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Abstract:

 In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
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1. Introduction

Mercury is a major water pollutant of high concern, producing severe ailments in living beings, including mental retardation. It is a toxic bio-accumulative environmental pollutant that affects the nervous system and it is released into the environment through industrial, agricultural and other anthropogenic processes. Interests in the determination of trace amount of mercury ions have significantly increased during the past few years due to growing environmental concerns. Several analytical techniques, including, cold vapor atomic absorption spectrometry (CV-AAS) [1–3], inductively coupled plasma optical emission spectrometry (ICP-OES) [4,5], X-ray fluorescence spectrometry [6], inductively coupled plasma mass spectrometry (ICP-MS) [7,8] and cold vapour atomic fluorescence spectrometry (CV-AFS) [9–11] have been applied for the determination of trace amounts of mercury in analytical samples. These methods have good sensitivity, and well controlled experimental conditions. However, they have several disadvantages, such as the use of expensive apparatus, complicated operation, high operation and maintenance costs, and the requirement of well controlled experimental conditions. Because of their advantages in terms of low cost, easy fabrication, simplicity, sensitivity and fast response time, potentiometric sensors based on ion selective electrodes have attracted much attention in electro-analytical chemistry and have been successfully used to determine trace levels of hazardous pollutants such as mercury [12–29].

Ion selective electrodes (ISEs) are potentiometric sensors used to measure some of the most hazardous analytes in environmental laboratory and point-of-care analysers. Despite their easy fabrication, simple usage, and low cost, ISEs suffer from low response sensitivity, interference by a number of metal ions and short lifetimes. As a result, the development of new ISE materials that can address some of these limitations is a worthwhile and challenging topic of research. The ultimate goals of this study are to increase the sensitivity and selectivity of the proposed electrode by minimizing the previously mentioned undesirable electrode processes. Additionally, the application of plasticizer-free electrodes can eliminate the leaching of the electrode solvent and sensing components, thus improving the electrode lifetime.

Carbon is a very important electrode material and is widely used due to its low cost, easy functionalisation, great versatility, broad potential window, and chemical inertness. Various forms of carbons, such as glassy carbon, impregnated graphite, carbon fibres, carbon films, carbon nanotubes, and activated carbon, could be used as electrode materials. Palm shell, a waste product of palm kernel oil production, represents an important group of carbonaceous materials with unique mechanical, physical, and electrochemical properties [30].

Room temperature ionic liquids are salts having very low melting temperature close to room temperature. Room temperature ionic liquids have become an extremely popular theme in recent electrochemical sensing research, due to their large electrochemical window, high conductivity, non-volatility, low toxicity and good electrochemical stability. Recently, new ion selective sensors based on room temperature ionic liquids have been developed [19,31–33].

In this work palm shell activated carbon was modified with trioctylmethylammonium thiosalicylate (TOMATS) to act as a new potentiometric sensor for determination of Hg (II) ion in water samples. It is worth mentioning that TOMATS acts as ionophore as well as plasticizer. To the best of our knowledge this is the first study reporting the use of TOMATS (structure as shown in Figure 1) for the determination of mercury ions in water samples. TOMATS was previously shown to be a very good ligand for Hg (II) [30] which makes it a potential ionophore in a potentiometric sensor.

Figure 1. Chemical structure of TOMATS.



[image: Sensors 14 13102f1 1024]







2. Experimental Section


2.1. Chemicals and Reagents

Analytical reagent grade chemicals and distilled, de-ionized water were used to prepare all aqueous solutions. Commercially available granular palm shell activated carbon (PSAC) was provided by Bravo Green Sdn. Bhd, Malaysia. Activated carbon powder with particle sizes <40 μm were used throughout the potentiometric experiments. PSAC was washed with distilled water to remove fines and dirt; and was dried in an oven at 110 °C for 24 h. The pH of the solutions was adjusted by adding appropriate amounts of concentrated hydrochloric acid (1 M HCl) and/or sodium hydroxide (2 M NaOH). Metal salts were purchased from Merck (Selangor, Malaysia), and aqueous metal solutions were prepared by dissolving appropriate quantities of metal salts in de-ionized water. trioctylmethylammonium thiosalicylate (TOMATS) was purchased from Sigma-Aldrich (Kuala Lumpur, Malaysia).



2.2. Apparatus

All potentiometric measurements were made using a pH/ion meter (Metrohm-781, Filderstadt, Germany) and pH Module (Metrohm-867), permitting real-time potential data collection using the proposed electrode in conjunction with a double junction Ag/AgCl reference electrode. The temperature of the cell holder was maintained at 25 °C and measured under constant stirring with a magnetic stirring bar at 180 rpm.

The electrochemical cell used in this study was constructed as follows:

Ag(s), AgCl(s) | KCl(3 M sat.)| |Sample solution| modified palm shell activated carbon paste electrode.

Metal ion sample concentration was analyzed by inductivity coupled plasma optical emission spectrometer ICP-OES. (model ICP optima 7000DV, PerkinElmer, Waltham, MA, USA).



2.3. Modified Palm Shell Activated Carbon Paste Electrode Preparations and Potential Measurements

Modified palm shell activated carbon paste was prepared by hand mixing the determined quantities of palm shell activated carbon powder and TOMATS. The optimal paste quality was obtained by mixing 0.15 g PSAC and 0.15 g TOMATS in the ratio 1:1 (w/w). The constituents were thoroughly hand mixed in a 50 mm Petri dish to produce the optimal paste quality and then the paste was poured and packed into empty glassy carbon electrode (5 mm diameter) connected to the pH/ion meter by a thin copper wire to produce an electrical contact. The composite surface was polished on weighing paper until the surface displayed a shiny appearance. The surface was rinsed carefully with double-distilled water prior to each experiment. The electrode is stored in a desiccator when it is not in use to avoid adsorption of contaminants.

The potentiometric measurements were conducted as follows: the modified carbon paste electrode and reference electrode were placed in 50 mL of a stirred, 0.1 M Hg (II) solution until the potential reading was constant. The standard addition method was used to investigate the electrode response characteristics. Mercury salt standard solutions were added so that the mercury concentration ranged between 10−10 and 10−1 M. A suitable volume (0.2–100 μL) of mercury standards was pipetted into 50 mL of water in a measuring beaker and the potential measured in the appropriate way for the ion to be measured (i.e., with stirring and sufficient time for stable reading). The potential readings were recorded after each addition when stable values had been obtained. The concentration of solutions was checked by ICP.

The electrode potential of the electrochemical cell Ecell is described by the following Nernst equation:
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(1)




where Econs is a constant term (the sum of the standard potential and liquid junction potential), R is the ideal gas constant, T is the absolute temperature, F is the Faraday constant, z is the charge of the ion, and a is the activity of the ion. At low concentrations, the activity value a can be replaced with the concentration value C. The prelogarithmic factor [image: there is no content] is obtained from the slope (S) of the plot of Ecellversus log C, and the equation becomes:
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(2)




Potentiometric selectivity of this electrode towards different cations was calculated with the matched potential method (MPM) [34]. In this method, the activity of Hg (II) was increased from ai = 1.0 × 10−5 M (primary ion) to ái = 5.0 × 10−5 M, and the corresponding potential change (ΔE) was measured. Then a solution of an interfering ion (aj) in the concentration range of 1.0 × 10−1–1.0 × 10−2 M was added to a new primary ion (ái) until the same potential change (ΔE) was recorded. The selectivity factor, kijpot, was calculated for each interferent using the following equation:
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(3)







3. Results and Discussion


3.1. Response of the Electrode

The calibration for the developed electrode over a wide range of solution Hg (II) activities is shown in Figure 2. The slope of the calibration curve (44.08 mV/dec) is close to that predicted theoretically by the Nernst equation (58.16 mV/dec for monovalent cations), which may be attributed to the formation of monovalent mercury complexes on the electrode surface. This finding indicates that the electrode was sensitive to Hg (II) over a wide range of Hg (II) activities (1 × 10−9–1 × 10−2 M).

Figure 2. Calibration curve for a modified palm shell activated carbon paste electrode over a wide range of Hg (II) activities.
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In addition, the electrode showed a linear response over this range of activities, with a departure from linearity (i.e., loss of sensitivity) at activities lower than 10−9 M Hg (II). The unique sensitivity and selectivity towards Hg (II) obtained for this electrode is due to the coordinate interaction between TOMATS and Hg (II) ions, which may be explained by the chelating effect of the ortho-positioned carboxylate group on the TOMATS molecule impregnated on palm shell activated carbon in addition to the known formation of metal-thiolates [35].

TOMATS which was used as the solvent mediator and plasticizer, have certain desirable properties and characteristics, such as high lipophilicity, high molecular weight, and low vapour pressure. Additionally, their viscosities and dielectric constants were adequate for the construction of an ion selective electrode with desirable analytical properties, such as selectivity, sensitivity, fast response, and long lifetime. The critical response characteristics of the proposed electrode were evaluated according to IUPAC recommendations [36].



3.2. Effect of pH on Electrode Response

The pH of each solution was verified, and its effect on the electrode potential at various metal concentrations was studied. For this purpose, several Hg (II) concentrations (1.0 × 10−6 M, 1.0 × 10−4 M and 1.0 × 10−3 M) were prepared, and the potential variations of the electrode over a pH range of 1–12 were followed. The pH was adjusted by adding small volumes of hydrochloric acid (1 M) and/or sodium hydroxide (2 M) to the sample solution.

The results, shown in Figure 3, indicate that the potential remained constant in the pH range of 3–9, which can be used as the working pH range of the proposed electrode. However, outside this range, the electrode responses changed slightly. The diminished potential at pH > 9 was due to the interference of OH− on the surface. The response at pH < 3 seemed ascribable to the competitive binding of protons to the ligands on the electrode surface.

Figure 3. Effect of pH on the potential response of Hg (II) palm shell activated carbon paste electrode.
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3.3. Potentiometric Selectivity Coefficients

It is well known that the selectivity behavior of an electrode is one of the most important factors in its evaluation, which is measured in terms of the selectivity coefficient. The selectivity coefficient not only depends on ion charge and concentration, but it can also be affected by the type of interaction between the ion and the ionophore. The selectivity factor, log kpot is a measure of the preference of ion selective electrode for interfering ion relative to the primary ion to be measured. A selectivity factor log kpot below 1 indicates that the preference is for the primary ion.

The values of the selectivity coefficients, listed in Table 1, reflect a very high selectivity of this electrode for mercury (II) ion over most of the tested species j. Ag+, Pb2+ and Cu2+ caused only slight interference. However, they do not cause any interference at low concentration. As shown in Table 1, it can be observed, that the proposed electrode based on TOMATS exhibited better selectivity for mercury (II) ion over a wide variety of other metal ions.

Table 1. Selectivity coefficient values of various interfering ions with Hg (II) selective electrode using matched potential method (MPM).


	Interferent ion, j
	−log kpotHg2+,j
	Interferent ion, j
	−log kpotHg2+,j





	Cu2+
	3.05
	Na+
	4.89



	Cd2+
	3.64
	K+
	4.64



	Ca2+
	4.89
	Ni2+
	3.72



	Mg2+
	4.48
	Cr3+
	4.10



	Zn2+
	3.96
	Co2+
	3.33



	Al3+
	3.92
	Ag+
	3.05



	Fe3+
	4.24
	Pb2+
	3.02










3.4. Dynamic Response Time

The response time of the electrode is one of the most important characteristics of the ion selective electrode. According to IUPAC recommendations, the response time of an ion selective electrode is defined as the time between the addition of the analyte to the sample solution and the time when limiting potential has reached its steady state value within ±1 mV. In this study, the response time of the electrode was tested by measuring the time required to achieve a steady state potential (within ±1 mV of the final equilibrium value) after successive immersion in a series of Hg (II) ions. The results, shown in Figure 4 indicate that the response time of the electrode was approximately 5 s for the solution of mercury ion in the concentration range of 1 × 10−8–1 × 10−4 M. This result is probably due to the fast complexation of Hg (II) ions by the TOMATS molecule dispersed in the palm shell activated carbon paste matrix.

Figure 4. Response time of the electrode obtained by successive increase of Hg (II) ion.
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3.5. Electrode Life Time

The life time of the electrode depends on the distribution coefficient of the electrode compositions between the aqueous phase and the electrode phase. Accordingly, the life time of the electrode must depend on the electrode components.

In this work, the life time of the electrode was determined by performing periodic calibrations with standard solutions and calculating the slopes over Hg (II) ion concentration ranges of 1 × 10−9 to 1 × 10−2 M. The obtained results showed that the lifetime of the present electrode was over 90 days (Table 2). During this time, the detection limit of the electrode remained almost constant and the slope of the electrode response decreases from 44.08 to 42.17 mV per decade. Therefore, the electrode can be used for at least 3 months, without a considerable change in their response characteristic towards Hg (II) ions.

Table 2. Mercury electrode response during 90 days.


	Time Period (day)
	Slope (mV/decade)
	Limit of Detection (M)





	1
	44.08
	1 × 10−10



	7
	44.08
	1 × 10−10



	20
	44.08
	1 × 10−10



	30
	43.86
	1 × 10−10



	50
	43.29
	1 × 10−10



	70
	42.86
	1 × 10−9



	90
	42.17
	1 × 10−9










3.6. Comparison of the Response for the Proposed Hg (II) Electrode with other Reported Electrodes

The comparison of the performance of the proposed electrode with that of some recently developed electrodes for Hg (II) determination is given in Table 3.

Table 3. Comparison of the proposed Hg electrode with previously reported electrodes.


	Ionophore
	Slope (mV/decade)
	Linear range (mol·L−1)
	Detection limit (mol·L−1)
	Response time (s)
	Reference





	TOMATS
	44.08 ± 1.0
	1 × 10−2−1 × 10−9
	1 × 10−10
	∼5
	This work



	Tetrazolium–triiodomercurate
	55.5 ± 0.4
	1 × 10−3−6 × 10−6
	4 × 10−6
	30–50
	[12]



	N,N′-bis(Salicylaldehyde)-phenylenediamine
	58.8 ± 0.3
	3.2 × 10−7−3.2 × 10−4
	1.5 × 10−7
	≥10
	[13]



	Diamine donor ligand
	25 ± 0.1
	1.25 × 10−5−1.0 × 10−1
	8.9 × 10−6
	10
	[16]



	1-(2-Ethoxyphenyl)-3-(3-nitrophenyl)triazene
	29.3 ± 0.2
	1.0 × 10−4−5.0 × 10−9
	2.5 × 10−9
	∼5
	[19]



	Bis[5-((4-nitrophenyl)azo salicylaldehyde)]
	30 ± 1
	5 × 10−2−7 × 10−7
	2.0 (±0.1) × 10−7
	<10
	[23]



	4-(4-N,N-dimethylphenyl)-2, 6-diphenylpyrilium tetrafluoroborate
	34
	1.0 × 10−8−1.0 × 10−3
	1.0 × 10−8
	about 3 min
	[28]



	Ethyl-2-(benzoylamino)-3- (2-hydroxy-4-methoxyphenyl)-2-propenoate
	48.5 ± 1.0
	3.0 × 10−7−3.1 × 10−2
	1.0 × 10−7
	∼5
	[37]



	Substituted thiourea
	28.4 ± 1.0
	1.0 × 10−7−1.0 × 10−1
	7.0 × 10−8
	∼35
	[38]



	Cyclodextrins
	20
	0.9 × 10−7−1.0 × 10−1
	0.9 × 10−7
	20
	[39]



	N,N-dimethylformamide-salicylacylhydrazone
	29.6
	6.2 × 10−7−8.0 × 10−2
	5.0 × 10−7
	<30
	[40]



	2-[10-[(E)-2-(Aminocarbothioyl)hydrazono]-1,4-dihydroxy-9(10H)-anthracenyliden]-1hydrazinecarbothioamide
	30.3
	1.0 × 10−7−1.0 × 10−2
	7.9 × 10−8
	15
	[41]



	5,11,17,23-Tetra-tert-butyl-25,27-dihydroxy-26,28-bis(O-methylglycylcarbonylmethoxy) thiacalix[4]-arene
	29.5
	5.0 × 10−8−1.0 × 10−2
	1.0 × 10−8
	10
	[42]








As clearly shown in this table the sensor proposed in this work has excellent performance in terms of response time, linear range, Nernstian slope, and detection limit. The proposed electrodes showed improved performance characteristics relative to conventional electrodes. This improvement presumably originates from the electrode composition.



3.7. Analytical Applications

The proposed electrode was applied for determination of Hg (II) in real drinking water sample. The results of Hg (II) content measured by proposed electrode were compared with those obtained by ICP. Table 4 shows that Hg (II) concentration values obtained by proposed electrode were similar to those obtained by ICP, with deviations below 2% for all samples.


Table 4. Potentiometric determination of Hg (II) in water samples using proposed electrode and ICP.



	
Sample a

	
Hg (II) (mg·L−1) b




	






	
Proposed Electrode

	
ICP

	
RSD%

	
Recovery%






	
(1)

	
1.353

	
1.363

	
0.54

	
99.2




	
(2)

	
1.472

	
1.443

	
1.39

	
102.0




	
(3)

	
1.483

	
1.499

	
0.74

	
99.0




	
(4)

	
1.408

	
1.404

	
0.18

	
100.3






aFrom some ground water wells in the Gaza Strip;bMean data for three replicate measurements.







4. Conclusions

The results presented herein demonstrate the utility of TOMATS as both plasticizer and ionophore in the preparation of new ion selective electrodes for the determination of mercury ions in water samples. The proposed electrode had fast response for detection of mercury ions. The proposed electrode has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. The electrode was successfully applied for the determination of mercury content in drinking water samples. These characteristics and the typical applications presented in this work make the electrode suitable for measuring the mercury content in real samples without a significant interaction from other cationic or anionic species.






Acknowledgments

This work was carried at the Center for Separation Science and Technology and was financed through the High Impact Research Grant Project No. UM.C/HIR/MOHE/ENG/43.



Author Contributions

Ahmed Abu Ismaiel: Planned, performed the experiments, interpreted the results, and wrote the paper; Mohamed Kheireddine Aroua and Rozita Yusoff: Supervisors contributed to the conception of the overall study, provided technical advice for the interpretation of results, and assisted in the preparation of the manuscript.



Conflicts of Interest

The authors declare no conflict of interest.



References


	1. 
Martinis, E.M.; Bertón, P.; Olsina, R.A.; Altamirano, J.C.; Wuilloud, R.G. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry. J. Hazard. Mater. 2009, 167, 475–481. [Google Scholar]

	2. 
Zavvar Mousavi, H.; Asghari, A.; Shirkhanloo, H. Determination of Hg in water and wastewater samples by cv-aas following on-line preconcentration with silver trap. J. Anal. Chem. 2010, 65, 935–939. [Google Scholar]

	3. 
Ferrúa, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry. J. Hazard. Mater. 2007, 141, 693–699. [Google Scholar]

	4. 
de Wuilloud, J.C.A.; Wuilloud, R.G.; Silva, M.F.; Olsina, R.A.; Martinez, L.D. Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 365–374. [Google Scholar]

	5. 
dos Santos, E.J.; Herrmann, A.B.; Vieira, M.A.; Frescura, V.L.A.; Curtius, A.J. Evaluation of slurry preparation procedures for the determination of mercury by axial view inductively coupled plasma optical emission spectrometry using on-line cold vapor generation. Spectrochimi. Acta Part B At. Spectrosc. 2005, 60, 659–665. [Google Scholar]

	6. 
Lau, O.W.; Ho, S.Y. Simultaneous determination of traces of iron, cobalt, nickel, copper, mercury and lead in water by energy-dispersive x-ray fluorescence spectrometry after preconcentration as their piperazino-1,4-bis(dithiocarbamate) complexes. Anal. Chim. Acta 1993, 280, 269–277. [Google Scholar]

	7. 
Wuilloud, J.C.A.; Wuilloud, R.G.; Vonderheide, A.P.; Caruso, J.A. Gas chromatography/plasma spectrometry—A important analytical tool for elemental speciation studies. Spectrochimi. Acta Part B At. Spectrosc. 2004, 59, 755–792. [Google Scholar]

	8. 
Matousek, J.P.; Iavetz, R.; Powell, K.J.; Louie, H. Mechanistic studies on the trapping and desorption of volatile hydrides and mercury for their determination by electrothermal vaporization-inductively-coupled plasma mass spectrometry. Spectrochimi. Acta Part B At. Spectrosc. 2002, 57, 147–155. [Google Scholar]

	9. 
Bagheri, H.; Gholami, A. Determination of very low levels of dissolved mercury(ii) and methylmercury in river waters by continuous flow with on-line uv decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta 2001, 55, 1141–1150. [Google Scholar]

	10. 
Jiang, X.; Gan, W.; Wan, L.; Zhang, H.; He, Y. Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode. Spectrochimi. Acta Part B At. Spectrosc. 2010, 65, 171–175. [Google Scholar]

	11. 
Zi, H.J.; Gan, W.E.; Han, S.P.; Jiang, X.J.; Wan, L.Z. Determination of trace inorganic mercury in mineral water by flow injection on-line sorption preconcentration-cold vapor atomic fluorescence spectrometry. Chin. J. Anal. Chem. 2009, 37, 1029–1032. [Google Scholar]

	12. 
Abbas, M.N.; Mostafa, G.A.E. New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury. Anal. Chim. Acta 2003, 478, 329–335. [Google Scholar]

	13. 
Abu-Shawish, H.M. A mercury(ii) selective sensor based on n,n′-bis(salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples. J. Hazard. Mater. 2009, 167, 602–608. [Google Scholar]

	14. 
Bakhtiarzadeh, F.; Ab Ghani, S. An ion selective electrode for mercury (ii) based on mercury (ii) complex of poly(4-vinyl pyridine). J. Electroanal. Chem. 2008, 624, 139–143. [Google Scholar]

	15. 
Gismera, M.J.; Hueso, D.; Procopio, J.R.; Sevilla, M.T. Ion-selective carbon paste electrode based on tetraethyl thiuram disulfide for copper (ii) and mercury (ii). Anal. Chim. Acta 2004, 524, 347–353. [Google Scholar]

	16. 
Gupta, V.K.; Chandra, S.; Lang, H. A highly selective mercury electrode based on a diamine donor ligand. Talanta 2005, 66, 575–580. [Google Scholar]

	17. 
Hassan, S.S.M.; Saleh, M.B.; Abdel Gaber, A.A.; Mekheimer, R.A.H.; Abdel Kream, N.A. Novel mercury(ii) ion-selective polymeric membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate. Talanta 2000, 53, 285–293. [Google Scholar]

	18. 
Khan, A.A. Inamuddin. Applications of Hg (II) sensitive polyaniline Sn (iv) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sens. Actuators B Chem. 2006, 120, 10–18. [Google Scholar]

	19. 
Khani, H.; Rofouei, M.K.; Arab, P.; Gupta, V.K.; Vafaei, Z. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(ii). J. Hazard. Mater. 2010, 183, 402–409. [Google Scholar]

	20. 
Lu, J.; Tong, X.; He, X. A mercury ion-selective electrode based on a calixarene derivative containing the thiazole azo group. J. Electroanal. Chem. 2003, 540, 111–117. [Google Scholar]

	21. 
Mahajan, R.K.; Kaur, I.; Lobana, T.S. A mercury (ii) ion-selective electrode based on neutral salicylaldehyde thiosemicarbazone. Talanta 2003, 59, 101–105. [Google Scholar]

	22. 
Mahajan, R.K.; Puri, R.K.; Marwaha, A.; Kaur, I.; Mahajan, M.P. Highly selective potentiometric determination of mercury(ii) ions using 1-furan-2-yl-4-(4-nitrophenyl)-2-phenyl-5h-imidazole-3-oxide based membrane electrodes. J. Hazard. Mater. 2009, 167, 237–243. [Google Scholar]

	23. 
Mashhadizadeh, M.H.; Sheikhshoaie, I. Mercury (ii) ion-selective polymeric membrane sensor based on a recently synthesized schiff base. Talanta 2003, 60, 73–80. [Google Scholar]

	24. 
Mazloum, M.; Amini, M.K.; Mohammadpoor-Baltork, I. Mercury selective membrane electrodes using 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and hexathiacyclooctadecane carriers. Sens. Actuators B Chem. 2000, 63, 80–85. [Google Scholar]

	25. 
Rofouei, M.K.; Mohammadi, M.; Gholivand, M.B. Mercury (ii) selective membrane electrode based on 1,3-bis(2-methoxybenzene)triazene. Mater. Sci. Eng. C 2009, 29, 2154–2159. [Google Scholar]

	26. 
Singh, A.K.; Bhattacharjee, G.; Singh, R. Mercury(ii)-selective membrane electrode using tetrathia-diazacyclotetradeca-2,9-diene as neutral carrier. Sens. Actuators B Chem. 2004, 99, 36–41. [Google Scholar]

	27. 
Yari, A.; Papi, F. Highly selective sensing of mercury (ii) by development and characterization of a pvc-based optical sensor. Sens. Actuators B Chem. 2009, 138, 467–473. [Google Scholar]

	28. 
Yu, X.; Zhou, Z.; Wang, Y.; Liu, Y.; Xie, Q.; Xiao, D. Mercury(ii)-selective polymeric membrane electrode based on the 3-[4-(dimethylamino)phenyl]-5-mercapto-1,5-diphenylpentanone. Sens. Actuators B Chem. 2007, 123, 352–358. [Google Scholar]

	29. 
Tahir, T.; Salhin, A.; Ghani, S. Flow injection analysis of mercury using 4-(dimethylamino) benzaldehyde-4-ethylthiosemicarbazone as the ionophore of a coated wire electrode. Sensors 2012, 12, 14968–14982. [Google Scholar]

	30. 
Ismaiel, A.A.; Aroua, M.K.; Yusoff, R. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chem. Eng. J. 2013, 225, 306–314. [Google Scholar]

	31. 
Faridbod, F.; Ganjali, M.R.; Larijani, B.; Norouzi, P. Multi-walled carbon nanotubes (mwcnts) and room temperature ionic liquids (rtils) carbon paste er (iii) sensor based on a new derivative of dansyl chloride. Electrochim. Acta 2009, 55, 234–239. [Google Scholar]

	32. 
Peng, B.; Zhu, J.; Liu, X.; Qin, Y. Potentiometric response of ion-selective membranes with ionic liquids as ion-exchanger and plasticizer. Sens. Actuators B Chem. 2008, 133, 308–314. [Google Scholar]

	33. 
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 2008, 607, 126–135. [Google Scholar]

	34. 
Gadzekpo, V.P.Y.; Christian, G.D. Determination of selectivity coefficients of ion-selective electrodes by a matched-potential method. Anal. Chim. Acta 1984, 164, 279–282. [Google Scholar]

	35. 
Roland St. Kalb, M.J.K. Task-specific ionic liquids. Available online: http://www.sigmaaldrich.com/technical-documents/articles/chemfiles/task-specific-ionic0.html (accessed on 8 July 2014).

	36. 
Buck, R.P.; Lindner, E. Recommendations for nomenclature of ion selective electrodes. Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar]

	37. 
Mashhadizadeh, M.H.; Talakesh, M.; Peste, M.; Momeni, A.; Hamidian, H.; Mazlum, M. A novel modified carbon paste electrode for potentiometric determination of mercury (ii) ion. Electroanalysis 2006, 18, 2174–2179. [Google Scholar]

	38. 
Mehran, J.; Faten, D.; Alireza, B.; Ganjali, M.R.; Parviz, N.; Ziarani, G.M.; Marzieh, C.; Jahangir, A.A. Potentiometric detection of mercury (ii) ions using a carbon paste electrode modified with substituted thiourea-functionalized highly ordered nanoporous silica. Anal. Sci. 2009, 25, 789–794. [Google Scholar]

	39. 
Roa-Morales, G.; Ramírez-Silva, M.T.; González, R.L.; Galicia, L.; Romero-Romo, M. Electrochemical characterization and determination of mercury using carbon paste electrodes modified with cyclodextrins. Electroanalysis 2005, 17, 694–700. [Google Scholar]

	40. 
Ye, G.; Chai, Y.; Yuan, R.; Dai, J. A mercury (ii) ion-selective electrode based on n,n-dimethyl-formamide-salicylacylhydrazone as a neutral carrier. Anal. Sci. 2006, 22, 579–582. [Google Scholar]

	41. 
Ghanei-Motlagh, M.; Fayazi, M.; Taher, M.A. On the potentiometric response of mercury(ii) membrane sensors based on symmetrical thiourea derivatives—experimental and theoretical approaches. Sens. Actuators B Chem. 2014, 199, 133–141. [Google Scholar]

	42. 
Gupta, V.K.; Sethi, B.; Sharma, R.A.; Agarwal, S.; Bharti, A. Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J. Mol. Liq. 2013, 177, 114–118. [Google Scholar]























© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).







media/file4.png





nav.xhtml


  sensors-14-13102


  
    		
      sensors-14-13102
    


  




  





media/file3.png
EMF (mV)

1X10*M

1X10°M

1X10°M

0 10 20 30

40 50 60 70 80 90 100 110 120 130 140 150

Time (sec.)





media/file0.png
(CH,);CH; CO2~

| SH
HaC(H2C)7~N*~CHg @/
(CH2)7CHs





media/file1.png
E(mV)

2
-log a,,






media/file2.png
mV

550

500

350

300

250

200

150

ye 1X10°3M
‘N—Q—Q—Q—Q—N\J-:].OAM

] 1X10°M

:l\h.\I—I—I—I—I—I—H






