [11].  

Studies have shown that Enterobacteriaceae are commonly associated with food spoilage as well as 

food poisoning [12,13]. It is believed that the availability of AHL-regulated systems in the microbes 

could be the causative factor responsible for the toxicity of food products, deterioration of taste and 

texture, and ultimately, food safety threat [14]. Lipolytic, proteolytic, pectinolytic, and chitinolytic 

activities are among the traits that are possibly regulated by QS [15]. Consequently, study on the 

potential role of QS in food safety and food spoilage has provided a very important insight into food 

microbiology in order to generate useful information to reduce or prevent spoilage reactions as well as 

control the expression of virulence factors [16]. In depth investigations on bacterial QS properties 

could potentially offer solutions to resolve the food safety issues whilst improving human health. 

As seen in recent years, genome-wide scale computational analysis is widely been used as a 

backbone to foster novel discovery in biomedical research. This high demand of low-cost sequencing 

has driven the rapid development of high-throughput sequencing. Next generation sequencing (NGS) 

technology offers rapid insights at the genome level at a decreasing cost and hence will soon become a 

common platform for bacterial genome study [17]. Coupling with the commercialization of various 

affordable desktop sequencers and fast improved computing power, researchers are able to map 

bacteria genome within a short period of time. In this study, two different NGS technologies were 

applied to generate the whole genome sequence of E. asburiae L1, an AHL-producing strain isolated 

from lettuce leaves. The complete genome was annotated and the gene functions were predicted to 

search for genes of interest.  

2. Experimental Section 

2.1. Bacterial Source, Isolation and Culture 

E. asburiae L1 isolated from lettuce leaves was identified and characterized by obtaining pure 

cultures on MacConkey agar (Scharlau, Scharlab, Barcelona, Spain). The pure culture was routinely 

maintained on LB (Luria Bertani, Merck, Whitehouse Station, NJ, USA) agar at 37 °C or incubated 
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overnight at 37 °C agitated at 200 rpm in LB broth. E. asburiae was also maintained kept at −80 °C in 

80% (v/v) glycerol.  

2.2. Scanning Electron Microscopy Imaging 

Scanning electron microscopy (SEM) observation of E. asburiae L1 was conducted on a TM3000 

Analytical Tabletop Microscope (Hitachi, Brisbane, CA, USA). The bacterial pellets were fixed in 

2.5% glutaraldehyde for at least 2 h before proceeding with two 0.1 M phosphate buffer washes. The 

fixed cells were then subjected to post fixation with 1% osmium tetroxide for at least an hour. After 

two post-fixation washes, a graded series of ethanol dehydration steps (50%, 75%, 95%, 100%, 100% 

ethanol, 10 min each) was performed before immersed the cells in Hexamethyldisilazane (HMDS) 

(Ted Pella, Redding, CA, USA) for another 10 min. The SEM preparation was completed by decanting 

the HMDS from the tube and letting the cells air-dry in a desiccator at room temperature. Prior to 

examination, the dried cells were mounted onto a SEM specimen stub with a double-sided sticky tape 

and subjected to gold coating. 

2.3. Genomic DNA Extraction 

The genomic DNA of E. asburiae L1 was extracted using MasterpureTM DNA purification kit 

(Epicenter, Illumina Inc., Madison, WI, USA) per the manufacturer’s instructions. The quality of the 

extracted DNA was performed with Nanodrop Spectrophotometer (Thermo Scientific, Pittsburgh, PA, 

USA) and agarose gel electrophoresis while DNA quantification was carried out with a Qubit® 2.0 

Fluorometer (dsDNA High Sensitivity Assay Kit, Invitrogen, Carlsbad, CA, USA).  

2.4. Library Preparation and Sequencing 

DNA sequencing template was obtained from sheared genomic DNA using the Pacific Bioscience 

10 kb SMRTbell library template preparation kit per the manufacturer’s instructions (Pacific 

Biosciences, Menlo Park, CA, USA). The quality sizing analysis of DNA library was validated by 

Bioanalyzer 2100 high sensitivity DNA kit (Agilent Technologies, Inc., Santa Clara, CA, USA) prior 

to sequencing. PacBio RS II sequencing technology (Pacific Biosciences) was used as the sequencing 

platform. P4 chemistry was utilized, and the prepared library was sequenced on four single-molecule 

real-time (SMRT) cells.  

2.5. Whole Genome Optical Mapping 

A whole genome map of E. asburiae L1 was generated from the single DNA molecule with the 

automated Argus system (OpGen Inc., Gaithersburg, MD, USA). DNA extraction was performed based 

on the manufacturer’s instructions. Purified DNA was then diluted to the appropriate concentration by 

performing the quality check using QCard (OpGen Inc.). The DNA molecules were filled through all the 

channels of the channel-forming device (CFD) on MapCards II (OpGen Inc.) through capillary action. 

The four reagent reservoirs were pipetted into their individual load ports according to the labeled with 

the corresponding reagent on the left side of the MapCard II. Digestion was performed with AflII for 

30 min while all the four reagents were dispensed and aspirated from the reaction chamber at appropriate 
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times, volumes, and flow rates in the MapCard Processor. Upon completion, the MapCard II was placed 

in whole genome mapper to perform whole genome optical mapping. 

2.6. Gene Prediction and Annotation 

Genes were predicted using Prodigal 2.60 while gene annotation was performed using RAST [18] 

followed by visualization of the bacterial circular genome using DNAPlotter version 1.4  

(Artemis 12.0, Sanger Institute, Hinxton, Cambridge, UK) and Gepard version 1.3 (Institute of 

Computational Biology, Neuherberg, Germany) [19]. Phylogenetic analysis was performed using 

MEGA version 5.2 [20]. 

3. Results and Discussion 

3.1. Isolation and Characterization of E. asburiae L1 

E. asburiae L1 was identified at the species level with score values above 2.3 using  

MALDI-TOF-MS (Bruker, Leipzig, Germany). Like other species classified in the Enterobacteriaceae 

family, E. asburiae L1 is a rod-shaped bacterium with approximately 1.32 μm in size (Figure 1).  

E. asburiae L1 lives in the mesophilic environment with its optimal temperature at 37 °C. In our 

previous study, E. asburiae L1 has been reported to produce AHLs [3], suggesting the possibility of 

virulence factors regulation by a QS mechanism. 

Figure 1. Scanning electron microscope image of E. asburiae L1. The size of the strain is 

approximately 1.32 μm (bar).  

 

3.2. Whole Genome Sequencing of E. asburiae L1 

The genome size of E. asburiae L1 is 4.5 Mbp. The PacBio sequencing platform generated an 

output data with average genome coverage of 216.24×. De novo assembly of the insert reads was 

performed with the Hierarchical Genome Assembly Process (HGAP) algorithm in SMRT Portal 

(version 2.1.1), in which the genome sequence of E. asburiae strain L1 was assembled into a GC-rich 

(56.1%) single contig of 4,561,905 bp. The whole genome map of E. asburiae L1 generated from the 
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single DNA molecule with the automated Argus system (OpGen Inc.) was aligned with the sequence 

obtained from the Pacific Biosciences RS II sequencing technology to investigate the mismatch 

tolerance. Figure 2 showed that although two different sequencing technologies were applied, both 

sequences generated are highly aligned with each other, confirming the completeness of this genome. 

Apart from that, the complete genome is proved to be circular with the help of DNAPlotter (version 1.4) 

and Gepard (version 1.3) (Figure 3).  

Figure 2. Alignment of (A) OpGen Sequence with (B) PacBio Sequence for E. asburiae L1. 

 

Figure 3. Circular representation of E. asburiae L1. The figure was constructed by  

(A) DNAPlotter version 1.4 and (B) Gepard version 1.3. The GC skew was shown in the 

most inner layer while the GC plot was shown in the second lane counting from the outer 

most lane. The genome size of E. asburiae L1 was 4.5 Mbp. The straight line of dotplot 

generated from Gepard further supported the circular representation of this genome. 

(A) (B) 

3.3. Gene Prediction and Annotation of E. asburiae L1  

Gene prediction by Prodigal showed that the complete genome of L1 carried 4223 coding DNA 

sequences (CDS). The data was then annotated using RAST and the subsystem category distribution 

was shown in Figure 4.  
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Figure 4. Subsystem category distribution statistics for E. asburiae L1. The complete 

genome sequence of E. asburiae L1 was annotated using the Rapid Annotation System 

Technology (RAST) server. The pie chart showed the count of each subsystem feature and 

the subsystem coverage. The green bar of the subsystem coverage corresponds to the 

percentage of the proteins included in the subsystems while the blue bar corresponds to the 

percentage of the proteins that are not included in the subsystems.  

 

Figure 5. Putative luxR gene of E. asburiae L1. (A) The red arrow showed the visual 

region of E. asburiae L1 luxR gene and (B) Phylogenetic analysis of E. asburiae L1 luxR 

gene. The tree was constructed based on the LuxR protein sequences by Neighbor-Joining 

with bootstraps value of 1000 replicates.  

 

 

Like most Proteobacteria, the majority of L1 genes (593 counts) are responsible for carbohydrate 

metabolism, followed by amino acids and derivatives; cofactors, vitamins, prosthetic groups and 
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pigment production with 471 and 252 counts, respectively. Generally, these genes are responsible for 

the basic life-sustaining needs of the bacterial cell. Apart from the presence of the basic necessary 

genes in L1, there are 117 genes responsible for virulence, disease and defense. Among these  

117 genes, 85 were found to play a role in controlling the resistance against antibiotics and  

toxic compounds.  

Previous studies have indicated that members of the Enterobacteriaceae cause gastrointestinal 

illnesses, such as diarrhea. Outbreaks have been reported all around the world, commonly connected to 

vegetable and fruit products [21,22]. Studies also showed that Enterobacteriaceae colonization is 

believed to trigger spoilage activities in food products [23,24]. Due to the raise of awareness 

concerning human health, multidisciplinary interest research in the involvement of QS in both food 

spoilage and food-borne illnesses caused by enteric bacteria has increased. Our data revealed the 

presence of virulence-related gene virK, which has been reported to be an important virulence 

determinant in other species, especially at the late stages of infections [25,26]. This leads to the 

speculation that E. asburiae L1 might be a pathogen. However, more studies need to be carried out to 

explore the mechanisms involved in pathogenesis of this organism.  

In a complete AHL-based QS system, the luxI/luxR homologs interact with each other whereby 

AHLs synthesized by LuxI bind to and activate the LuxR-type protein [27]. This AHL-protein 

complex in turn regulates the expression of certain genes, leading to the collective behaviors of the 

bacteria [28]. The luxI/luxR pairs are often genetically linked. However, there are examples where the 

luxI/luxR functional pairs are distantly located in the bacterial chromosome or plasmid. For instance, 

Pseudomonas aeruginosa has been reported to carry an unpaired luxR [27,29] which is responsible for 

the cognate signaling molecules produced by both its existing AHL synthase and the signaling 

molecules from the environment [30]. A putative luxR gene (Figure 5A) with the size of 693 bps was 

identified at the location in between 1,633,036 and 1,633,728 of the E. asburiae L1 complete genome. 

In Figure 5B, the phylogenetic analysis based on amino acid sequences showed that the gene luxR of 

E. asburiae L1 grouped under the same AHL-based QS transcriptional regulator family as compared 

with other E. asburiae and closely related enterobacteria. Furthermore, an AHL synthase gene of E. 

asburiae L1 with a size of 639 bps was found located in the region in between 1,633,743 and 

1,634,381 of this genome. The alignment (Figure 6A) of luxI and luxR genes sequences showed that 

they are 14 bps apart with opposite orientation (Figure 6B). To date, reports on the presence of LuxI in 

Enterobacter are still very limited.  

Our initial analysis of the luxI homolog of E. asburiae L1 was annotated as ‘croI’ found in 

Citrobacter rodentium. In Figure 6C, the phylogenetic analysis based on amino acid sequences showed 

that the AHL synthase found in E. asburiae L1 formed a separate cluster as compared with other  

E. asburiae and closely related enterobacteria. Therefore, we decided to name the luxI homolog of  

E. asburiae L1 easI. 

According to Rezzonico et al., E. asburiae possesses an autoinducer-2 (AI-2)-based QS system.  

In our present work, genes that have been known to be involved in the AI-2-based system were 

detected as well. Although the AI-2 QS system has been proven to be functional in Vibrionaceae, 

doubts regarding AI-2 status as a universal signal still remain unresolved to date. In fact, limited 

studies were conducted to explore the phenotypes regulated by AI-2 in others bacteria apart from 

Vibrio harveyi. According to Winzer et al., molecules such as AI-2 that function as cell-to-cell signals 



Sensors 2014, 14 13920 
 

 

in some organisms may not necessarily do so in others. In addition, the question marks on whether the 

synthesis of the AI-2 molecules is really catalyzed by an enzyme solely dedicated to its production and 

whether their primary function as a true QS system in all bacteria are yet to be solved [31,32]. This 

especially applies for those that occur in bacteria without a luxS gene. 

On the other hand, AHL-regulated phenotypes have successfully been identified after the 

inactivation of luxI homologue genes [33]. Even though very little is known about the relationship 

between QS in E. asburiae and its pathogenicity, studies have shown that Enterobacteriaceae that 

possess diverse AHL signals are more capable of causing infections [34]. Therefore, compared to AI-2, 

our interest is more towards study on the AHL-based QS system in E. asburiae that has been described 

in our previous study.  

Figure 6. N-acyl homoserine lactone synthase EasI and transcriptional regulator of E. 

asburiae L1. (A) The alignment of luxI and luxR genes with 14 bps apart; (B) The arrows 

showed the transcriptional direction of luxI and luxR genes while the green triangle 

indicated the site for start codons and (C) Phylogenetic analysis of E. asburiae L1 luxI 

gene. The tree was constructed based on the similar LuxI protein sequences by  

Neighbor-Joining with bootstraps value of 1000 replicates.  

                
 
 
 
 
 

 

 

To date, apart from E. asburiae L1, only two different strains of E. asburiae have been found 

deposited in DDBJ/EMBL/GenBank, namely E. asburiae LF7a (accession CP003026) and E. asburiae 

C1 (accession JACW00000000). Although the genome of E. asburiae LF7a has been completely 

sequenced, no AHL-based regulated QS system was detected in the sequence. In contrast, E. asburiae 

C1, which possessed an AHL-based QS system, is not a complete genome sequence. Consequently, the 
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presence of both AHL synthase easI gene and the success in obtaining the complete genome of E. 

asburiae L1 is a great stepping stone for us to move towards exploration of the interaction of the AHLs 

produced by E. asburiae L1 with the virulence genes in order to gain a better understanding on how 

these interactions may affect food safety and human health.  

In addition, there is much recent interest in exploring QS as a novel anti-infectious therapy [35,36] 

as it does not involve the use of antibiotics. Theoretically, this will reduce drug resistance  

problems [35]. In fact, a previous study by Dong et al. has proved that expression of aiiA in 

transformed Erwinia carotovora strain SCG1 significantly reduced the amount of autoinducer 

produced, thus decreasing extracellular pectolytic enzyme activities, and attenuating pathogenicity on 

potato, Chinese cabbage, celery, carrot, cauliflower, eggplant, and tobacco [37]. In addition, 

Rasmussen et al. showed that blockage of the QS systems attenuates Pseudomonas aeruginosa [38]. 

Therefore, the complete genome of our E. asburiae L1 isolate will allow us to further investigate the 

QS-mediated gene expression in this bacterium, as well as the development of novel anti-QS 

molecules [39–43].  

4. Conclusions/Outlook 

The AHL synthase gene easI of E. asburiae L1 was discovered in this work thanks to the 

availability of its complete genome. Analysis of this complete genome also indicated the presence of 

virulence factor coding genes. It is believed that the virulence factors might be coordinated by QS, so 

this complete genome may provide insights into the QS-mediated pathogenesis and virulence 

determinants of this potential pathogen. Therefore, our future work will focus on the AHL-based QS 

gene regulation of E. asburiae L1 to determine the importance and functions of these signaling 

molecules in the hope of enhancing produce safety and elucidating the mechanisms of QS-regulation 

in E. asburiae. 

5. Availability of Supporting Data 

The complete genome sequence of E. asburiae strain L1 was deposited in DDBJ/EMBL/GenBank 

under the accessions CP007546. The version described in this paper is the first version. 

Acknowledgments 

This work was supported by the University of Malaya for High Impact Research Grant  

(UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, no. H-50001-A000027) awarded to 

Kok-Gan Chan. 

Author Contributions 

YYL and WFY performed the experiments, all authors analyzed the data and KGC conceived the 

ideas, obtained funding and supervised the project. All authors read and approved the manuscript.  

Conflict of Interest 

The authors declare no conflict of interest. 



Sensors 2014, 14 13922 
 

 

References 

1. Koth, K.; Boniface, J.; Chance, E.A.; Hanes, M.C. Enterobacter asburiae and Aeromonas 

hydrophila: Soft tissue infection requiring debridement. Orthopedics 2012, 35, 996–999.  

2. Asis, C.; Adachi, K. Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph 

Enterobacter asburiae from sweetpotato stem in Japan. Lett. Appl. Microbiol. 2004, 38, 19–23.  

3. Lau, Y.Y.; Sulaiman, J.; Chen, J.W.; Yin, W.-F.; Chan, K.-G. Quorum Sensing Activity of 

Enterobacter asburiae Isolated from Lettuce Leaves. Sensors 2013, 13, 14189–14199. 

4. Cooley, M.B.; Chao, D.; Mandrell, R.E. Escherichia coli O157: H7 survival and growth on 

lettuce is altered by the presence of epiphytic bacteria. J. Food Protect. 2006, 69, 2329–2335.  

5. Gnanamanickam, S.S.; Immanuel, J.E. Epiphytic bacteria, their ecology and functions. In  

Plant-Associated Bacteria; Springer: Heidelberg, Germany, 2006; pp. 131–153. 

6. Smith, R.S.; Iglewski, B.H. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. 

Microbiol. 2003, 6, 56–60.  

7. Karlsson, T.; Turkina, M.V.; Yakymenko, O.; Magnusson, K.-E.; Vikström, E. The Pseudomonas 

aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate 

epithelial cell migration. PLoS Pathog. 2012, 8, doi:10.1371/journal.ppat.1002953. 

8. Schuster, M.; Sexton, D.J.; Diggle, S.P.; Greenberg, E.P. Acyl-homoserine lactone quorum 

sensing: from evolution to application. Ann. Rev. Microbiol. 2013, 67, 43–63. 

9. Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Ann. Rev. Microbiol. 2001, 55, 165–199.  

10. Pearson, J.P.; Van Delden, C.; Iglewski, B.H. Active efflux and diffusion are involved in transport 

of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 1999, 181, 1203–1210.  

11. Swift, S.; Karlyshev, A.V.; Fish, L.; Durant, E.L.; Winson, M.K.; Chhabra, S.R.; Williams, P.; 

Macintyre, S.; Stewart, G. Quorum sensing in Aeromonas hydrophila and Aeromonas 

salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate  

N-acylhomoserine lactone signal molecules. J. Bacteriol. 1997, 179, 5271–5281.  

12. Rasch, M.; Andersen, J.B.; Nielsen, K.F.; Flodgaard, L.R.; Christensen, H.; Givskov, M.;  

Gram, L. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl. 

Environ. Microbiol. 2005, 71, 3321–3330. 

13. Mandal, S.M.; Sharma, S.; Pinnaka, A.K.; Kumari, A.; Korpole, S. Isolation and characterization 

of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol. 

2013, 13, doi:10.1186/1471-2180-13-152. 

14. Gram, L.; Christensen, A.B.; Ravn, L.; Molin, S.; Givskov, M. Production of acylated homoserine 

lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods. Appl. 

Environ. Microbiol. 1999, 65, 3458–3463.  

15. Ammor, M.S.; Michaelidis, C.; Nychas, G.J. Insights into the role of quorum sensing in food 

spoilage. J. Food. Prot. 2008, 71, 1510–1525. 

16. Skandamis, P.N.; Nychas, G.J. Quorum sensing in the context of food microbiology. Appl. 

Environ. Microbiol. 2012, 78, 5473–5482. 

17. De Bona, F.; Ossowski, S.; Schneeberger, K.; Rätsch, G. Optimal spliced alignments of short 

sequence reads. Bioinformatics 2008, 24, I174–80. 



Sensors 2014, 14 13923 
 

 

18. Aziz, R.K.; et al. The RAST Server: rapid annotations using subsystems technology. BMC 

Genomics 2008, 9, doi: 10.1186/1471-2164-9-75. 

19. Krumsiek, J.; Arnold, R.; Rattei, T. Gepard: A rapid and sensitive tool for creating dotplots on 

genome scale. Bioinformatics 2007, 23, 1026–1028. 

20. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular 

evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum 

parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. 

21. Teplitski, M.; Warriner, K.; Bartz, J.; Schneider, K.R. Untangling metabolic and communication 

networks: interactions of enterics with phytobacteria and their implications in produce safety. 

Trends Microbiol. 2011, 19, 121–127. 

22. Mandrell, R.E. Enteric Human Pathogens Associated with Fresh Produce: Sources, Transport and 

Ecology. In Microbial Safety of Fresh Produce; IFT Press/Wiley-Blackwell Publishing: Ames, 

IA, USA, 2009; pp. 5–41.  

23. Borch, E.; Kant-Muermans, M.-L.; Blixt, Y. Bacterial spoilage of meat and cured meat products. 

Int. J. Food Microbiol. 1996, 33, 103–120.  

24. Bennik, M.; Vorstman, W.; Smid, E.; Gorris, L. The influence of oxygen and carbon dioxide on 

the growth of prevalent Enterobacteriaceae and Pseudomonas species isolated from fresh and 

controlled-atmosphere-stored vegetables. Food Microbiol. 1998, 15, 459–469.  

25. Detweiler, C.S.; Monack, D.M.; Brodsky, I.E.; Mathew, H.; Falkow, S. virK, somA and rcsC are 

important for systemic Salmonella enterica serovar typhimurium infection and cationic peptide 

resistance. Mol. Microbiol. 2003, 48, 385–400. 

26. Novik, V.; Hofreuter, D.; Galan, J.E. Characterization of a Campylobacter jejuni virk protein 

homolog as a novel virulence determinant. Infect. Immun. 2009, 77, 5428–5436. 

27. Subramoni, S.; Venturi, V. LuxR-family ‘solos’: Bachelor sensors/regulators of signalling 

molecules. Microbiology 2009, 155, 1377–1385. 

28. Bassler, B.L. Small talk: cell-to-cell communication in bacteria. Cell 2002, 109, 421–424. 

29. Lee, J.H.; Lequette, Y.; Greenberg, E.P. Activity of purified QscR, a Pseudomonas Aeruginosa 

orphan quorum‐sensing transcription factor. Mol. Microbiol. 2006, 59, 602–609. 

30. Patankar, A.V.; González, J.E. Orphan LuxR regulators of quorum sensing. FEMS Microbiol. 

Rev. 2009, 33, 739–756. 

31. Rezzonico, F.; Smits, T.H.M.; Duffy, B. Detection of AI-2 Receptors in Genomes of 

Enterobacteriaceae Suggests Role of Type-2 Quorum Sensing in Closed Ecosystems. Sensors 

2012, 12, 6645–6665. 

32. Winzer, K.; Hardie K.R.; Williams P. Bacterial cell-to-cell communication: Sorry, can’t talk 

now—Gone to lunch! Curr. Opin. Microbiol. 2002, 5, 216–222. 

33. Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR/LuxI family 

of cell density-responsive transcriptional regulators. J Bacteriol. 1994, 176, 269–275. 

34. Wang, H.; Cai, T.; Weng, M.; Zhou, J.; Cao, H.; Zhong, Z.; Zhu, J. Conditional production of 

acyl-homoserine lactone-type quorum-sensing signals in clinical isolates of Enterobacteria. J. 

Med. Microbiol. 2006, 55, 1751–1753. 

35. Hong, K.W.; Koh, C.L.; Sam, C.K.; Yin, W.F.; Chan, K.G. Quorum quenching revisited-from 

signal decays to signalling confusion. Sensors 2012, 12, 4661–4696.  



Sensors 2014, 14 13924 
 

 

36. Chan, K.G.; Atkinson, S.; Mathee, K.; Sam, C.K.; Chhabra, S.R.; Cámara, M.; Koh, C.L.; 

Williams, P. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the 

Zingiber. officinale (ginger) rhizosphere: Co-existence of quorum quenching and quorum sensing 

in Acinetobacter. and Burkholderia. BMC Microbiol. 2011, 11, doi:10.1186/1471-2180-11-51. 

37. Dong, Y.H.; Xu, J.L.; Li, X.Z.; Zhang, L.H. AiiA, an enzyme that inactivates the acylhomoserine 

lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. 

Acad. Sci. USA 2000, 97, 3526–3531. 

38. Rasmussen, T.B.; Skindersoe, M.E.; Bjarnsholt, T.; Phipps, R.K.; Christensen, K.B.; Jensen, P.O.; 

Andersen, J.B.; Koch, B.; Larsen, T.O.; Hentzer, M.; et al. Identity and effects of quorum-sensing 

inhibitors produced by Penicillium species. Microbiology 2005. 151, 1325–1340.  

39. Chong, Y.M.; Yin, W.F.; Ho, C.Y.; Mustafa, M.R.; Hadi, A.H.A.; Awang, K.; Narrima, P.;  

Koh, C.L.; Appleton, D.R.; Chan, K.G. Malabaricone C from Myristica. cinnamomea exhibits 

anti-quorum sensing activity. J. Nat. Prod. 2011, 74, 2261–2264.  

40. Tan, L.Y.; Yin, W.F.; Chan, K.G. Silencing quorum sensing through extracts of Melicope  

lunu-ankenda. Sensors 2012, 12, 4339–4351.  

41. Norizan, S.N.M.; Yin, W.F.; Chan, K.G. Caffeine as a potential quorum sensing inhibitor. Sensors 

2013, 13, 5117–5129.  

42. Tan, L.Y.; Yin, W.F.; Chan, K.G. Piper nigrum, Piper betle and Gnetum gnemon natural food 

sources with anti-quorum sensing properties. Sensors 2013, 13, 3975–3985.  

43. Wong, C.S.; Yin, W.F.; Choo, Y.M.; Sam, C.K.; Koh, C.L.; Chan, K.G. Coexistence of quorum 

quenching and quorum sensing in tropical marine Pseudomonas aeruginosa strain MW3A. World 

J. Microbiol. Biotechnol. 2011, 28, 453–461  

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


